Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rajendran, senthilkumar (2014) STUDIES ON LINEAGE SHIFT RESPONSES OF HUMAN PERIPHERAL BLOOD MULTIPOTENT CELLS. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3256Kb

Abstract (inglese)

Stem cell therapy is gaining momentum as an effective treatment strategy for degenerative diseases. As embryonic stem cells pose a lot of ethical issues, adult stem cells, isolated from various sources like cord blood, bone marrow or adipose tissue, are being considered as a realistic option due to their well documented therapeutic potentials. In our lab, we have standardised a method to isolate fibroblastic multipotent stem cells (PBMCs) from human peripheral blood, that are able to sustain long term in vitro culture and differentiate towards adipogenic, chondrogenic and osteogenic lineage.
In this work, PBMCs were stimulated to obtain in vitro neuronal and myogenic-like cells. Moreover, their restorative potential in degenerative diseases of skeletal muscle and nervous tissue was evaluated using in vivo models. In order to test the neuronal differentiation potential, the cells were seeded (1x104) on gelatin coated dishes and cultured for 7 days in neurobasal medium with EGF and FGF followed by Retinoic acid and NGF for next 7 days. Myogenic induction was carried out using IGF and ascorbic acid for 14 days. At different time points, morphological studies were performed by SEM and specific neuronal and myogenic marker expression were evaluated using RT-PCR, flow cytometry and western blot. PBMCs showed characteristic dendrite like morphology and expressed specific neuronal markers both at mRNA and protein level. The calcium flux activity of PBMCs under stimulation with KCl 56 mM and the secretion of the neurotransmitter, noradrenalin, a precursor in the dopamine synthesis confirmed their ability to acquire a functional phenotype. When premarked by a cell tracker Qdot 800 and injected stearotactically into a rat brain, PBMCs showed to be migratory and proliferative as detected after 10 and 20 days of injection. No tumor mass was identified. The myogenic potential of PBMCs were confirmed by their ability to form syncitium like structures in in vitro culture and to express typical myogenic markers both at early and late phases of differentiation. PBMCs were showed to integrate within the host tissue and to take part in tissue repair as demonstrated in a bupivacaine induced muscle damage model.

Abstract (italiano)

