Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Moretto, J (2014) Linking River Channel Forms and Processes in Gravel Bed Rivers: Time, Space, Remote Sensing and Uncertainty. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi Finale di Dottorato)
17Mb

Abstract (inglese)

The “modern” fluvial morphology, is the results of a series of events characterized by both natural and human dynamics. Recognizing the process responsible for particular morphology is not a simple analysis, it can be more difficult or impossible if the data collected have too low resolution or too high uncertainty in relation to the spatial and temporal scale assessed.
This work aims to analyse and optimize different data and collection methods, derived from different time, space and resolution scales, with a good equilibrium between time-consuming and results at low uncertainty.
Different gravel bed reaches were analysed as study area: Brenta, Piave, Tagliamento River (Italy) and Feshie River (Scotland).
Three geomorphic analyses were applied at different spatial and temporal scale. A planimetric approach through a multitemporal analysis over the last 30 years on the Brenta River. A volumetric approach through a revised colour bathymetry; hybrid digital terrain models (HDTM) building and comparison of different digital elevation models (DoD) was used to study relevant flood events that occurred in the North-East Italian rivers (Brenta, Piave and Tagliamento). A highly detailed resolution, derived from Terrestrial Laser Scanner (TLS) to study its uncertainty, was applied on the Feshie River and to some laboratory experiments.
Results show that on the Brenta River, lower active channel narrowing happened from 1981 to 1990 even if relatively important floods occurred. The active channel was likely at its minimum extent due to still relevant human impacts. Partial recovery of the active channel width was detected from 1990 to 2011 due to less gravel mining and human pressure.
The proposed methodology for producing high-resolution Digital Terrain Models (DTMs) in wet areas has an uncertainty comparable to LiDAR (Light Detection And Ranging) data in dry areas. The bathymetric model calibration only requires a dGPS survey in the wet areas contemporary to aerial images acquisition. Detailed and automatic erosion - deposition analyses starting from a DoD are possible thanks to the “principal erosion deposition analyser” script developed.
Density, angle of incidence and laser intensity seem to be the most uncertain influencing factors in DTMs building from TLS point clouds. A new TLS filter developed provides semi-automatic point cloud classifications to filter the vegetation.
The geomorphic approaches presented provide an adequate topographical description of the rivers to explore channel adjustments due to natural and human causes at different spatial and temporal scales. The study represents a valuable tool for any fluvial engineering, river topography description, river management, ecology and restoration purposes.

Abstract (italiano)

La “moderna” morfologia fluviale, è il risultato di una serie di eventi caratterizzati da differenti dinamiche, naturali ed antropiche. Riconoscere i processi responsabili di una particolare morfologia, può divenire complesso se i dati disponibili presentano bassi livelli di risoluzione o eccessiva incertezza in funzione della scala temporale e spaziale analizzata.
Questo lavoro si è focalizzato ad analizzare ed ottimizzare differenti tipi di dati e metodologie di rilievo in differenti tratti fluviali a fondo ghiaioso dell’Italia Nord-Orientale e della Scozia: Fiume Brenta, Piave e Tagliamento (Italia) e Fiume Feshie (Scozia).
Tre differenti metodologie geomorfometriche sono state applicate a diverse scale spaziali e temporali. Un approccio planimetrico attraverso un’analisi multitemporale degl’ultimi 30 anni in un tratto del Fiume Brenta. Un approccio volumetrico attraverso una rivisitata applicazione di batimetria da colore, con costruzione di modelli digitali del terreno “ibridi” (HDTM) e comparazione di modelli di elevazione (DoD) per lo studio di un intenso evento di piena, avvenuto nei fiumi italiani considerati. Rilievi in laboratorio e nel Fiume Feshie ad alta risoluzione, tramite laser scanner terrestre (TLS), sono stati eseguiti per studiarne l’incertezza ed individuare metodologie di classificazione spaziale delle nuvole di punti.
I risultati, mostrano che dal 1981 al 1990 nel Fiume Brenta persiste ancora un processo di restringimento dell’alveo attivo. L’impatto umano è ancora presente. L’alveo attivo presenta la sua minima estensione. Dal 1990 al 2011, sembra che un parziale recupero della larghezza dell’alveo attivo sia in atto. Minor pressione da estrazione di ghiaia e da impatto umano, caratterizzano questo periodo. La metodologia proposta per produrre DTM ad alta risoluzione in presenza di aree bagnate ha dimostrato un’incertezza comparabile con il LiDAR nelle aree secche. La calibrazione dei modelli batimetrici, richiede un rilievo dGPS nelle aree bagnate in “contemporaneo” con l’acquisizione delle foto aeree. Grazie allo script sviluppato (PrEDA), sono possibili più dettagliate e automatiche analisi dell’erosione e della deposizione. Densità, angolo di incidenza ed intensità laser sembrano essere i fattori che maggiormente influenzano l’incertezza nella realizzazione di modelli di elevazione da TLS. Il filtro sviluppato per nuvole TLS è in grado di fornire semi-automatici filtraggi della vegetazione.
Gli approcci geomorfometrici presentati, forniscono adeguate descrizioni topografiche dei sistemi fluviali; utili ad esplorare aggiustamenti dei canali dovuti a cause naturali o antropiche in differenti scale spaziali e temporali. Lo studio proposto, può rappresentare un valido supporto alla topografia in ambito fluviale, alla progettazione di interventi di ingegneria fluviale, ad una adeguata gestione fluviale, considerando aspetti ecologici e di riqualificazione fluviale.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lenzi, M A
Correlatore:Mao, L
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:28 Gennaio 2014
Anno di Pubblicazione:28 Gennaio 2014
Parole chiave (italiano / inglese):processi fluviali/fluvial processes; fiumi a fondo ghiaioso/gravel-bed river; analisi multitemporale/multitemporal analysis; batimetria da colore/colour bathymetry; LiDAR data; TLS; piene/floods; incertezza/uncertainty; GIS
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:6487
Depositato il:19 Mag 2015 15:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Antonarakis AS, Richards KS, Brasington J. 2008. Object-based land cover classification using airborne LiDAR. Remote Sensing of Envirnoment 112: 2988-2998. Cerca con Google

