Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dal Maso, Lucia (2014) Effetto del blocco del recettore AT1R dell'angiotensina II sullo stress ossidativo e sul signalling mediato dallo stress ossidativo nel danno cardiovascolare ed endoteliale del paziente iperteso.
Studio ex vivo nell'uomo con approccio biologico molecolare.
[Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

High blood pressure is a major risk factor for cardiovascular disease, myocardial infarction, heart failure, kidney failure and peripheral vascular disease.
Oxidative stress, due to increased production of reactive oxygen species (ROS), plays an important pathophysiological role in the development of hypertension and its long-term complications, such as cardiovascular remodeling and atherosclerosis (Touyz RM et al, 2004).
Various risk factors (smoking, diabetes, increased LDL, as well as hypertension) lead to an increase of the redox state, resulting in endothelial dysfunction, increased expression of pro-inflammatory redox sensitive genes and activation of smooth muscle cells (Luft FC, 2001).
In hypertensive patients, the Renin-Angiotensin-Aldosterone system (RAAS) is activated and this causes an increase of Angiotensin (Ang II) production (Ruster C et al, 2006). Ang II causes vasoconstriction, increases total peripheral resistance and, consequently, blood pressure but at the same time strongly induces oxidative stress.
Ang II mediates its actions through two distinct receptors: AT1R (for which Ang II has more affinity) and AT2R (Dihn DT et al, 2001; Mehta PK et al, 2007; Calò LA et al, 2010). Many of the Ang II-related events are mediated via activation of the AT1R receptor followed by both a short term signaling, which causes vasoconstriction, and a long term signaling, which leads to vascular remodeling and atherosclerosis through the activation of NAPDH oxidase and consequently production of superoxide anion (O2-) (Griendling KK et al, 2000). Ang II signaling via AT2R stimulation has been suggested to counteract many actions mediated by AT1R inducing vasodilatation, anti-proliferation, cell differentiation, anti-apoptotic signals; it therefore has a role in the homeostatic counterbalance of an excessive stimulation of AT1R (Volpe et al, 2003; Zhuo et al, 2008; Yamamoto et al, 2008).
Oxidative stress is well recognized to play a crucial role in the pathogenic mechanisms of endothelial dysfunction. Endothelial dysfunction defines a complex molecular and biochemical picture of inflammatory, proliferative, structural and functional abnormalities of the vasculature. Endothelial progenitor cells (EPCs), derived from bone marrow, play an important role for the protection from these abnormalities (Hill JM et al, 2003), as they are able to repair the damaged endothelium, through a continuous process of re-endothelialization and/or neovascularization (Heiss C et al, 2005). In hypertension the number of circulating EPCs is reduced and their function is altered; this situation represents an additional risk factor in the development of cardiovascular events. It has been shown that Ang II and AngII-induced oxidative stress play a pivotal role in EPC status by accelerating the onset of their senescence, which, in turn, leads to impairment of their proliferative activity (Imanishi T et al, 2005). The calcitonin gene-related peptide (CGRP), instead, is a potent vasorelaxant, which prevents circulating EPC senescence and reverses AngII-induced senescence of EPC (Zhou Z et al, 2010).
The important role that oxidative stress plays in the cardiovascular remodelling and atherogenetic processes, that are observed in hypertension, has led researchers to investigate the potential pleiotropic effects of antihypertensive drugs on oxidative stress.
In particular, two drugs families are more intensive studied: ACE inhibitors (ACEIs) and the Ang II type 1 receptor blocker (ARBs) which both reduce RAAS activity.
Olmesartan Medoxomil, widely used in the treatment of hypertension, blocks specifically AT1R receptor and consequently its actions via short and long term signaling independently of the Ang II source. AngII is, then, available for binding to AT2R inducing vasodilatation, anti-inflammatory and antifibrotic effects and causing a dose-dependent reduction of blood pressure.
Furthemore, the treatment with Olmesartan has been shown to possess antioxidant-related effects such as reduction of the plasma levels 8-isoprostane, a marker of oxidative stress (Fliser D et al, 2005), and activation of Nitric Oxide (NO) system, through increase of eNOS phosphorylation (Oyama N et al, 2010; Kanematsu Y et al, 2006).
The aim of our study was, therefore, to evaluate a possible anti-oxidant and vasoprotective effect of the Olmesartan Medoxomil, in essential hypertensive patients, using a molecular biology approach.
The study was carried out at different times, using two cohorts of essential hypertensive patients with similar clinical features treated for six months with Olmesartan Medoxomil. On the first cohort of patients we analyzed markers of oxidative stress and cardiovascular remodelling-related pathways, as well as the level of oxidized LDL; on the second cohort of patients, we evaluated both the protein expression of HO-1, the plasma levels of CGRP and circulating EPCs number and senescence.
In particular, in the first phase of the study, we evaluated p22phox, subunit of NADPH oxidase, essential for the production of superoxide anion (O2-), and heme oxygenase-1 (HO-1), inducible isoform of HO, known to protect from oxidative stress. We also evaluated the state of phosphorylation of extracellular signal-regulated kinases (ERK1/2), an oxidative stress protein effector for cardiovascular remodeling, and the plasma level of the low-density lipoproteins (OxLDL), a plasma marker of oxidative stress, which is crucial in the development of arteries chronic inflammation at intima level.
In the second phase of the study, we evaluated the vasoprotective effects of Olmesartan, considering parameters such as: HO-1, potent anti-oxidant and anti-inflammatory protein, characterized by a strong effect on re-endothelialization, which is linked to its ability to increase the number and to reduce the senescence of circulating EPC; CGRP, peptide-stimulated by HO-1, that protect the endothelium and prevents circulating EPCs senescence. Moreover, were evaluated the number and survival of circulating EPCs.
The results of the first phase of the study, have demonstrated that Olmesartan Midoxomil, besides inducing blood pressure normalization in essential hypertensive patients since the third month of treatment, significantly reduced p22phox protein level after 3 months compared to baseline (0.71±0.26 vs 0,93±0.24 densitometric unit (d.u.,), p<0.001), and moreover significantly reduced p22phox at 6 months both compared to baseline (0.45±0.12 vs 0.93±0.24 d.u., p<0.001) and to 3 months (0.45±0.12 vs 0.71±0.26 d.u., p<0.02).
Olmesartan treatment also significantly decreased phosphorylated ERK 1/2 levels, both after 3 months compared to baseline (0.39±0.14 vs 0.56±0.11 d.u., p=0.001), and at 6 months compared to baseline (0.19±0.08 vs 0.56±0.11, d.u., p=0.001) and to 3 months (0.19±0.08 vs 0.39±0.14, d.u., p=0.001).
oxLDL plasma levels were significantly reduced after 6 months of treatment, both compared to baseline (171.92±61,83 vs 300.84±109.13 ng/ml, p=0.001), and to 3 months (171.92±61,83 vs 270.06±100.34 ng/ml, p=0.002), whereas at 3 months the reduction was not significant.
Furthermore, Olmesartan treatment caused a significant increase of HO-1 protein expression levels at 3 months of the therapy compared to baseline (1.10±0.19 vs 0.77±0.071 d.u., p=0.001) and at 6 months of the therapy compared to baseline (1.11±0.19 vs 0.77±0.071 d.u., p=0.001). There was no significant increase of HO-1 protein expression between 6 and 3 months of Olmesartan treatment (1.11±0.19 vs 1.10±0.19 d.u., p=ns).
In the second phase of the study, confirming the previously shown increase of HO-1, we found that Olmesartan significantly increased HO-1 protein level, both at 3 months compared to baseline (0.95±0,21 vs 0.81±0.21 d.u., p=0.031), and at 6 months compared to baseline (1.1±0.26 vs 0.81±0.21 d.u., p=0.001) and to 3 months (1.1±0.26 vs 0.95±0.21 d.u., p=0.01).
Moreover, we observed a significantly increase of CGRP plasma levels after 6 months of therapy, both compared to baseline (263.91±43.08 vs 198.81±51.98 pg/ml, p=0.001), and to 3 months (263.91±43.08 vs 218.97±41.13 pg/ml, p=0.03).
Circulating EPC number, defined by cell surface antigens CD34+KDR+, CD133+KDR+ e CD34+CD133+KDR+, increased after 6 months of Olmesartan treatment both compared to baseline (respectively, 112.89±53.44 vs 35.11±25.98, p=0.005; 107.60±37.09 vs 20.90±14.58, p=0.0001; 38.11±19.64 vs 3.67±3.61, p=0.0007) and compared to 3 months (respectively, 112.89±53.44 vs 59.11±35.30, p=0.002; 107.60±37.09 vs 49.50±45.20, p=0.003; 38.11±19.64 vs 15.78±18.59, p=0.0028).
Olmesartan significantly reduced EPC apoptosis, evaluated by gating on CD133+KDR+ cells events based on Annexin V expression, at 3 months compared to baseline (27.24± 9.64% vs 44.28 ± 12.38%, p<0.01) and further significantly reduced it at 6 months both compared to baseline (16.83±15.68% vs 44.28 ±12.38%, p<0.001) and to 3 months (16.83±15.68% vs 27.24±9.64%, p< 0.004) (Calò LA et al, 2014).
In conclusion, this study demonstrates Olmesartan’s inhibitory effect on oxidative stress and oxidative stress-related proteins involved in oxidative stress signaling in essential hypertensive patients. Moreover, it demonstrates a vasoprotective effect of Olmesartan via reduction of Ang II-mediated oxidative stress and increased CGRP-mediated improvement of endothelial dysfunction, likely due also to the increased number of circulating EPC and their improved survival/function.
In addition, our data provide a mechanistic rationale for the Olmesartan’s antioxidant and anti-inflammatory potential translation, in the long term, toward antiatherosclerotic and antiremodeling effects reported in clinical trials such as MORE (Stumpe KO et al 2007), OLIVUS (Hirohata A et al, 2010), EUTOPIA (Fliser D et al, 2004) e VIOS (Smith RD et al, 2006)