Il trapianto di cellule staminali è una strategia terapeutica che sta conoscendo uno sviluppo sempre maggiore come possibile approccio clinico per il trattamento delle malattie degenerative. Considerando i problemi di carattere etico sollevati dall’impiego delle cellule staminali embrionali, le cellule staminali adulte isolate da varie fonti (sangue cordonale, midollo osseo, tessuto adiposo﴿ rappresentano una realistica alternativa, in virtù della loro potenzialità rigenerativa ben documentata. Nel nostro laboratorio è stato standardizzato un metodo per isolare cellule staminali fibroblastoidi multipotenti (Peripheral Blood Multipotent Cells, PBMC) da sangue periferico umano, che possono essere espanse in vitro durante la coltura a lungo termine e sono in grado di differenziare in senso adipogenico, condrogenico e osteogenico. Nel lavoro di tesi del Dott. Senthilkumar Rajendran, le cellule PBMC sono state stimolate per l’ottenimento in vitro di cellule simil-neuronali e -muscolari. Inoltre è stato valutato il loro potenziale rigenerativo nel trattamento di malattie degenerative del muscolo scheletrico e del tessuto nervoso attraverso la sperimentazione in vivo su modelli animali. Al fine di testare il potenziale di differenziazione neuronale, le cellule sono state seminate (1x104) su coating di gelatina e coltivate per i primi 7 giorni in Neurobasal medium addizionato con EGF e FGF, e per i 7 giorni successivi in terreno basale contenente acido retinoico e NGF. L’induzione miogenica è stata effettuata utilizzando IGF e acido ascorbico per 14 giorni. Ad ogni time point, sono stati realizzati studi morfologici mediante SEM e analisi di espressione di specifici marcatori neuronali e miogenici mediante RT-PCR, citofluorimetria e western blot. Le cellule PBMC hanno mostrato una caratteristica morfologia simil-dendritica e l’espressione di specifici marcatori neuronali a livello sia di mRNA che di proteine. Lo studio del flusso del calcio dopo stimolazione con KCl 56 mM e l’attività di secrezione del neurotrasmettitore noradrenalina, precursore nella sintesi della dopamina, hanno confermato la capacità delle cellule PBMC di acquisire un fenotipo funzionale. Dopo marcatura con il tracker cellulare Qdot 800 e iniezione per stereotassi in un cervello di ratto, le PBMC hanno dimostrato un elevato potenziale migratorio e proliferativo dopo 10 e 20 giorni dall'impianto. Non è stata identificata alcuna massa tumorale. Il potenziale miogenico delle popolazioni isolate è stato confermato dalla loro capacità di formare strutture simil-sinciziali durante la coltura in vitro e di esprimere marcatori tipici della linea miogenica, sia a tempi precoci che nelle fasi tardive del differenziamento. Infine, testate in un modello animale di danno muscolare indotto con bupivacaina, le cellule PBMC sono state in grado di integrarsi all'interno del tessuto ospite e di prendere parte nella riparazione dei tessuti.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Di Liddo, prof.ssa Rosa
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE
Data di deposito della tesi:29 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):stem cells, cell therapy, lineage shift, degenerative diseases,
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/16 Anatomia umana
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze del Farmaco
Codice ID:6430
Depositato il:22 Mag 2015 13:08
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agid Y. Parkinson’s disease: pathophysiology. Lancet. 1991; 337: 1321-1324. Cerca con Google

Akiyama Y, Radke C, Kocsis JD.. Remyelination of rat spinal cord by implantation of identified bone marrow stromal cells. J Neurosci. 2002; 22: 6623-6630. Cerca con Google

Alcaín FJ, Burón MI. Ascorbate on cell growth and differentiation. JBioenerg Biomembr. 1994; 26(4): 393-8. Cerca con Google

Alison MR, Poulsom R, Otto WR, Vig P, Brittan M, Direkze NC, Lovell M, Fang TC, Preston SL, Wright NA. Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol. 2004; 57(2): 113-20. Cerca con Google

Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965; 124(3): 319-35 Cerca con Google

Anderson D, Gage F, Weissman I. Can stem cells cross the lineage barrier? Nature Med 2001; 7: 393-395. Cerca con Google

Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010; 5(1): 121-43. Cerca con Google

Barberi T, Bradbury M, Dincer Z, Panagiotakos G, Socci ND, Studer L. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med 2007; 13: 642- 648. Cerca con Google

Begemann G, Meyer A. Hindbrain patterning revisited: timing and effects of retinoic acid signalling. Bioessays. 2001; 23(11): 981-6. Cerca con Google

Belema Bedada F, Technau A, Ebelt H, Schulze M, Braun T. Activation of myogenic differentiation pathways in adult bone marrow-derived stem cells. Mol Cell Biol. 2005; 25: 9509-19. Cerca con Google

Ben-Hur T, Einstein O, Mizrachi-Kol R, Ben-Menachem O, Reinhartz E, Karussis D, Abramsky O. Transplanted multipotential neural progenitor cells migrate into the inflamed white matter in response to experimental allergic encephalitis. Glia. 2003; 41: 73-80. Cerca con Google

Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999; 283(5401): 534-7. Cerca con Google

Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001; 105(7): 829-41. Cerca con Google

Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR. Transplantation of cryopreserved human embryonic carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol. 1998; 149: 310-321. Cerca con Google

Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol. 2011; 12(6): 349-61. Cerca con Google

Brazelton TR, Nystrom M, Blau HM. Significant differences among skeletal muscles in the incorporation of bone marrow-derived cells. Dev Biol. 2003; 262(1): 64-74. Cerca con Google