Arscott DB, Tockner K, Ward JV. 2000. Aquatic habitat diversity along the corridor of an Alpine floodplain river (Fiume Tagliamento, Italy). Archiv für Hydrobiologie 149: 679-704. Cerca con Google

Ashmore PE, Church MJ. 1998. Sediment transport and river morphology: a paradigm for study. In Kingleman PC, Bechta RL, Komar PD, and Bradley JB (eds) Gravel Bed Rivers in the Environment. Highland Ranch, CO, Water Resources Publications: 115-148. Cerca con Google

Ball JE and Luk KC. 1998. Modeling Spatial Variability of Rainfall Over A Catchment. Journal of Hydrologic Engineering. 3: 122-130. Cerca con Google

Bandemer H, Gottwald S. 1995. Fuzzy Sets, Fuzzy Logic, Fuzzy Methods: with Applications. John Wiley and Sons: Chichester. Cerca con Google

Barbara T, Rumsby, Mark G, Macklin. 2006. Channel and floodplain response to recent abrupt climate change: The tyne basin, Northern England. Earth Surface Processes and Landforms 19: 499–515. Cerca con Google

Bathurst JC. 1987. ‘Measuring and modelling bedload transport in channels with coarse bed materials’. in Richards KS (Ed.). River Channels: Environment and Process. Blackwell Oxford: 272–294. Cerca con Google

Bertoldi W, Gurnell A, Surian N, Tockner K, Ziliani L, Zolezzi G. 2009. Understanding reference processes: linkages between river flows, sediment dynamics and vegetated landforms along the Tagliamento River, Italy. River Research and Applications 25: 501-516. Cerca con Google

Bertoldi W, Zanoni L, Tubino M, 2010. Assessment of morphological changes induced by flow and flood pulses in a gravel bed braided river: the Tagliamento River (Italy). Geomorphology 114: 348–360. Cerca con Google

Besl PJ and McKay ND. 1992. A method for registration of 3-d shapes. IEEE Transactions Pattern Analysis and Machine Intelligence 14: 239-256. Cerca con Google

Braatne JH, Rood SB, Simons RK, Gom LA, Canali GE. 2003. Ecology of riparian vegetation of the Hells Canyon corridor of the Snake River: field data, analysis and modeling of plantresponses to inundation and regulated flows. Technical Report Appendix E. 3: 3-3. Idaho Power Company. Boise, Idaho, USA. Cerca con Google

Brasington J, Langham J, Rumsby B. 2003. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 53(3–4): 299–316. DOI: 10.1016/ S0169-555X(02)00320-3. Cerca con Google

Brasington J, Vericat D, and Rychkov I. 2012. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resource Research 48: W11519, doi:10.1029/2012WR012223. Cerca con Google

Buckley SJ, Howell JA, Enge HD and Kurz TH. 2008. Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society 165: 625-638. Cerca con Google

Buffington JM. 1995. Effects of hydraulic roughness and sediment supply on surface textures of gravel-bedded rivers. Thesis, Seatle, University of Washington: 184 p. Cerca con Google

Buffington JM. 2012. Change in channel morphology over human time scales. In Church M., Biron P.M., and Roy A.G. (eds) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell: 435-463. Cerca con Google