Abstract (italiano)

L’ipertensione arteriosa è il più importante fattore di rischio per le malattie cardiovascolari, l’infarto del miocardio, lo scompenso cardiaco, l’insufficienza renale e le vasculopatie periferiche.
Lo stress ossidativo, dovuto all’aumentata produzione delle specie reattive all’ossigeno (ROS), svolge un importante ruolo fisiopatologico nello sviluppo dell’ipertensione arteriosa e delle sue complicanze a lungo termine, quali il rimodellamento cardiovascolare e l’aterosclerosi (Touyz RM et al, 2004).
Vari fattori di rischio (fumo, diabete, aumento di LDL, oltre che ipertensione) portano ad un aumento dello stato redox, determinando disfunzione endoteliale, aumento dell’espressione di geni pro-infiammatori redox sensibili ed attivazione delle cellule muscolari lisce (Luft FC, 2001).
In pazienti ipertesi, il sistema Renina-Angiotensina (RAAS) è attivato, causando un aumento di produzione dell’Angiotensina (Ang II) (Ruster C et al, 2006). L’Ang II, potente vasocostrittore (in grado di aumentare le resistenze periferiche totali e quindi la pressione arteriosa) è un potente induttore di stress ossidativo.
L’Ang II media le sue azioni attraverso due recettori distinti: AT1R e AT2R (Dihn DT et al, 2001; Mehta PK et al, 2007; Calò LA et al, 2010). La stimolazione del recettore AT1R, per il quale l’Ang II presenta maggiore affinità, determina sia vasocostrizione attraverso un signalling cellulare a breve termine ma anche rimodellamento vascolare e aterosclerosi attraverso un signalling a lungo termine che coinvolge l’attivazione dell’NADPH ossidasi, produttore di anione superossido (O2-) (Griendling KK et al, 2000). Il legame al recettore AT2R da parte dell’Ang II controbilancia gli effetti mediati dall’attivazione di AT1R, inducendo vasodilatazione, antiproliferazione, differenziazione cellulare, segnali antiapoptotici; esso ha quindi un ruolo omeostatico nel controbilanciare un eccesso di stimolazione di AT1R (Volpe et al, 2003; Zhuo et al, 2008; Yamamoto et al, 2008).
Lo stress ossidativo, è considerato uno dei meccanismi patogenetici fondamentali della disfunzione endoteliale. Per disfunzione endoteliale si intende un quadro molecolare e biochimico complesso che comprende infiammazione, proliferazione, anormalità strutturali e funzionali dei vasi. Le cellule progenitrici endoteliali (EPC) circolanti di derivazione midollare, svolgono un importante ruolo di protezione da queste alterazioni (Hill JM et al, 2003) in quanto sono in grado di riparare l’endotelio danneggiato attraverso un continuo processo di re-endotelializzazione e/o neovascolarizzazione (Heiss C et al, 2005).
Nell’ipertensione il numero di EPC circolanti è ridotto e la loro funzione è alterata; tale situazione rappresenta un ulteriore fattore di rischio nello sviluppo di eventi cardiovascolari. E’ stato dimostrato, infatti, che l’Ang II, che causa un aumento dello stress ossidativo, svolge un ruolo centrale nell’insorgenza dell’invecchiamento e nella inibizione della capacità proliferativa delle EPC circolanti (Imanishi T et al, 2005). Il calcitonin gene-related peptide (CGRP), invece, è un potente vasodilatatore, che previene l’invecchiamento delle EPC circolanti, indotto anche da Ang II (Zhou Z et al, 2010).
L’importante ruolo che gioca lo stress ossidativo nei processi di remodelling cardiovascolare ed aterogenesi che si osservano nell’ipertensione arteriosa, ha indotto i ricercatori a porre sempre maggior attenzione e ad investigare i potenziali effetti pleiotropici dei farmaci antiipertensivi sullo stress ossidativo.
I farmaci maggiormente studiati sono gli ACE inibitori (ACEIs) e i bloccanti il recettore AT1R dell'Angiotensina (ARBs), le due più importanti classi di farmaci che agiscono limitando l'attività del sistema renina-angiotensina-aldosterone (RAAS).
L’Olmesartan Medoxomil, bloccante il recettore AT1R dell’Ang II, ampiamente usato nel trattamento dell’ipertensione, blocca tutte le attività dell’Ang II mediate dal recettore AT1R, indipendentemente dall’origine e dalla via di sintesi dell’Ang II; l’ormone, perciò, si rende disponibile per il legame con il suo recettore AT2R, la cui stimolazione determina vasodilatazione, effetti antifibrotici e antinfiammatori e determina una riduzione, a lungo termine, dose-dipendente, della pressione arteriosa. Inoltre, è stato dimostrato che l’Olmesartan possiede attività antiossidante in quanto riduce i livelli plasmatici del marker di stress ossidativo 8-isoprostano (Fliser D et al, 2005), e attiva il sistema del monossido d’azoto (NO) attraverso un aumento della fosforilazione della eNOS (Oyama N et al, 2010; Kanematsu Y et al, 2006).
Con il nostro studio abbiamo valutato un possibile effetto antiossidante e vasoprotettivo dell’Olmesartan Medoxomil in pazienti ipertesi essenziali, utilizzando un approccio biologico molecolare.
Lo studio è stato effettuato in tempi differenti utilizzando due coorti di pazienti con caratteristiche cliniche simili trattati per 6 mesi con Olmesartan Medoximil. Sulla prima coorte sono stati analizzati markers di stress ossidativo e della pathway del rimodellamento cardiovascolare, oltre che i livelli di LDL ossidate; sulla seconda coorte di pazienti sono stati valutati oltre che l’espressione proteica di HO-1, i livelli palsmatici di CGRP e il numero e la sopravvivenza delle EPC circolanti.