Brown RC, Lockwood AH, Sonawane BR. Neurodegenerative diseases: An overview of environmental risk factors. Environ Health Perspect. 2005; 113: 1250–1256. Cerca con Google

Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD. Embryonic stem cell-derived glial precursors: a source for myelinating transplants. Science. 1999; 285: 754-756. Cerca con Google

Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophinexpressing glial-restricted precursor cells. J Neurosci. 2005; 25: 6947-6957. Cerca con Google

Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science. 2002; 297(5585): 1299. Cerca con Google

Cau E, Casarosa S, Guillemot F. Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development. 2002; 129: 1871–1880. Cerca con Google

Chan D, Lamande SR, Cole WG, Bateman JF. Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem J. 1990; 269(1): 175-81. Cerca con Google

Chepda T, Cadau M, Girin P, Frey J, Chamson A. Monitoring of ascorbate at a constant rate in cell culture: effect on cell growth. In Vitro Cell Dev Biol Anim. 2001; 37(1): 26-30. Cerca con Google

Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp MIntravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003; 73: 778-786. Cerca con Google

Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001; 32: 2682- 2688. Cerca con Google

Chesselet MF. Molecular Mechanisms of Neurodegenerative Diseases, XIII edition. New York, Humana Press. 2001; 410 pp. Cerca con Google

Chung S, Sonntag KC, Andersson T, Bjorklund LM, Park JJ, Kim DW, Kang UJ, Isacson O, Kim KS. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neurons. Eur J Neurosci. 2002; 16: 1829-1838. Cerca con Google

Ciccolini F, Svendsen CN. Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J Neurosci. 1998; 18(19): 7869-80. Cerca con Google

Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem. 1995; 270(20): 12109-16. Cerca con Google

Crisan M, Deasy B, Gavina M, Zheng B, Huard J, Lazzari L, Péault B. Purification and long-term culture of multipotent progenitor cells affiliated with the walls of human blood vessels: myoendothelial cells and pericytes. Methods Cell Biol. 2008; 86: 295-309. Cerca con Google

Crisan M, Huard J, Zheng B, Sun B, Yap S, Logar A, Giacobino JP, Casteilla L, Péault B. Purification and culture of human blood vessel-associated progenitor cells. Curr Protoc Stem Cell Biol. 2008; Chapter 2: Unit 2B.2.1-2B.2.13. Cerca con Google

Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M, Summers R, Gage FH, Anderson AJ. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc Natl Acad Sci USA. 2005; 102: 14069-14074. Cerca con Google

D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005; 23: 1534-1541. Cerca con Google

Darabi R, Gehlbach K, Bachoo RM, Kamath S, Osawa M, Kamm KE, Kyba M, Perlingeiro RC. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med. 2008; 14: 134-143. Cerca con Google

Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS. Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord. 2000; 10: 113-120. Cerca con Google

Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A, Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE, Torrente Y, Ferrari S, Bianco P, Cossu G. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol. 2007; 9: 255-267. Cerca con Google

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. Cerca con Google

Dunnett SB, Bjorklund A. Prospects for new restorative and neuroprotective treatments in Parkinson’s disease. Nature. 1999; 399: A32-A39. Cerca con Google

Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models. Curr Opin Genet Dev. 2002; 12: 349-361. Cerca con Google

Ebers GC. Multiple scelrosis and other demyelinating diseases. In: Asbury A, McKhann G, McDonald W, editors. Diseases of the nervous system. Philadelphia: W.B. Saunders. 1988; 1268-1291. Cerca con Google

Edmondson DG, Olson EN. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993; 268(2): 755-8. Cerca con Google

Emery AE. The muscular dystrophies. Lancet. 2002; 359: 687-695. Cerca con Google

Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol. 1996; 135(2): 431-40. Cerca con Google