Burnham KP, Anderson DR. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed. Springer 16: pp. 488. Cerca con Google

Carbonneau PE, Lane SN, Bergeron NE. 2006. Feature based image processing methods applied to bathymetric measurements from airborne remote sensing in fluvial environments. Earth Surface Processes and Landforms 31: 1413–1423. Cerca con Google

Castiglioni, GB, Pellegrini GB. 2001. Note illustrative della carta geomorfologica della Pianura Padana. Suppl. Geogr. Fis. Dinam. Quat.: IV: 207. Cerca con Google

Cavalli M. 2006. “Caratterizzazione idrologica e morfologica dei bacini montani mediante metodologie di rilievo innovative”. Relazione 1° anno Scuola di Dottorato T.A.R.S. Università degli Studi di Padova. Cerca con Google

Chappell A, Heritage GL, Fuller IC, Large ARG, Milan DJ. 2003. Geostatistical analysis of ground-survey elevation data to elucidate spatial and temporal river channel change. Earth Surface Processes and Landforms 28(4): 349–370. DOI: 10.1002/esp.444. Cerca con Google

Chen S, Nikolaidis E, Cudney HH, Rosca R, Haftka RT. 1999. Comparison of Probabilistic and Fuzzy Set Methods for Designing under Uncertainty. AIAA-99-1579, American Institute of Aeronautics and Astronautics. Cerca con Google

Church M. and Jones D. 1982. Channel bars in gravel-bed rivers. Gravel-bed Rivers. Fluvial Processes, Engineering and Management. R.D. Hey, J.C. Bathurst and C.R.Thorne (Eds), Chichester, United Kingdom, John Wiley and Sons: 291-338. Cerca con Google

Comiti F, Da Canal M, Surian N, Mao L, Picco L, Lenzi MA. 2011. Channel adjustments and vegetation cover dynamics in a large gravel bed river over the last 200 years. Geomorphology 125: 147-159. Cerca con Google

Conesa-Garcìa C, Lenzi MA (Eds.), 2010. Check Dams, Morphological Adjustments and Erosion Control in Torrential Streams. Nova Science Publishers, New York, pp. 298. Cerca con Google

D’Agostino V, Dalla Fontana G, Ferro V, Milano V, Pagliara S. 2004. Briglie aperte. In Opere di sistemazione idraulico-forestali a basso impatto ambientale, Ferro V, Dalla Fontana G, Pagliara S, Puglisi S, Scotton P (eds). McGraw-Hill: Milano: 283–384. Cerca con Google

Delai F, Moretto J, Picco L, Rigon E, Ravazzolo D, Lenzi MA. 2013. Analysis of Morphological Processes in a Disturbed Gravel-bed River (Piave River): Integration of LiDAR Data and Colour Bathymetry. Journal of Civil Engineering and Architecture, USA JCEA-E 20130528-4. (In press) Cerca con Google

Dierssen HM, Zimmerman RC, Leathers RA, Downes TV, Davis CO. 2003. Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high-resolution airborne imagery. Limnology and Oceanography 48(1, part 2): 444–455. Cerca con Google

Dixon LFJ, Barker R, Bray M, Farres P, Hooke J, Inkpen R, Merel A, Payne D, Shelford A. 1998. Analytical photogrammetry for geomorphological research. In Lane S.N., Richards K.S., Chandler J.H. (eds). Landform Monitoring, Modelling and Analysis, John Wiley & Sons: Chichester; Chapter 4: 63–94. Cerca con Google

Einstein H, and Shen SW. 1964. A study of meandering in straight alluvial channels. Journal of Geophysics Research. 69: 5239-5247. Cerca con Google

Ferguson RI, Werritty A. 1983. Bar development and channel changes in the gravelly River Feshie. Schotland. Special Publ. of the Int. Ass. Sedim. 6. Cerca con Google

Fonstad MA, Marcus WA. 2005. Remote sensing of stream depths with hydraulically assisted bathymetry (HAB) models. Geomorphology 72(4): 320–329. Cerca con Google

Franceschi M, Teza G, Preto N, Pesci A, Galgaro A and Girardi S. 2009. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing. 64: 522-528. Cerca con Google

Franke R. 1982. Smooth Interpolation of Scattered Data by Local Thin Plate Splines. Journal of Computation and Mathematics with Applications. 8: 273-281. Cerca con Google

Fryer JG, 1983. A simple system for photogrammetric mapping in shallow-water. Photogrammetric Record 11: 203–208. Cerca con Google

Fryirs KA, Brierley GJ. 2013 Geomorphic analysis of river systems. An approach to reading the landscape. Wiley-Blackwell Cerca con Google

Gilvear DJ, Heal KV, Stephen, A. 2002. Hydrology and the ecological quality of Scottish river ecosystems. Science of the total environment, 294(1), 131-159. Cerca con Google