In particolare, nella prima fase sono state valutate p22phox subunità della NADPH ossidasi essenziale per la produzione di anione superossido, ed Heme Oxigenase-1 (HO-1), isoforma inducibile di HO, in grado di proteggere dallo stress ossidativo. Abbiamo, inoltre, valutato lo stato di fosforilazione delle ERK, proteine effettrici dello stress ossidativo nel rimodellamento cardiovascolare, e lo stato di marker plasmatici di stress ossidativo come le lipoproteine ossidate a bassa densità (LDL ossidate), cruciali nello sviluppo della reazione infiammatoria cronica a livello della tonaca intima delle arterie.
Nella seconda fase dello studio abbiamo preso in considerazione gli effetti vasoprotettivi dell’Olmesartan valutando parametri quali: HO-1, proteina che oltre ad avere una potente attività anti-ossidante ed anti-infiammatoria, è contraddistinta da un potente effetto favorente la re-endotelializzazione, giustificato dalla sua capacità di aumentare il numero e di ridurre l’invecchiamento di cellule progenitrici endoteliali (EPC) circolanti ed il CGRP, peptide stimolato dall’HO-1 che protegge l’endotelio e previene l’invecchiamento delle EPC circolanti mediato da Ang II. Inoltre, sono stati valutati il numero e la sopravvivenza delle EPC circolanti.
I risultati della prima fase hanno dimostrato come il farmaco Olmesartan, oltre a normalizzare la pressione arteriosa in pazienti ipertesi essenziali già a 3 mesi di terapia, ha ridotto significativamente i livelli di espressione proteica di p22phox già a 3 mesi di terapia rispetto al basale (rispettivamente 0.71±0.26 vs 0.93±0.24 unità densitometriche (u.d.), p<0.001), riduzione che è risultata significativa anche a 6 mesi rispetto sia al basale (0.45±0.12 vs 0.93±0.24 u.d., p<0.001) che a 3 mesi (0.45±0.12 vs 0.71±0.26 u.d., p<0.02).
Il trattamento con Olmesartan ha ridotto significativamente anche i livelli di fosforilazione delle ERK 1/2 sia dopo 3 mesi rispetto al baseline (rispettivamente 0.39±0.14 vs 0.56±0.11 u.d., p=0.001) che a 6 mesi di terapia, rispetto al basale (0.19±0.08 vs 0.56±0.11, u.d., p=0.001) e rispetto a 3 mesi (0.19±0.08 vs 0.39±0.14 u.d., p=0.001).
I livelli di LDL ossidate sono risultati significativamente ridotti dopo 6 mesi di terapia, sia rispetto al basale (171.92±61.83 vs 300.84±109.13 ng/ml, p=0.001), che rispetto a 3 mesi (171.92±61.83 vs 270.06±100.34 ng/ml, p=0.002) mentre a 3 mesi rispetto al basale la riduzione non era significativa (270.06±100.34 vs 300.84±109.13 ng/ml, p=ns).
Il trattamento con Olmesartan ha, invece, determinato un significativo aumento dei livelli di espressione proteica di HO-1 rispetto al basale sia a 3 mesi di terapia (1.10±0.19 vs 0.77±0.071 u.d., p=0.001) che a 6 mesi (1.11±0.19 vs 0.77±0.071 u.d., p=0.001), mentre la variazione non è risultata significativa tra 3 e 6 mesi di trattamento (1.10±0.19 vs 1.11±0.19 u.d., p=ns).
Nella seconda parte dello studio, confermando quanto riscontrato precedentemente, il trattamento con Olmesartan ha incrementato significativamente i livelli di espressione proteica di HO-1 rispetto al basale sia a 3 mesi (0.95±0.21 vs 0.81±0.21 u.d., p=0.031) che a 6 mesi (1.1±0.26 vs 0.81±0.21 u.d., p=0.001) con un aumento significativo anche nel confronto tra 3 e 6 mesi (0.95±0.21 vs 1.1±0.26 u.d., p=0.01).
L’Olmesartan ha, inoltre, indotto un significativo aumento dei livelli plasmatici di CGRP dopo 6 mesi di terapia sia rispetto al basale (263.91±43.08 vs 198.81±51.98 pg/ml, p=0.001), che rispetto a 3 mesi (263.91±43.08 vs 218.97±41.13 pg/ml, p=0.03). Un aumento nel numero di EPC circolanti, espresse come CD34+KDR+, CD133+KDR+ e CD34+CD133+KDR+, è risultato significativo a 6 mesi di trattamento con Olmesartan sia rispetto al basale (rispettivamente 112.89±53.44 vs 35.11±25.98, p=0.005 per CD34+KDR+; 107.60±37.09 vs 20.90±14.58, p=0.0001 per CD133+KDR+; 38.11±19.64 vs 3.67±3.61, p=0.0007 per CD34+ CD133+KDR+) che a 3 mesi (112.89±53.44 vs 59.11±35.30, p=0.002 per CD34+KDR+; 107.60±37.09 vs 49.50±45.20, p=0.003 per CD133+KDR+; 38.11±19.64 vs 15.78±18.59, p=0.0028 per CD34+ CD133+KDR+).
L’apoptosi delle cellule EPC, valutata mediante analisi citofluorimetrica del legame tra annessina V e fosfatidilserina espressa sulle cellule CD133+KDR+, è risultata significativamente ridotta già a 3 mesi di trattamento con Olmesartan (27.24± 9.64% vs 44.28 ± 12.38%, p<0.01) e si è ulteriormente ridotta in modo significativo a 6 mesi sia rispetto al basale (16.83±15.68% vs 44.28 ±12.38%, p<0.001) che rispetto a 3 mesi (16.83±15.68 vs 27.24±9.64% %, p< 0.004) (Calò LA et al, 2014).
In conclusione, questo studio dimostra un effetto inibitorio dell’Olmesartan sullo stress ossidativo e sulle proteine correlate coinvolte nel signalling intracellulare dello stress ossidativo in pazienti con ipertensione essenziale. Inoltre, dimostra che l’Olmesartan possiede un effetto vasoprotettivo mediato dalla riduzione dello stress ossidativo indotto dall’Ang II e dall’aumento degli effetti benefici del CGRP sulla disfunzione endoteliale, dovuti anche all’aumento del numero delle EPC circolanti e della loro sopravvivenza/funzionalità.
I nostri dati, inoltre, forniscono un razionale meccanicistico dell’azione anti-ossidante, anti-infiammatoria e vasoprotettiva, forniscono il razionale meccanicistico agli effetti anti-aterosclerotici, antiinfiammatori e di anti-remodeling di Olmesartan riportati da trials clinici come MORE (Stumpe KO et al 2007), OLIVUS (Hirohata A et al, 2010), EUTOPIA (Fliser D et al, 2004) e VIOS (Smith RD et al, 2006)