Ernest A, Miles T, Peter A, Carlos FI. GDNF prevents degeneration and promotes the Cerca con Google

phenotype of brain noradrenergic neurons in vivo. Neuron. 1995; 15: 1465-1473. Cerca con Google

Espinosa de los Monteros A, Zhao P, Huang C, Pan T, Chang R, Nazarian R, Espejo D, de Vellis J. Transplantation of CG4 oligodendrocyte progenitor cells in the myelin-deficient rat brain results in myelination of axons and enhanced oligodendroglial markers. J Neurosci Res. 1997; 50: 872-887. Cerca con Google

Espinosa de los Monteros A, Baba H, Zhao PM, Pan T, Chang R, de Vellis J, Ikenaka K. Remyelination of the adult demyelinated mouse brain by grafted oligodendrocyte progenitors. Neurochem Res. 2001; 26: 673-682. Cerca con Google

Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279(5356): 1528-30. Cerca con Google

Franco PG, Paganelli AR, López SL, Carrasco AE. Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development. 1999 ;126(19): 4257-65 Cerca con Google

Franklin RJ, Blakemore WF. Transplanting oligodendrocyte progenitors into the adult CNS. J Anat. 1997; 190: 23–33. Cerca con Google

Gage FH. Neurogenesis in the adult brain. J Neurosci 2002; 22: 612–613. Cerca con Google

Glaser T, Perez-Bouza A, Klein K, Brustle O. Generation of purified oligodendrocyte progenitors from embryonic stem cells. FASEB J. 2005; 19: 112-114. Cerca con Google

Goodell MA. Stem-cell "plasticity": befuddled by the muddle. Curr Opin Hematol. 2003; 10(3): 208-13. Cerca con Google

Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE. Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron. 2001; 31: 219–232. Cerca con Google

Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med. 2002; 8(6): 607-12. Cerca con Google

Grounds MD. Two-tiered hypotheses for Duchenne muscular dystrophy. Cell Mol Life Sci. 2008; 65: 1621-1625. Cerca con Google

Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999; 401(6751): 390-4. Cerca con Google

Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson’s disease. J Neuropathol Exp Neurol. 2002; 60: 741-752. Cerca con Google

He Q, Wan C, Li G. Concise review: multipotent mesenchymal stromal cells in blood. Stem Cells. 2007; 25: 69-77. Cerca con Google

Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ. Reducing amyloid plaque burden via ex vivo gene delivery of an Ab-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med. 2007; 262: 1405-1416. Cerca con Google

Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood. 2003; 102(10): 3483-93. Cerca con Google

Heslop L, Morgan JE, Partridge TA. Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci. 2000; 113: 2299 -2308. Cerca con Google

Hill M, Goldspink G. Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol. 2003; 549: 409-18. Cerca con Google

Hoffman EP, Knudson CM, Campbell KP et al. Subcellular fractionation of dystrophin to the triads of skeletal muscle. Nature. 1987; 330: 754-758. Cerca con Google

Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson LMarrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA. 2002; 99: 2199-2204. Cerca con Google

Huang E, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Cerca con Google

Annu Rev Neurosci.2001; 24: 677–736. Cerca con Google

Huss R, Lange C, Weissinger E.M et al. Evidence of peripheral blood derived, plasticadherent CD34-/low hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells. 2000; 18: 252-260. Cerca con Google

Ianus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest. 2003; 111(6): 843-50. Cerca con Google

Issarachai S, Priestley GV, Nakamoto B, Papayannopoulou T. Cells with hemopoietic potential residing in muscle are itinerant bone marrow-derived cells. Exp Hematol. 2002; 30(4): 366-73. Cerca con Google

Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res. 2005; 80: 182–190. Cerca con Google

Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A. 1999 ; 96(25): 14482-6. Cerca con Google

Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001; 107(11): 1395-402. Cerca con Google