Giuliacci M, Abelli S, Dipierro G. 2001. Il clima dell'Italia nell'ultimo ventennio, Alpha test, Milano pp. 344. Cerca con Google

Globevnik L, Mikoš M. 2009. Boundary conditions of morphodynamic processes in the Mura River in Slovenia. Catena 79: 265-276. Cerca con Google

Guarnieri A, Vettore A, Pirotti F, Menenti M, Marani M. 2009. Retrieval of small-relief marsh morphology from terrestrial laser scanner, optimal spatial filtering, and laser return intensity. Geomorphology 113(1): 12-20. Cerca con Google

Gurnell AM. 1997. Channel changes of the river Dee meanders, 1946–1992, from the analysis of air photographs. Regulated Rivers: Research and Management 13: 13–26. Cerca con Google

Gurnell AM, Petts GE. 2002. Island-dominated landscapes of large floodplain rivers, a European perspective. Freshwater Biology 47: 581–600. Cerca con Google

Gurnell AM, Surian N, Zanoni L. 2009. Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sciences 71: 253-265. Cerca con Google

Heritage GL, Fuller IC, Charlton ME, Brewer PA, Passmore DP. 1998. CDW photogrammetry of low relief fluvial features: accuracy and implications for reach-scale sediment budgeting. Earth Surface Processes and Landforms 23: 1219–1233. Cerca con Google

Heritage, GL and Milan, DJ. 2009. Terrestrial Laser Scanning of grain roughness in a gravel-bed river. Geomorphology 113: 4-11. Cerca con Google

Hey RD, and Thorne CR. 1986. Stable channels with mobile gravel beds. Journal of Hydraulics Engineering 112(8): 671-689. Cerca con Google

Hicks DM, Duncan MJ, Walsh JM, Westaway RM, Lane SN. 2002. New views of the morphodynamics of large braided rivers from high-resolution topographic surveys and time-lapse video. IAHS Publication 276: 373–380. Cerca con Google

Hicks DM, Duncan MJ, Shankar U, Wild M and Walsh JR. 2003. “Project Aqua: Lower Waitaki River geomorphology and sediment transport”. NIWA Client Report CHC01/115, National Institute of Water and Atmospheric research, Christchurch: 195 p. Cerca con Google

Hicks DM, Shankar U, Duncan MJ, Rebuffe M, Abele J, 2006. Use of remote sensing technologies to assess impacts of hydro-operations on a large, braided, gravel-bed river: Waitaki River, New Zealand. In Sambrook Smith GH, Best JL, Bristow CS, Petts GE, (eds) Braided Rivers, Processes, Deposits, Ecology and Management. International Association of Sedimentologists, Special Publication 36, Oxford, Blackwell: 311-326. Cerca con Google

Hicks DM. 2012. Remotely sensed topographic change in gravel riverbeds with flowing channels. In Church M., Biron P.M., and Roy A.G. (eds) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell: 303-314. Cerca con Google

Hilldale RC, Raff D. 2008. Assessing the ability of airborne LiDAR to map river bathymetry. Earth Surface Processes and Landforms 33: 773-783. Cerca con Google

Hodge RA, Brasington J, Richards KS. 2009. Analysing laser-scanned digital terrain models of gravel bed surfaces: linking morphology to sediment transport processes and hydraulics. Sedimentology 56: 2024-2043. Cerca con Google

Hodge RA. 2010. Using simulated Terrestrial Laser Scanning to analyse errors in high-resolution scan data of irregular surfaces. Photogrammetry and Remote Sensing 65: 227-240. Cerca con Google

Horn BKP. 1987. Closed-825 Form Solution of Absolute Orientation Using Unit Quaternions. Journal of the Optical Society of America A 4(4): 629-642. Cerca con Google

Hughes ML, McDowell PF, Marcus WA. 2006. Accuracy assessment of georectified aerial photographs: implications for measuring lateral channel movement in a GIS. Geomorphology 74: 1–16. Cerca con Google

Jang JSR, Gulley N. 2007. Fuzzy Logic Toolbox 2: User Guide, Matlab, Matlab, Natick, MA, 299 pp. Cerca con Google

Kaless G. 2012. Stability analysis of gravel bed rivers: caomparison between natural rivers and disturbed rivers due to human activities. PhD Thesis; University of Padova, Italy, pp. 275. Cerca con Google

Kaless G. 2013. Stability analysis of gravel-bed rivers: comparison between natural rivers and disturbed rivers due to human activities. PhD Thesis. University of Padua. 299 p. Cerca con Google