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Calò, Lorenzo A.
Data di deposito della tesi:28 Gennaio 2014
Anno di Pubblicazione:28 Gennaio 2014
Parole chiave (italiano / inglese):Angiotensina II/Angiotensin II; Stress Ossidativo/Oxidative Stress; Disfunzione Endoteliale/Endothelial Dysfunction; eme-ossigenasi-1/Heme-oxygenase-1;CGRP/CGRP; cellule progenitrici endoteliali circolanti/circulating endothelial progenitor cells.
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/14 Nefrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:6442
Depositato il:03 Nov 2014 12:18
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991; 51(3): 974-8. Cerca con Google

Aruoma OI, Halliwell B, Dizdaroglou M. Iron ion-dependent modification of bases in DNA by the superoxide radical generating system hypoxanthine/xanthine oxidase. J Biol Chem 1989; 264: 13024-13028. Cerca con Google

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275(5302):964-7. Cerca con Google

Aslam S. Cardiovascular disease in dialysis patients: do some antihypertensive drugs have specific antioxidant effects or is it just blood pressure reduction? Does antioxidant treatment reduce the risk for cardiovascular disease? Curr Opin Nephrol Hypertens. 2008;17(1): 99-105. Review. Cerca con Google

Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009-17. Cerca con Google

Atlas SA. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm. 2007;(13)[8 Suppl B]:9-20. Review. Cerca con Google

Aust SD, Morehouse LA, Thomas CE. Role of metals in oxygen radical reaction. Free Radic Biol Med 1985; 1:13-8. Cerca con Google

Babior BM. NADPH Oxidase. An Update. Blood 1999; 93(5):1464-1476. Cerca con Google

Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension. 2005;45(4):526-9. Cerca con Google

Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002;99: 16093–16098. Cerca con Google

Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271(5 Pt 1):C1424-37. Review. Cerca con Google

Berridge MJ. Inositol trisphosphate and calcium signaling. Nature 1993; 315-25. Rewiew. Cerca con Google

Birnboim HC, Kanabus-Kominska M. The production of DNA strand breaks in human Ieukocytes by superoxyde may involve a metabolic pro¬cess. Proc Natl Acad Sci USA 1987; 82: 6820-6824. Cerca con Google

Borger DR and Essig DA. Induction of HSP 32 gene in hypoxic cardiomyocytes is attenuated by treatment with N-acetyl-L-cysteine. Am J Physiol. 1998; 274 (Heart Circ. Physiol. 43): H965- H973. Cerca con Google

Brosnan MJ, Hamilton CA, Graham D, Lygate CA, Jardine E, Dominiczak AF. Irbesartan lowers superoxide levels and increases nitric oxide bioavailability in blood vessels from spontaneously hypertensive stroke-prone rats. J Hypertens. 2002;20(2):281-6. Cerca con Google

Cahilly C, Ballantyne CM, Lim DS, Gotto A, Marian AJ. A variant of p22phox, involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis. Circ Res. 2000;86(4):391-5. Cerca con Google

Cai H, Harrison DG. Endothelial dysfunction in cardiovascular disease: the role of oxidant stress. Circ Res 2000; 87:840-844. Cerca con Google

Calò LA, Pagnin E Davis PA, Sartori M and Semplicini A. Oxidative stress-related factors in Bartter's and Gitelman's syndromes: relevance for angiotensin II signaling. Nephrol Dial Transplant 2003; 18: 1518–1525. Cerca con Google

Calò LA, Achille C. Pessina. RhoA/Rho-kinase pathway: much more than just a modulation of vasculat tone. Evidence from studies in humans. Journal of Hypertension 2007; 25; 259-64. Cerca con Google

Calò LA, Bertipaglia L, Pagnin E, Davis PA, Sartori M, Semplicini A, Pessina AC. Effect of doxazosin on oxidative stress related proteins in essential hypertensive patients. Clin Exp Hypertens. 2006;28(2):181-8. Cerca con Google

Calò LA, Dal Maso L, Caielli P, Pagnin E, Fusaro M, Davis PA, Pessina AC. Effect of olmesartan on oxidative stress in hypertensive patients: mechanistic support to clinical trials derived evidence. Blood Press. 2011;20(6):376-82. Cerca con Google

Calò LA, Dal Maso L, Pagnin E, Ravarotto V, Facco M, Boscaro E, Maiolino G, Pessina AC, Rossi GP. Effect of olmesartan medoxomil on number and survival of circulating endothelial progenitor cells and calcitonin gene related peptide in hypertensive patients. J Hypertens. 2014;32(1):193-9 Cerca con Google

Caló LA, D'Angelo A, Cantaro S, Bordin MC, Favaro S, Antonello A, Borsatti A. Increased urinary NO2-/NO3- and cyclic guanosine monophosphate levels in patients with Bartter's syndrome: relationship to vascular reactivity. Am J Kidney Dis. 1996;27(6):784-9. Cerca con Google

Calò LA, Davis PA, Giacon B, Pagnin E, Sartori M, Riegler P, Antonello A, Huber W, Semplicini A. Oxidative stress in kidney transplant patients with calcineurin inhibitor-induced hypertension: effect of ramipril. J Cardiovasc Pharmacol. 2002;40(4):625-31. Cerca con Google

Calò LA, Davis PA, Milani M, Cantaro S, Antonello A, Favaro S, D'Angelo A. Increased endothelial nitric oxide synthase mRNA level in Bartter's and Gitelman's syndrome. Relationship to vascular reactivity. Clin Nephrol. 1999; 51(1):12-7. Cerca con Google

Calò LA, Davis PA, Pagnin E, Dal Maso L, Caielli P, Rossi GP. Calcitonin gene-related peptide, heme oxygenase-1, endothelial progenitor cells and nitric oxide-dependent vasodilation relationships in a human model of angiotensin II type-1 receptor antagonism.J Hypertens. 2012;30(7):1406-13. Cerca con Google

Calò LA, Davis PA, Pagnin E, Schiavo S et al. Linking inflammation and hypertension in humans: studies in Bartter's/Gitelman's syndrome patients. J Hum Hypertens. 2007; (22): 223-25. Cerca con Google

Calò LA, Facco M, Davis PA, Pagnin E, Maso LD, Puato M, Caielli P, Agostini C, Pessina AC. Endothelial progenitor cells relationships with clinical and biochemical factors in a human model of blunted angiotensin II signaling.Hypertens Res. 2011;34(9):1017-22. Cerca con Google