Jungblut M, Tiveron MC, Barral S, Abrahamsen B, Knobel S, Pennartz S, Schmitz J, Perraut M, Pfrieger FW, Stoffel W, Cremer H, Bosio A. Isolation and Characterization of Living Primary Astroglial Cells Using the New GLAST-Specific Monoclonal Antibody ACSA-1. GLIA. 2012; 60: 894-907. Cerca con Google

Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A. 1998; 95(15): 8801-5. Cerca con Google

Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest. 2003; 112(1): 42-9. Cerca con Google

Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead CM, Fehlings MG. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J Neurosci. 2006; 26: 3377-3389. Cerca con Google

Katsetos CD, Legido A, Perentes E, Mork SJ. Class III β-tubulin isotype: a key cytoskeletal protein at the crossroads of developmental neurobiology and tumor neuropathology. Journal of Child Neurology. 2003; 18: 851-866. Cerca con Google

Kawasaki H, Mizuseki K, Nishikawa S, Kaneko S, Kuwana Y, Nakanishi S, Nishikawa SI, Sasai Y. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron. 2000; 28: 31–40. Cerca con Google

Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005; 25: 4694-4705. Cerca con Google

Kim JH, Auerbach JM, Rodrı´guez-Go´mez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sa´nchez-Pernaute R, Bankiewicz K, McKay R. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature. 2002; 418: 50–56. Cerca con Google

Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. Journal of Neuroscience Research. 2009; 87(10): 2183-200. Cerca con Google

Kim TE, Lee HS, Lee YB, Hong SH, Lee YS, Ichinose H, Kim SU, Lee MA. Sonic hedgehog and FGF8 collaborate to induce dopaminergic phenotype in Nurr-1 over-expressing neural stem cells. Biochem Biophys Res Commun. 2003; 305: 1040-1048. Cerca con Google

Kish SJ, Shannak K, Hornykiewitcz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med. 1988; 318: 876-880. Cerca con Google

Kolodny EH, Fattal-Valevski A. Degenerative Disorders. In: Bernard LM, Current Management in Child Neurology, Third Edition. BC Decker Inc Ed. 2005; pages 265–276. Cerca con Google

Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol. 2003; 21: 759-806. Cerca con Google

Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L. Transplantation of cultured human neuronal cells for patients with stroke. Neurology.2000; 55: 565-569. Cerca con Google

Kordower JH, Goetz CG, Freeman TB, Olanow CW.. Doparminergic transplants in patients with Parkinson’s disease: neuroanatomical correlates of clinical recovery. Exp Neurol .1997a; 144: 41-46. Cerca con Google

Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001; 105: 369 –377. Cerca con Google

Kucia M, Ratajczak J, Ratajczak MZ.Bone marrow as a source of circulating CXCR4 tissue-committed stem cells. Biology of the Cell. 2005; 97: 133-146. Cerca con Google

Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996; 16(6): 2027-33. Cerca con Google

Kuznetsov SA, Mankani MH, Gronthos S et al.Circulating skeletal stem cells. J Cell Biol. 2001; 153: 1133-1140. Cerca con Google

Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med. 2000; 6(11): 1229-34. Cerca con Google

Learish RD, Brustle O, Zhang SC, Duncan ID. Intraventricular transplantation of oligodendrocyte progenitors into a fetal myelin mutants in widespread formation of myelin. Ann Neurol.1999; 46: 716-722. Cerca con Google

Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18: 675-679. Cerca con Google

Le Grand F, Rudnicki M. Satellite and stem cells in muscle growth and repair. Development. 2007; 134(22): 3953-7. Cerca con Google

Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AF. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal Biochem. 2002; 307(1): 63-9. Cerca con Google

Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997; 277: 2000-2002. Cerca con Google

Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science. 1990; 247: 574–577. Cerca con Google

Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, McDonald JW.. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after transplantation. Proc Natl Acad Sci USA. 2000; 97: 6126-6131. Cerca con Google