Kaless G, Mao L, Lenzi MA. 2011. Regime theories in gravel bed rivers; preliminary comparison between disturbed rivers due to antrophic activities (Northeastern Italy) and natural rivers (Patagonia, Argentina). Proceedings of the Intermediate Congress of the Italian Association of Agricultural Engineering; Belgirate, Italy; September 22-24, 2011; pp. 8. Cerca con Google

Keller EA, Melhorn WN. 1973. Bedforms and fluvial processes in alluvial stream channels: selected observations, in M. Morisawa (Ed.) Fluvial geomorphology: SUNY-Binghamton NY, Proc. Fourth Annual Geomorphology Symposium. Geomorphology: 253-283. Cerca con Google

Kinzel PJ, Wright CW, Nelson JM, Burman AR. 2007. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river. Journal of Hydraulic Engineering 133: 838–842. Cerca con Google

Kinzel PJ, Legleiter CJ, and Nelson JM, 2012. Mapping River Bathymetry with a Small Footprint Green LiDAR: Applications and Challenges. Journal of the American Water Resources Association (JAWRA) 1-22. DOI: 10.1111. Cerca con Google

Klir GJ, Yuan B. 1995. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall: Upper Saddle River, NJ. Cerca con Google

Kondolf GM. 1997. Hungry water: effects of dams and gravel mining on river channels. Environ. Mgmt, 21-4-1997: 533-551. Cerca con Google

Kruizinga S, Yperlaan GJ. 1978. Spatial Interpolation of Daily Total of Rainfall. Journal of Hydrology. 36: 65-73. Cerca con Google

Lane SN. 1998. The use of digital terrain modelling in the understanding of dynamic river channel systems. In Lane S.N., Richards K., Chandler J. (eds.), Landform Monitoring, Modelling and Analysis. Wiley, Chichester; pp. 311–342. Cerca con Google

Lane SN, Richards KS, Chandler JH. 1994. Developments in monitoring and terrain modelling of small-scale riverbed topography. Earth Surface Processes and Landforms 19: 349–368. Cerca con Google

Lane SN, Richards KS and Chandler JH. 1996. ‘Discharge and sediment supply controls on erosion and deposition in a dynamic alluvial channel’. Geomorphology. 15: 1–15. Cerca con Google

Lane SN, Richards KS. 1997. Linking river channel form and process: time, space and causality revisited. Earth Surface Processes and Landforms 22(3): 249-260. Cerca con Google

Lane SN, Westaway RM, Hicks DM. 2003. Estimation of erosion and deposition volumes in a large, gravel-bed, braided river using synoptic remote sensing. Earth Surface Processes and Landforms 28(3):249–271. DOI: 10.1002/esp.483. Cerca con Google

Lane SN, Tayefi V, Reid SC, Yu D, Hardy RJ. 2007. Interactions between sediment delivery, channel change, climate change and flood risk in a temperate upland environment. Earth Surface Processes and Landforms 32: 429–446. Cerca con Google

Lane SN, Widdison PE, Thomas RE, Ashworth PJ, Best JL, Lunt IA, Sambrook Smith GH, Simpson CJ. 2010. Quantifi cation of braided river channel change using archival digital image analysis. Earth Surface Processes and Landforms 35: 971–985. DOI: 10.1002/esp.2015. Cerca con Google

Langbein WB, Leopold LB. 1968. River channel bars and dunes: Theory of kinematic waves. Geological Survey Professional Paper 422-L, 23p. Cerca con Google

Legleiter CJ. 2011. Remote measurement of river morphology via fusion of LiDAR topography and spectrally based bathymetry. Earth Surface Processes and Landforms 37: 499-518. Cerca con Google

Legleiter CJ, 2013. Mapping river depth from publicly available aerial images. River Research and Applications 29: 760–780. doi: 10.1002/rra.2560 Cerca con Google

Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA. 2004. Passive remote sensing of river channel morphology and in-stream habitat: physical basis and feasibility. Remote Sensing of Environment 93: 493 –510. Cerca con Google

Legleiter CJ, Roberts DA, Lawrence RL. 2009. Spectrally based remote sensing of river bathymetry. Earth Surface Processes and Landforms 34: 1039–1059. Cerca con Google

Legleiter CJ, Roberts DA. 2009. A forward image model for passive optical remote sensing of river bathymetry. Remote Sensing of Environment 113: 1025–1045. Cerca con Google

Legleiter CJ, Kinzel PJ, Overstreet BT. 2011. Evaluating the potential for remote bathymetric mapping of a turbid, sand-bed river: 1. Field spectroscopy and radiative transfer modeling. Water Resource Research. 47. W09531, doi:10.1029/2011WR010591. Cerca con Google

Lenzi MA, D’Agostino V, Sonda D. 2000. Ricostruzione morfologica e recupero ambientale dei torrenti. Editoriale Bios. Cosenza, Italia. Cerca con Google