Calò LA, Giacon B, Davis PA, Pagnin E, Piccin A, Riegler P, Huber W, Antonello A, Semplicini A. Oxidative stress and TGFbeta in kidney-transplanted patients with cyclosporin-induced hypertension. Effect of carvedilol and nifedipine.Clin Nephrol. 2002;58(2):103-10. Cerca con Google

Calò LA, Montisci R, Scognamiglio R, Davis PA, Pagnin E, Schiavo S, Mormino P, Semplicini A, Palatini P, D'Angelo A, Pessina AC. High angiotensin II state without cardiac remodeling (Bartter's and Gitelman's syndromes): are angiotensin II type 2 receptors involved? J Endocrinol Invest. 2009;32(10):832-6. Cerca con Google

Calò LA, Pagnin E, Davis PA, Sartori M, Semplicini A. Oxidative stress-related factors in Bartter's and Gitelman's syndromes: relevance for angiotensin II signalling. Nephrol Dial Transplant. 2003;18(8):1518-25. Cerca con Google

Calò LA, Puato M, Schiavo S, Zanardo M, Tirrito C, Pagnin E, Balbi G, Davis PA, Palatini P, Pauletto P. Absence of vascular remodelling in a high angiotensin-II state (Bartter's and Gitelman's syndromes): implications for angiotensin II signalling pathways. Nephrol Dial Transplant. 2008;23(9):2804-9. Cerca con Google

Calò LA, Sartore G, Bassi A, Basso C, Bertocco S, Marin R, Zambon S, Cantaro S, D'Angelo A, Davis PA, Manzato E, Crepaldi G. Reduced susceptibility to oxidation of low-density lipoprotein in patients with overproduction of nitric oxide (Bartter's and Gitelman's syndrome).J Hypertens. 1998;16(7):1001-8. Cerca con Google

Calò LA, Schiavo S, Davis PA, Pagnin E, Mormino P, D'Angelo A; Pessina A. Angiotensin II signaling via type 2 receptors in human model of vascular hyporeactivity: implications for hypertension. Journal of Hypertension 2010; 28; 111-18. Cerca con Google

Calò LA, Zaghetto F, Pagnin E, Davis PA, Semplicini A, Pessina AC. Effect of manidipine on gene expression and protein level of oxidative stress-related proteins: p22phox and HO-1: relevance for antihypertensive and anti-remodeling effects.J Cardiovasc Pharmacol. 2004;43(4):531-8. Cerca con Google

Calò LA. Radicali liberi, superossidi, e stress ossidativo nella patogenesi e fisiopatologia dell’ipertensione arteriosa e delle sue complicanze. Current Therapeutics ADIS International 1999;1-8. Cerca con Google

Calò LA. Vascular tone control in humans: insights from studies in Bartter's/Gitelman's syndromes. Kidney Int. 2006;69(6):963-6. Cerca con Google

Celermajer DS, Sorensen KE, Gooch VM, Spiegelhalter DJ, Miller OI, Sullivan ID, Lloyd JK, Deanfield JE. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340(8828):1111-5. Cerca con Google

Chan H, Lougheed M, Laher I, Steinbrecher UP. Oxidized low-density lipoprotein inhibits endothelium-dependent vasodilation by an antioxidant-sensitive, lysophosphatidylcholine-independent mechanism. J Cardiovasc Pharmacol. 2003;41(6):856-65. Cerca con Google

Chattergoon NN, D'Souza FM, Deng W, Chen H, Hyman AL, Kadowitz PJ, Jeter JR Jr. Antiproliferative effects of calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2005;288(1):L202-11. Cerca con Google

Chen X, Touyz RM, Park JB, Schiffrin EL. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38(3 Pt 2):606-11. Cerca con Google

Cheng J, Baumhueter S, Cacalano G, Carver-Moore K, Thibodeaux H, Thomas R, Broxmeyer HE, Cooper S, Hague N, Moore M, Lasky LA. Hematopoietic defects in mice lacking the sialomucin CD34. Blood. 1996;87(2):479-90. Cerca con Google

Cheng ZJ, Vapaatalo H, Mervaala E. Angiotensin II and vascular inflammation. Medical Science Monitor 2005; 6; 194-205. Cerca con Google

Choi AMK e Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-indcibile protein. Am J Respir Cell Biol. 1996; 15: 9-19. Cerca con Google

Chung O, Unger T.Unopposed stimulation of the angiotensin AT2 receptor in the kidney. Nephrol Dial Transplant. 1998;13(3):537-40. Review. Cerca con Google

Clark JE, Foresti R, Sarathchandra P, Kaur H, Green CJ, Motterlini R. Heme oxygenase-1–derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol. 2000;278:H643–H651. Cerca con Google

Clementi E. Role of nitric oxide and its intracellular signalling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol. 1998 ;55; 713-8. Review. Cerca con Google

Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA, Deanfield J, Drexler H, Gerhard-Herman M, Herrington D, Vallance P, Vita J, Vogel R; International Brachial Artery Reactivity Task Force. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 2002;39(2):257-65. Cerca con Google

Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A, Venturelli V, Schiavoni M, Lembo G, Volpe M. Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens. 2005;18(4 pt 1):493-9. Cerca con Google

Daff S. NO synthase: structures and mechanisms. Nitric Oxide 2010; 23:1-11. Cerca con Google

Das UN. Is angiotensin-II an endogenous pro-inflammatory molecule? Med Sci Monit 2005; (11): 155-162 . Cerca con Google

Datla SR and Griendling KK. Reactive oxygen species, NADPH Oxidases, and Hypertension. Hypertension 2010; 56: 325-30. Cerca con Google

Datla SR, Justing GJ, Mori TA, Taylor CJ, Kroft KD and Jiang F. Induction of heme-oxygenase-1 in vivo suppresses NADPH oxidase-derived oxidative stress. Hypertension 2007; 50:636-642. Cerca con Google

Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203-36. Review. Cerca con Google

Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79(2):387-423. Review. Cerca con Google

Deng PY, Li YJ. Calcitonin gene-related peptide and hypertension. Peptides. 2005;26(9):1676-85. Review. Cerca con Google

Descamps-Latscha B, Drueke T, Witko-Sarsat V. Dialysis-induced oxidative stress: biological aspects, clinical consequences, and therapy. Semin Dial. 2001; 14: 193-9. Cerca con Google

Dinh DT, Albert G.F, Colin IJ, and Fabiani ME. Angiotensin receptors: distribution, signalling and fuction. Clinical science 2001; (100): 481-92. Cerca con Google

Dubey RK, Jackson EK, Lüscher TF. Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin 1 receptors. J Clin Invest. 1995;96(1):141-9. Cerca con Google

Durante W. Carbon monoxide and bile pigments: surprising mediators of vascular function. Vasc Med 2002; 7(3): 195-202. Cerca con Google

Dzau VJ. Tissue Angiotensin and pathobiology of vascular disease: a unifyng hypothesis. Hypertension 2001; (37): 1047-52. Cerca con Google

Eizawa Z, Yui Y, Inoue R, et al. Lysophosphatidylcholine inhibits endothelium-dependent hyperpolarization and N omega-nitro-l-arginine/indomethacinresistant endotelium-dependent relaxation in the porcine coronary artery. Circulation 1995 ; 92 : 3520-3526. Cerca con Google

Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A. Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis. 2008;197(2):496-503.Review. Cerca con Google

Finkel T and Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408: 239-247. Cerca con Google

Fliser D, Buchholz K, Haller H; EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation. 2004;110(9):1103-7. Cerca con Google

Fliser D, Wagner KK, Loos A, Tsikas D, Haller H. Chronic angiotensin II receptor blockade reduces (intra)renal vascular resistance in patients with type 2 diabetes. J Am Soc Nephrol. 2005;16(4):1135-40. Cerca con Google

Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N. CD34-/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res. 2006;98(3):e20-5. Cerca con Google

Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373-6. Cerca con Google

Galle J, Hansen-Hagge T, Wanner C, Seibold S. Impact of oxidized low density lipoprotein on vascular cells. Atherosclerosis. 2006; 185(2): 219-26. Cerca con Google

Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105-13. Review. Cerca con Google

Gangula PR, Zhao H, Supowit SC, Wimalawansa SJ, Dipette DJ, Westlund KN, Gagel RF, Yallampalli C. Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice. Hypertension. 2000;35(1 Pt 2):470-5. Cerca con Google

Gehling UM, Ergün S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95(10):3106-12. Cerca con Google

Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation. 1997;96(10):3264-5. Cerca con Google

Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141-8. Cerca con Google

Griendling KK, Sorescu D, Lassègue B, Ushio-Fukai M. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol. 2000;20(10):2175-83. Review. Cerca con Google

Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494-501. Review. Cerca con Google

Haagenson KK, Wu GS. Mitogen activated protein kinase phosphatases and cancer. Cancer Biol Ther. 2010;9(5):337-40. Cerca con Google

Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183-98. Review. Cerca con Google

Haendeler J, Hoffmann J, Diehl JF, Vasa M, Spyridopoulos I, Zeiher AM, Dimmeler S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ Res. 2004;94(6):768-75. Cerca con Google

Hansen JL, Servant G, Baranski TJ, Fujita T, Iiri T, Sheikh SP. Functional Reconstitution of the Angiotensin II Type 2 Receptor and Gi Activation. Circ Res. 2000; 87:753-759. Cerca con Google

Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H. Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003; (91)(3A):7A-11A. Review. Cerca con Google

Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75(4):679-89. Review. Cerca con Google

Hein L, Barsh GS, Pratt RE, Dzau VJ, Kolbilka BK. Behavioural and cardiovascular effects of disrupting the angiotensin II type 2 receptor in mice. Nature 1995; 377 (6551): 744-7. Cerca con Google

Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C. Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol. 2005;45(9):1441-8. Cerca con Google

Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.N Engl J Med. 2003;348(7):593-600. Cerca con Google

Hirohata A, Yamamoto K, Miyoshi T, Hatanaka K, Hirohata S, Yamawaki H, Komatsubara I, Murakami M, Hirose E, Sato S, Ohkawa K, Ishizawa M, Yamaji H, Kawamura H, Kusachi S, Murakami T, Hina K, Ohe T. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll Cardiol. 2010;55(10):976-82. Cerca con Google

Honda A, Matsuura K, Fukushima N, Tsurumi Y, Kasanuki H, Hagiwara N. Telmisartan induces proliferation of human endothelial progenitor cells via PPARgamma-dependent PI3K/Akt pathway. Atherosclerosis. 2009;205(2):376-84. Cerca con Google

Horiuchi M, Koike G, Yamada T, Mukoyama M, Nakajima M, Dzau VJ. The growth-dependent expression of angiotensin II type 2 receptor is regulated by transcription factors interferon regulatory factor-1 and -2. J Biol Chem. 1995;270(34):20225-30. Cerca con Google

Ichiki T, Kambayashi Y, Inagami T. Multiple growth factors modulate mRNA expression of angiotensin II type-2 receptor in R3T3 cells. Circ Res. 1995; 77(6): 1070-76. Cerca con Google

Imanishi T, Hano T, Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens. 2005;23(1):97-104. Cerca con Google

Imanishi T, Moriwaki C, Hano T, Nishio I. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens. 2005;23(10):1831-7. Cerca con Google

Irani K. Oxidant signaling in vascular cell growth, death, and survival : a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res. 2000;87(3):179-83. Review. Cerca con Google

Izuhara Y, Nangaku M, Inagi R, Tominaga N, Aizawa T, Kurokawa K, van Ypersele de Strihou C, Miyata T. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J Am Soc Nephrol. 2005;16(12):3631-41. Cerca con Google

Johns DG, Dorrance AM, Leite R, Weber DS, Webb RC. Novel signaling pathways contributing to vascular changes in hypertension. J Biomed Sci. 2000; (6):431-43. Cerca con Google

Kadowaki D, Anraku M, Tasaki Y, Kitamura K, Wakamatsu S, Tomita K, Gebicki JM, Maruyama T, Otagiri M. Effect of olmesartan on oxidative stress in hemodialysis patients. Hypertens Res. 2007;30(5):395-402. Cerca con Google

Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999;11(1):1-14. Cerca con Google

Kanematsu Y, Tsuchiya K, Ohnishi H, Motobayashi Y, Izawa Y, Ishihara M, Ishizawa K, Abe S, Kawazoe K, Tamaki T. Effects of angiotensin II type 1 receptor blockade on the systemic blood nitric oxide dynamics in Nomega-nitro-L-arginine methyl ester-treated rats. Hypertens Res. 2006;29(5):369-74. Cerca con Google

Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia.Circulation. 2001;103(5):634-7. Cerca con Google

Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev. 2000;52(1):11-34. Review. Cerca con Google

Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2011;14(1):137-67. Cerca con Google

Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7(4):430-6. Cerca con Google

Koike G, Horiuchi M., Yamada T, Szpirer C, Jacob H.J, and Dzau VJ. Human type 2 angiotensin II receptor gene:cloned, mapped to the X chromosome, and its mRNA is expressed in the human lung. Biochem Biophys. Res. Commun 1994; 203(3):1842-50. Cerca con Google

Lad L, Schuller DJ, shimizu H, Friedman J, Li H, Ortiz de Montellano PR, Poulos TL. Comparison of the heme free and bound crystal structures of human heme oxygenase-1. The Journal of the Biological Chemistry 2003; 278 (10): 7834- 7843. Cerca con Google

Landmesser U, Harrison DG.. Oxidative stress and vascular damage in hypertension. Coron Artery Dis. 2001 Sep;12(6):455-61. Cerca con Google

Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109(21 Suppl 1):II27-33. Review. Cerca con Google

Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002;8(3):240-6. Cerca con Google

Li JY, Avallet O, Berthelon MC, Langlois D, Saez JM. Effects of growth factors on cell proliferation and angiotensin II type 2 receptor number and mRNA in PC12W and R3T3 cells. Mol Cell Endocrinol. 1998;139(1-2):61-9. Cerca con Google

Libby P, Aikawa M, Jain MK. Vascular endothelium and atherosclerosis. Handb Exp Pharmacol. 2006;(176 Pt 2):285-306. Review. Cerca con Google