Liu Y, Kim D, Himes BT, Chow SY, Schallert T, Murray M, Tessler A, Fischer I. Transplants of fibroblasts genetically modified to express BDNF promote regeneration of adult rat rubrospinal axons and recovery of forelimb function. J Neurosci. 1999; 19: 4370-4387. Cerca con Google

Loges S, Fehse B, Brockmann MA et al. Identification of the adult human hemangioblast. Stem Cells Dev. 2004; 13: 229-242. Cerca con Google

Luis P, Nora PR, Nestor GC. Effect of GDNF on neuroblast proliferation and photoreceptor survival: additive protection with docosahexaenoic acid. Investigative Ophthalmology & Visual Science. 2001; 42: 3008-3015. Cerca con Google

Mahmood A, Harkness L, Schrøder HD, Abdallah BM, Kassem M. Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res 2010; 25: 1216-1233. Cerca con Google

Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, Verma IM, Masliah E. Neprilysin gene transfer reduces human amyloid patholgy in trasgenic mice. J Neurosci. 2003; 23: 1992-1996. Cerca con Google

Marshall J, Thomas DJ. 1988. Cerebrovascular disease. In: Asbury A, McKhann G, McDonald W, editors. Diseases of the nervous system. Philadelphia: W.B. Saunders. p 1101-1135. Cerca con Google

Matsumura K, Campbell KP. Dystrophinglycoprotein complex: Its role in the molecular pathogenesis of muscular dystrophies. Muscle Nerve. 1994; 17: 2-15. Cerca con Google

Maximow AA. Culture of blood leucocytes: from lymphocyte and monocyte to connective tissue. Arch Exp Zellforsch. 1982; 75 : 169-268. Cerca con Google

McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999; 5: 1410–1412. Cerca con Google

McFarlin DE, McFarland HF. Multiple sclerosis. N Engl J Med. 1982; 307: 1183–1188. Cerca con Google

McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A. 2002; 99(3): 1341-6. Cerca con Google

Modo M, Stroemer RP, Tang E, Patel S, Hodges H. Effects of implantation site of stem cell grafts on behavioral recovery from stroke damage. Stroke. 2002; 33: 2270–2278. Cerca con Google

Morshead CM, Benveniste P, Iscove NN, van der Kooy D. Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat Med. 2002; 8(3): 268-73. Cerca con Google

Mouly V, Aamiri A, Perie S et al. Myoblast transfer therapy: Is there any light at the end of the tunnel? Acta Myol. 2005; 24: 128 –133. Cerca con Google

Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet. 2001; 27(2): 195-200. Cerca con Google

Novitch BG, Wichterle H, Jessell TM, Sockanathan S. A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron. 2003; 40(1): 81-95 Cerca con Google

Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, Bregman BS, Koike M, Uchiyama Y, Toyama Y, Okano H. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res. 2002; 69: 925–933. Cerca con Google

Olanow CW, Kordower J, Freeman T.. Fetal nigral transplantation as a therapy for Parkinson’s disease. Trends Neurosci.1996; 19: 102-109. Cerca con Google

Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410(6829): 701-5. Cerca con Google

Partridge TA. Impending therapies for Duchenne muscular dystrophy. Curr Opin Neurol. 2011; 24: 415-22. Cerca con Google

Poulsom R, Alison MR, Forbes SJ, Wright NA. Adult stem cell plasticity. J Pathol. 2002; 197(4): 441-56. Cerca con Google

Priller J, Persons DA, Klett FF, Kempermann G, Kreutzberg GW, Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene-marked bone marrow cells in vivo. J Cell Biol. 2001; 155(5): 733-8. Cerca con Google

Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia. 2004; 18: 29-40. Cerca con Google

Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska- Wieczorek A. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells. 2003; 21(3): 363-71. Cerca con Google

Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY. Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci USA. 2007; 104: 12175-12180. Cerca con Google

Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood, 1993; 81: 1679-1690. Cerca con Google

Sacco A, Mourkioti F, Tran R et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010; 143: 1059 -1071. Cerca con Google

Sakurai H, Okawa Y, Inami Y et al. Paraxial mesodermal progenitors derived from mouse embryonic stem cells contribute to muscle regeneration via differentiation into muscle satellite cells. Stem Cells. 2008; 26: 1865-1873. Cerca con Google

Saporta S, Borlongan CV, Sanberg PR. Neural transplantation of human teratocarcinoma neurons into ischemic rats. A quantitative doseresponse analysis of cell survival and behavioral recovery. Neuroscience. 1999; 180: 519-525. Cerca con Google

Savitz SI, Rosenbaum DM, Dinsmore JH, Wechsler LR, Caplan LR. Cell transplantation for stroke. Ann Neurol. 2002; 52: 266-275. Cerca con Google

Scheibe RJ, Ginty DD, Wagner JA. Retinoic acid stimulates the differentiation of PC12 cells that are deficient in cAMP-dependent protein kinase. J Cell Biol. 1991; 113(5): 1173-82. Cerca con Google

Schmid RS, Maness PF. L1 and NCAM adhesion molecules as signaling coreceptors in neuronal migration and process outgrowth. Curr Opin Neurobiol. 2008; 18(3): 245-50. Cerca con Google

Seta N, Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J Med, 2007; 56(2): 41-7. Cerca con Google

Sevè P, Dumontet C. Is class III β-tubulin a predictive factor in patients receiving tubulin-binding agents?. The Lancet Oncology. 2008 ; 9: 168-175. Cerca con Google

Shabbir A, Zisa D, Leiker M, Johnston C, Lin H, Lee T. Muscular dystrophy therapy by nonautologous mesenchymal stem cells: muscle regeneration without immunosuppression and inflammation. Transplantation. 2009; 87(9): 1275-82. Cerca con Google

Sharpe C, Goldstone K. The control of Xenopus embryonic primary neurogenesis is mediated by retinoid signalling in the neurectoderm. Mech Dev. 2000; 91(1-2): 69-80. Cerca con Google

Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-xL. J Neurosci. 2004; 24: 843-852. Cerca con Google

Sinden JD, Rashid-Doubell F, Kershaw TR, Nelson A, Chadwick A, Jat PS, Noble MD, Hodges H, Gray JA. Recovery of spatial learning by grafts of a conditionallyt immortalized hippocampal neuroepithelial cell line into the ischemia-lesioned hippocampus. Neuroscience. 1997; 23: 599-608. Cerca con Google

Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol. 2007; 8(5): 369-78. Cerca con Google

Sodek J, Feng J, Yen EH, Melcher AH. Effect of ascorbic acid on protein synthesis and collagen hydroxylation in continuous flow organ cultures of adult mouse periodontal tissues. Calcif Tissue Int. 1982; 34(4): 408-15. Cerca con Google

Songtao Shi and Stan Gronthos. Journal of bone and mineral research, 2003,Volume 18, Number 4. Cerca con Google

Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 2003; 33(6): 919-26. Cerca con Google

Storck T, Schulte S, Hofmann K, Stoffel W. Structure, expression, and functional analysis of Na+-dependent glutamate/aspartate transporter from rat brain. Proceedings of the National Academy of Sciences of the USA. 1992; 89(22): 10955-10959. Cerca con Google

Strickland S, Mahdavi V. The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell. 1978; 15(2): 393-403. Cerca con Google

Studer L, Tabar V, McKay R. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci. 1998; 1: 290-295. Cerca con Google

Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. Annu Rev Pathol. 2013; 8: 441-75. Cerca con Google

Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M, Hayashi H, Imazato T, Kawasaki H, Suemori H, Omachi S, Iida H, Itoh N, Nakatsuji N, Sasai Y, Hashimoto N. Dopaminergic neurons generated from monkey ES cells function in a Parkinson primate model. J Clin Invest. 2005; 115:102-108. Cerca con Google