Lenzi MA, Mao L, Comiti F, Rigon E, Picco L, Vitti P, Moretto J., Sigolo C. 2010. Scientific contribution by the Research Unit Land and Agro-forest Department, to the research activities carried out in the framework of the CARIPARO Project “Linking geomorphological processes and vegetation dynamics in gravel-bed rivers”, from September 2009 to October 2010. Research and Technical Report; Department of Land and Agro-forest Environment, University of Padova, Padova , Italy, pp. 102. Cerca con Google

Leopold LB, Wolman MG, Miller JP. 1964. Fluvial Processes in Geomorphology, W. H. Freeman and Company, San Francisco. 522p. Cerca con Google

Leopold LB. 1982. Water surface topography in river channels and implications for meander development. In Gravel-bed Rivers. R. D. Hey, J. C. Bathurst and C. R. Thorne (Eds.), John Wiley $ Sons, 359-388. Cerca con Google

Lichti DD. 2005. Spectral filtering and classification of terrestrial laser scanner point clouds. The Photogrammetric Record. 20: 218-240. Cerca con Google

Lichti DD, Gordon SJ, Stewart MP. 2002. Ground-Based Laser Scanners: Operations, Systems and Applications. Geomatica. 56: 21 - 33. Cerca con Google

Lichti DD, Jamtsho S. 2006. Angular Resolution of Terrestrial Laser Scanners. The Photogrammetric Record 21: 141-160. Cerca con Google

Lichti DD, Pfeifer N, Maas HG. 2008. Editorial: ISPRS Journal of Photogrammetry and Remote Sensing theme issue "Terrestrial Laser Scanning". ISPRS Journal of Photogrammetry and Remote Sensing 63: 1-3. Cerca con Google

Lichti DD, Skaloud J. 2010. Registration and Calibration. In Airborne and Terrestrial Laser Scanning, edited by G. Vosselman and H.-G. Maas. Whittles Publishing, Caithness. UK, 83-133. Cerca con Google

Liébault F, Piégay H. 2001. Assessment of channel changes due to long-term bedload supply decrease, Roubion River, France. Geomorphology 36: 167–186. Cerca con Google

Liebault R, Piegay H. 2002. “Causes of 20th century channel narrowing in mountain and piedmont rivers and streams of southeastern France”. Earth Surface Processes and Landforms 27: 425–44. Cerca con Google

Linton DL. 1949. Some Schottish river captures re-examined: 1. The diversion of the upper Geldte. Scott. Geogr. Mag. 65: 123-32. Cerca con Google

Lodwick WA, Santos J. 2003. Constructing consistent fuzzy surfaces from fuzzy data. Fuzzy Sets and Systems 135: 259–277. DOI: 10.1016/S0165-0114(02)00139-2. Cerca con Google

Lyon JG, Lunetta RS, Williams DC. 1992. Airborne multispectral scanner data for evaluating bottom sediment types and water depths of the St. Marys river, Michigan. Photogrammetric Engineering and Remote Sensing 58: 951–956. Cerca con Google

Lyon JG, Hutchinson WS. 1995. Application of a radiometric model for evaluation of water depths and verification of results with airborne scanner data. Photogrammetric Engineering and Remote Sensing 61: 161–166. Cerca con Google

Macklin MG, Rumsby BT. 2007. Changing climate and extreme floods in the British uplands. Transactions of the Institute of British Geographers 32: 168–186. doi: 10.1111/j.1475-5661.2007.00248.x Cerca con Google

Marcus WA. 2012. Remote sensing of the hydraulic environments in gravel-bed rivers. In Church M., Biron P.M., and Roy A.G. (eds) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell, pp. 261-285. Cerca con Google

Marcus WA, Fonstad MA. 2008. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surface Processes and Landforms 33: 4–24. Cerca con Google

Marcus WA, Legleiter CJ, Aspinall RJ, Boardman JW, Crabtree RL. 2003. High spatial resolution hyperspectral mapping of in-stream habitats, depths, and woody debris in mountain streams. Geomorphology 55: 363–380. Cerca con Google

McKean JA, Nagel D, Tonina D, Bailey P, Wright CW, Bohn C, Nayegandhi A. 2009. Remote Sensing of Channels and Riparian Zones With a Narrow-Beam Aquatic-Terrestrial LiDAR. Remote Sensing 1(4):1065-1096. Cerca con Google

Milan DJ, Heritage GL, Hetherington D. 2007. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surface Processes and Landforms 32: 1657–1674. Cerca con Google

Milan DJ, Heritage GL, Large ARG, Fuller IC. 2011. Filtering spatial error from DEMs: Implications for morphological change estimation. Geomorphology 125: 160-171. Cerca con Google