Lin CP, Lin FY, Huang PH, Chen YL, Chen WC, Chen HY, Huang YC, Liao WL, Huang HC, Liu PL, Chen YH. Endothelial progenitor cell dysfunction in cardiovascular diseases: role of reactive oxygen species and inflammation. Biomed Res Int. 2013;2013:845037. Review. Cerca con Google

Luft FC. Mechanism and cardiovascular damage in hypertension. Hypertension. 2001;(37) [part 2]:594-98. Cerca con Google

Lum H, Roebuck KA.Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol. 2001;280(4):C719-41. Cerca con Google

Maines MD. The heme oxygenase system and its functions in the brain. Cell Mol Biol (Noisy-le-grand). 2000; 46; 573-85. Review. Cerca con Google

Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 1997; 37: 517–554. Cerca con Google

Majzunova M, Dovinova I, Barancik M and Chan JYH. Redox signaling in pathophysiology of hypertension. Journal of Medical Bioscience 2013; 20-69. Rewiew. Cerca con Google

Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, Tsui LC, Schappert KT. Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase gene. J Biol Chem. 1993; 23:17478-88. Cerca con Google

Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60(16):1455-69. Review. Cerca con Google

Masuko UF, Maziar ZA, Toshiki F. p22phox Is a Critical Component of the Superoxide-generating NADH/NADPH Oxidase System and Regulates Angiotensin II – Induced Hypertrophy in Vascular Smotth Muscle Cells. J Biol Chem 1996; 271(38): 23317-23321. Cerca con Google

Mehta PK. and Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292; c82-c97. Cerca con Google

Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W. Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 2005; 112: 651-657. Cerca con Google

Minamino T, Christou H, Hsieh CM, Liu Y, Dhawan V, Abraham NG, Perrella MA, Mitsialis SA, Kourembanas S. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci U S A. 200117;98(15):8798-803. Cerca con Google

Modlinger P, Chabrashvili T, Gill PS, Mendonca M, Harrison DG, Griendling KK, Li M, Raggio J, Wellstein A, Chen Y, Welch WJ, Wilcox CS. RNA silencing in vivo reveals role of p22phox in rat angiotensin slow pressor response. Hypertension. 2006;47(2):238-44. Cerca con Google

Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993; 27: 2002-12. Review. Cerca con Google

Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmac Rev. 1991; 43:109-42. Cerca con Google

Morena M, Martin-Mateo M, Cristol JP, Canaud B. Rationale for antioxidant supplementation in hemodialysis patients. Saudi J Kidney Dis Transplant 2001;12(3): 312-324. Cerca con Google

Morita T, Perrella MA, Lee M et al. Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA. 1995; 92:1475-1479. Cerca con Google

Moser M, Frishman W. Results of therapy with carvedilol, a beta-blocker vasodilator with antioxidant properties, in hypertensive patients.Am J Hypertens. 1998 ;11(1 Pt 2):15S-22S. Review. Cerca con Google

Mukoyama M, Nakajima M., Horichi M., Sasamura H., Pratt R., Dzau VJ. Expression cloning of type angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J biol. Chem 1993; 268 (33): 24539-42. Cerca con Google

Nath KA, Grande J, Croatt A, Haugen J, Kim Y, Rosenberg ME. Redox regulation of renal DNA synthesis, transforming growth factor-beta1 and collagen gene expression. Kidney Int. 1998;53(2):367-81. Cerca con Google

Nath KA. Heme oxygenase-1: A provenance for cytoprotective pathways in the kidney and other tissues. Kidney International 2006; 70: 432-443. Cerca con Google

Nuoet S, Nahmias C. Signal transduction from the angiotensin II AT2 receptor. Trend Endocrinol Metab. 2000; 11; 1-6. Cerca con Google

Ohkubo N, Matsubara H, Nozawa Y. Angiotensin type 2 receptors are reexpressed by cardiac fibroblast from pailing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 1997; 96(11): 3954-62. Cerca con Google

Ohta K, Yachie A. Development of vascular biology over the past 10 years: heme oxygenase-1 in cardiovascular homeostasis. J Endovasc Ther 2004; 11 Suppl 2: II140-150. Cerca con Google

Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 2003;24(8):449-55. Review. Cerca con Google

Oyama N, Yagita Y, Sasaki T, Omura-Matsuoka E, Terasaki Y, Sugiyama Y, Sakoda S, Kitagawa K. An angiotensin II type 1 receptor blocker can preserve endothelial function and attenuate brain ischemic damage in spontaneously hypertensive rats. J Neurosci Res. 2010;88(13):2889-98. Cerca con Google

Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L- arginine. Nature. 1988;(16):664-6. Cerca con Google

Papparella I, Ceolotto G et al. Angiotensin II-induced over-activation of p47phox in fibroblasts from hypertensives: which role in the enhanced ERK1/2 responsiveness to angiotensin II? J Hypertens. 2005;23(4):793-800. Cerca con Google

Patti G, Melfi R, Di Sciascio G. The role of endothelial dysfunction in the pathogenesis and in clinical practice of atherosclerosis. Current evidences. Recenti Prog Med. 2005;96(10):499-507. Review. Italian. Cerca con Google

Peng J, Lu R, Ye F, Deng HW, Li YJ. The heme oxygenase-1 pathway is involved in calcitonin gene-related peptide-mediated delayed cardioprotection induced by monophosphoryl lipid A in rats.Regul Pept. 2002;103(1):1-7. Cerca con Google

Plantinga Y, Ghiadoni L, Magagna A, Giannarelli C, Franzoni F, Taddei S, Salvetti A. Supplementation with vitamins C and E improves arterial stiffness and endothelial function in essential hypertensive patients. Am J Hypertens. 2007;20(4):392-7. Cerca con Google

Qin XP, Ye F, Hu CP, Liao DF, Deng HW, Li YJ. Effect of calcitonin gene-related peptide on angiotensin II-induced proliferation of rat vascular smooth muscle cells. Eur J Pharmacol. 2004;488(1-3):45-9. Cerca con Google

Radomski MW, Palmer RM, Moncada S. The anti-aggregating properties of vascular endothelium:interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92: 639-46. Cerca con Google

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69. Cerca con Google

Raman M, Chen W and Cobb MH. Differential regulation and properties of MAPKs. Oncogene 2007; 26: 3100-3112. Cerca con Google

Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation. 2003;108(4):457-63. Cerca con Google

Reidy MA, Schwartz SM. Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium.Lab Invest. 1981;44(4):301-8. Cerca con Google

Robinson MJ, Cobb MH. Mitogen-activated protein Kinase pathways. Current opinion in cell biology. 1997; 9:180-186. Cerca con Google

Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. Am J Physiol. 1986;250(5 Pt 2):H822-7. Cerca con Google

Ruiz-Ortega M, Lorenzo O, Rperez M, Konig S, Wittig B, Egido J. Angiotensin II activates nuclear trascription factor kappa b through AT1 and AT2 in vascular smooth muscle cells:molecular mechanism. Circ Res 2000; 86; 1266-72. Cerca con Google

Ruster C and Wolf G. Renin-Angiontensin-Aldosterone system and progression of renal disease. Am Soc Nephrol 2006; (17):2985-91. Cerca con Google

Ruster C and Wolf G.. Angiotensin II as a morphogenic cytochine stimulating renal fibrogenesis. J Am Soc Nephrol. 2011; (22):1189-99. Cerca con Google