Tamaki T, Akatsuka A, Ando K et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 2002;157: 571-577. Cerca con Google

Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY.. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA. 2002; 99: 3024-3029. Cerca con Google

Thaller C, Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature. 1987; 327(6123): 625-8. Cerca con Google

Theise ND, Henegariu O, Grove J, Jagirdar J, Kao PN, Crawford JM, Badve S, Saxena R, Krause DS. Radiation pneumonitis in mice: a severe injury model for pneumocyte engraftment from bone marrow. Exp Hematol. 2002; 30(11): 1333-8. Cerca con Google

Thoenen H. Neurotrophins and activity-dependent plasticity. Prog Brain Res. 2000 ; Cerca con Google

128: 183–191. Cerca con Google

Tondreau T, Meuleman N, Delforge A et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells. 2005; 23: 1105-1112. Cerca con Google

Trounson A. Stem cells, plasticity and cancer - uncomfortable bed fellows. Development. 2004; 131: 2763-8 Cerca con Google

Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH. Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol. 1994; 126: 1-14. Cerca con Google

Veizovic T, Beech JS, Stroemer RP, Watson WP, Hodges H. Resolution of stroke deficits following contalateral grafts of conditionally immortlized neuroepithelial stem cells. Stroke. 2001; 32: 1012-1019. Cerca con Google

Wagner J, Akerud P, Castro DS, Holm PC, Canals JM, Snyder EY, Perlmann T, Arenas E. Induction of a midbrain dopaminergic phenotype in Nurr1-overexpressing neural stem cells by type 1 astrocytes. Nat Biotechnol. 1999; 17: 653-659. Cerca con Google

Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna critical sized bone defect model. J Orthop Res. 2006; 24: 610-618. Cerca con Google

Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL. Physiological migration of hematopoietic stem and progenitor cells. Science. 2001; 294(5548): 1933-6. Cerca con Google

Wu GD, Nolta JA, Jin YS, Barr ML, Yu H, Starnes VA, Cramer DV. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation. 2003; 75: 679-685. Cerca con Google

Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE. Human neural stem cell grafts ameliorate motor neuron disease in SOD1 transgenic rats. Transplantation. 2006; 82: 865-875. Cerca con Google

Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol. 1995; 134: 261-272. Cerca con Google

Yamskova VP, Krasnov MS, Yamskov IA. On mechanisms underlying regeneration and reparation processes in tissues. Bull Exp Biol Med. 2010; 149(1): 140-3. Cerca con Google

Yan Y, Yang J, Bian W, Jing N. Mouse nestin protein localizes in growth cones of P19 Cerca con Google

neurons and cerebellar granule cells. Neurosci Lett. 2001; 302(2-3): 89-92. Cerca con Google

Yandava B, Billinghurst L, Snyder E. Global cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc Natl Acad Sci USA. 1999; 96: 7029-7034. Cerca con Google

Zhang SC, Ge B, Duncan ID. Adult brain retains the potential to generate oligodendroglial progenitors with extensive myelination capacity. Proc Natl Acad Sci USA. 1999; 96: 4089-4094. Cerca con Google

Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischmica brain of rats. Exp Neurol. 2002; 174: 11-20. Cerca con Google

Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, Yap S, Pollett JB, Drowley L, Cassino T, Gharaibeh B, Deasy BM, Huard J, Péault B. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007; 25: 1025-1034. Cerca con Google

Zheng JK, Wang Y, Karandikar A, Wang Q, Gai H, Liu AL, Peng C, Sheng HZ. Skeletal myogenesis by human embryonic stem cells. Cell Res. 2006; 16: 713-722. Cerca con Google

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13: 4279-95. Cerca con Google

Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal. 2011; 14(7): 1275-88. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record