Milan DJ, Heritage GL, 2012. LiDAR and ADCP use in gravel-bed rivers: Advances since GBR6. In Church M, Biron PM, and Roy AG. (eds.) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell, pp. 286-302 Cerca con Google

Mitas L, Mitasova H. 1988. General Variational Approach to the Interpolation Problem. Journal of Computation and Mathematics with Applications. 16: 983-992. Cerca con Google

Montane JM, Torres R. 2006. Accuracy assessment of LiDAR saltmarsh topographic data using RTK GPS. Photogrammetric engineering and remote sensing, 72(8): 961-967. Cerca con Google

Montgomery DR, Buffington JM. 1997. Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bull., 109: 596–611, doi:10.1130/0016- 7606(1997)109<0596:CRMIMD>2.3.CO;2. Cerca con Google

Moretto J, Rigon E, Mao L, Picco L, Delai F, Lenzi MA. 2012a. Assessing short term erosion-deposition processes of the Brenta River using LiDAR survey. WIT Transactions on Engineering Sciences 73: 149-160; doi: 102495/DEB120131. Cerca con Google

Moretto J, Rigon E, Mao L, Picco L, Delai F, Lenzi MA. 2012b. Medium-and short-term channel and island evolution in a disturbed gravel bed river (Brenta River, Italy). Journal of Agricultural Engineering 43(4); 176-188; doi: 10.4081/jae.2012.e27. Cerca con Google

Moretto J, Delai F, Picco L, Lenzi MA, 2013a. Integration of colour bathymetry, LiDAR and dGPS surveys for assessing fluvial changes after flood events in the Tagliamento River (Italy). Agricultural Sciences 4(8A): 21-29; doi: 10.4236/as.2013.48A004 Cerca con Google

Moretto J, Rigon E, Mao L, Picco L, Delai F, Lenzi MA. 2013b. Channel adjustment and island dynamics in the Brenta River (Italy) over the last 30 years. River Research and Applications; doi: 10.1002/rra.2676 Cerca con Google

Moretto J, Delai F, Lenzi MA. 2013c Hybrid DTMs derived by LiDAR and Colour bathymetry for assessing fluvial geomorphic changes after flood events in gravel-bed rivers, Italy. International Jurnal of Safety and Security Engeneering, 3(2): 1–13. Cerca con Google

Mount NJ, Louis J, Teeuw RM, Zukowskyj PM, Stott T. 2003. Estimation of error in bankfull width comparison from temporally sequenced and corrected aerial photographs. Geomorphology 56: 65–77. Cerca con Google

Muste M, Kim D, Merwade V. 2012. Modern digital instruments and techniques for Hydrodynamic and morphologic characterization of river channels.In Church M., Biron P.M., and Roy A.G. (eds) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell, pp. 315-341. Cerca con Google

Newson MD. 1980. ‘The geomorphological effectiveness of floods – a contribution stimulated by two recent events in mid-Wales’. Earth Surface Processes 5: 1–16. Cerca con Google

Nield JM, Wiggs GFS. 2011. The application of terrestrial laser scanning to Aeolian saltation cloud measurement and its response to changing surface moisture. Earth Surface Processes and Landforms 36: 273–278. Cerca con Google

Oliver MA. 1990. Kriging: A Method of Interpolation for Geographical Information Systems. International Journal of Geographic Information Systems 4: 313-332. Cerca con Google

Palmieri A, Shah F, Dinar A. 2001. Economics of reservoir sedimentation and sustainable management of dams. Journal of Environmental Management 61: 149–163. Cerca con Google

Panissod F, Bailly JS, Durrieu S, Jacome A, Mathys N, Cavalli M, Puech C. 2009. Qualifiction de modeles numeriques de terrain LiDAR pour l’etude de l’erosion: Application aux badlands de draix. Revue Francaise de Photogrammetrie et de Teledetection 192: 50-57. Cerca con Google

Parker G, Sutherland AJ. 1990. Fluvial armor, Journal of Hydraulic Research. 28(5): 529-544. Cerca con Google

Petrie G, Toth CK. 2008. Introduction to laser ranging, profiling, and scanning. Topographic Laser Ranging and Scanning: principles and processing. edited by: Shan, J. and Toth, C. K., CRC Press, Taylor & Francis, 590 pp. Cerca con Google

Picco L. 2010. Long period morphological dynamics in regulated braided gravel-bed rivers: comparison between Piave River (Italy) and Waitaki River (New Zealand). PhD Thesis. University of Padua. 190 p. Cerca con Google

Picco L, Mao L, Rigon E, Moretto J, Ravazzolo D, Delai F, Lenzi MA. 2012a. Medium term fluvial island evolution in relation with floods events in the Piave River. WIT Transactions on Engineering Sciences 73: 161-172; doi: 10.2495/DEB120141; ISSN 1743-3522. Cerca con Google