Ryter SW, Morse D, Choi AMK. Carbon monoxide and bilirubin potential therapies for pulmonary/vascular injury and disease. Am J Respir Cell Mol Biol 2007; 36: 175–182. Cerca con Google

Schiffrin EL, Park JB, Pu Q. Effect of crossing over hypertensive patients from a beta-blocker to an angiotensin receptor antagonist on resistance artery structure and on endothelial function. J Hypertens. 2002;20(1):71-8. Cerca con Google

Schiffrin EL. Vascular and cardiac benefits of angiotensin receptor blockers. Am J Med. 2002;113(5):409-18. Review. Cerca con Google

Schmidt-Luke C, Rossig L, Fichtlscherer S et al. Reduced number of circulating endothelial progenitor cells predict future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111:2981-7. Cerca con Google

Semplicini A, Lenzini L, Sartori M, Papparella I, Calò LA, Pagnin E, Strapazzon G, Benna C, Costa R, Avogaro A, Ceolotto G, Pessina AC. Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J Hypertens. 2006;24(6):1115-24. Cerca con Google

Sen S, Mc Donald SP, Coates PT, Bonder CS. Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Sci 2011; 120:263-283. Cerca con Google

Shenoy UV, Richards EM, Huang XC, Sumners C. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 1999; 140; 500-09. Cerca con Google

Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985;311(1152):617-31. Cerca con Google

Sies H. Role of reactive oxygen species in biological processes. Klin Wochenschr. 1991;69(21-23):965-8. Cerca con Google

Silverstein RL. Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36. Cleve Clin J Med. 2009;76 (Suppl 2):S27-30. Cerca con Google

Siragy HM, Carey RM. The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest.1997; 100; 264-69. Cerca con Google

Siragy HM, Jaffa AA, Margolius HS, Carey RM. Renin-angiotensin system modulates renal bradykinin production. Am J Physiol Reg Int Comp Physiol.1996; 271 (pt 2): 1090-95. Cerca con Google

Siragy HM. Evidence for benefits of angiotensin receptor blockade beyond blood pressure control. Curr Hypertens Rep. 2008;10(4):261-7. Review. Cerca con Google

Sirker A, Zhang M, Murdoch C, Shah AM. Involvement of NADPH oxidases in cardiac remodelling and heart failure. Am J Nephrol. 2007; 27(6): 649-60. Cerca con Google

Smillie SJ, Brain SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension. Neuropeptides. 2011;45(2):93-104. Cerca con Google

Smith RD, Yokoyama H, Averill DB, Cooke L, Brosnihan KB, Schiffrin EL, Ferrario CM. The protective effects of angiotensin II blockade with olmesartan medoxomil on resistance vessel remodeling (The VIOS study): rationale and baseline characteristics. Am J Cardiovasc Drugs. 2006;6(5):335-42. Cerca con Google

Stocker R, Perrella MA. Heme-oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation 2006; 114 (20): 2178-89. Cerca con Google

Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM. Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation. 2000;101(13):1586-93. Cerca con Google

Stumpe KO, Agabiti-Rosei E, Zielinski T, Schremmer D, Scholze J, Laeis P, Schwandt P, Ludwig M; Carotid intima-media thickness and plaque volume changes following 2-year angiotensin II-receptor blockade. The Multicentre Olmesartan atherosclerosis Regression Evaluation (MORE) study. Ther Adv Cardiovasc Dis. 2007;1(2):97-106. Cerca con Google

Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Salvetti A. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation. 1996;94(6):1298-303. Cerca con Google

Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosc. 2004; 5(3): 173-83. Review. Cerca con Google

Torres M, Forman HJ. Redox signaling and the MAP kinase pathways. Biofactors. 2003;17(1-4):287-96. Review. Cerca con Google

Tousoulis D, Andreou I, Antoniades C, Tentolouris C, Stefanadis C. Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases. Atherosclerosis. 2008;201(2):236-47.Review. Cerca con Google

Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, Schiffrin EL. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res. 2002;90(11):1205-13. Cerca con Google

Touyz RM. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of Angiotensin II. Exp Physiol. 2005; (90):449-55. Cerca con Google

Touyz RM. Reactive oxygen species, Vascular Oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension 2004; (44);248-252. Cerca con Google

Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95(4):343-53. Rewiew. Cerca con Google

Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart 2001; 85: 342-50. Cerca con Google

Vane JR, Anggård EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323(1):27-36. Review. Cerca con Google

Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1-7. Cerca con Google

Volpe M, Musumeci B, De Paolis P, Savoia C, Morganti A. Angiotensin II AT2 receptor subtype: an uprising frontier in cardiovascular disease? J Hypertens. 2003;21(8):1429-43. Review. Cerca con Google

Wagener FA, van Beurden HE, von den Hoff JW, Adema GJ, Figdor CG. The heme-heme oxygenase system: a molecular switch in wound healing. Blood. 2003;102(2):521-8. Cerca con Google

Walter DH, Rittig K, Bahlmann FH, Kirchmair R, Silver M, Murayama T, Nishimura H, Losordo DW, Asahara T, Isner JM. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002;105(25):3017-24. Cerca con Google

Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Böhm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005;353(10):999-1007. Cerca con Google

Werner N, Priller J, Laufs U, Endres M, Böhm M, Dirnagl U, Nickenig G. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol. 2002;22(10):1567-72. Cerca con Google

Wu BJ, Midwinter RG, Cassano C, Beck K, Wang Y, Changsiri D, Gamble JR, Stocker R. Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2009;29(10):1537-42. Cerca con Google

Yamamoto Y, Watari Y, Brydun A, Yoshizumi M, Akishita M, Horiuchi M, Chayama K, Oshima T, Ozono R. Role of the angiotensin II type 2 receptor in arterial remodeling after wire injury in mice. Hypertens Res. 2008; 31(6):1241-9. Cerca con Google

Yao EH, Fukuda N, Matsumoto T, Kobayashi N, Katakawa M, Yamamoto C, Tsunemi A, Suzuki R, Ueno T, Matsumoto K. Losartan improves the impaired function of endothelial progenitor cells in hypertension via an antioxidant effect. Hypertens Res. 2007;30(11):1119-28. Cerca con Google

Yasunari K, Maeda K, Nakamura M, Yoshikawa J. Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein. Hypertension. 2002;39(3):777-80. Cerca con Google

Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002-12. Cerca con Google

Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, Oettgen P. Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest. 2005;115(9):2508-16. Cerca con Google

Zhou J, Xu X, Liu JJ, Lin YX, Gao GD. Angiotensin II type 2 receptors participate in the regulation of inflammatory cytokine secretion in adult rat hypertrophied cardiomyocytes. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28(11):1971-3. Cerca con Google

Zhou Z, Peng J, Wang CJ, Li D, Li TT, Hu CP, Chen XP, Li YJ. Accelerated senescence of endothelial progenitor cells in hypertension is related to the reduction of calcitonin gene-related peptide. J Hypertens. 2010;28(5):931-9. Cerca con Google

Zhuo J, Allen AM, Alcorn D, Aldred GP, MacGregor DP, Mendelson FAO. The distribution of angiotensin II receptors. In Hypertension: pathophysiology, Diagnosis and Management. Raven Press, NY, USA. 1995; 1739-62. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record