Picco L, Mao L, Rigon E, Moretto J, Ravazzolo D, Delai F, Lenzi MA. 2012b. Riparian forest structure, vegetation cover and flood events in the Piave River. WIT Transactions on Engineering Sciences 73: 137-147; doi: 10.2495/DEB120121; ISSN 1743-3522. Cerca con Google

Picco L, Mao L, Cavalli E, Buzzi E, Rigon E, Moretto J, Delai F, Ravazzolo D, Lenzi MA. 2012c. Using a Terrestrial Laser Scanner to assess the morphological dynamics of a gravel-bed river. IAHS-AISH Publication, Issue 356: 428-437. Cerca con Google

Piegay H, Darby S, Mosselman E, Surian N. 2005. A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River Research and Applications 21: 773–789. Cerca con Google

Piégay H, Grant G, Nakamura F, Trustrum N. 2006. Braided rivers management: from assessment of river behaviour to improved sustainable development. In: (eds.); Braided rivers: process, deposits, ecology and management, Wiley- Blackwell: 257-275. Cerca con Google

Poff NL, Olden J D, Merritt DM, and Pepin DM. 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences 104: 5732–5737. Cerca con Google

Press WH. 1988. Numerical Recipes in C. The Art of Scientific Computing. New York Cambridge University Press. Cerca con Google

Rainato R, Picco L, Lenzi MA, Mao L, Rigon E, Delai F, Moretto J, Cesca A, Vianello A 2013. Monitoring and analysis of the sediment transport event of November 2012 in the Rio Cordon Station. Quaderni di Idronomia Montana (in press). Cerca con Google

Rennie CD. 2012. Mapping water and sediment flux distributions in gravel-bed rivers using ADCPs. In Church M., Biron P.M., and Roy A.G. (eds) Gravel-bed Rivers: Processes, Tool, Environments. Wiley-Blackwell, pp. 342-350. Cerca con Google

Richards KS. 1982. Rivers: Form and Process in Alluvial Channels, Methuen, London, 361 pp. Cerca con Google

Rinaldi M, Piégay H, Surian N. 2011. Geomorphological approaches for river management and restoration in Italian and French rivers. in Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, Geophys. Monogr. Ser., vol. 194, edited by A. Simon, S. J. Bennett and J. M. Castro, pp. 95–113, AGU, Washington, D. C., doi:10.1029/2010GM000984. Cerca con Google

Rinner K. 1969. Problems of two medium photogrammetry. Photogrammetric Engineering 35: 275. Cerca con Google

Robins NS. 1990. Hydrogeology of Scotland. London: HMSO. Cerca con Google

Royle AG, Clausen FL and Frederiksen P. 1981. Practical Universal Kriging and Automatic Contouring. Geoprocessing 1: 377-394. Cerca con Google

Rumsby B, McVey R, Brasington J. 2001. The Potential for high resolution fluvial archives in braided rivers: quantifying historic reach-scale channel and floodplain development in the River Feshie, Scotland. In Maddy D, Macklin MG, Woodard JC (eds). River Basin Sediment Systems: Archives of Environmental Change. Steenwijik, The Netherlands, pp. 445–467. Cerca con Google

Soudarissanane S, Lindenbergh R, Menenti M, Teunissen P. 2010. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. Photogrammetry and Remote Sensing 66: 389-399. Cerca con Google

Stover SC, Montgomery DR. 2001. Channel change and flooding, Skokomish River, Washington. Journal of Hydrology 243: 272-286. Cerca con Google

Surian N. 1998. “Studio finalizzato alla definizione geomorfologica della fascia di pertinenza fluviale del Fiume Piave tra Perarolo e Falzè e del torrente Cordevole tra Mas e Santa Giustina”. Autorità di bacino dei fiumi Isonzo, Tagliamento, Livenza, Piave, Brenta-Bacchiglione. Studi finalizzati alla redazione del piano di bacino del Fiume Piave, 38 pp. più appendici e cartografia. Cerca con Google

Surian N. 1999. Channel changes due to river regulation: the case of the Piave River, Italy. Earth Surface Processes and Landforms 24: 1135–1151. Cerca con Google

Surian N. 2002. Downstream variation in grain size along an Alpine river: analysis of controls and processes. Geomorphology, 43(1), 137-149. Cerca con Google

Surian N, Rinaldi M. 2003. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 50: 307–326. Cerca con Google

Surian N, Rinaldi M. 2004. Channel adjustments in response to human alteration of sediment fluxes: examples from Italian rivers. In: Golosov V, Belyaev V, Walling DE. (Eds.), Sediment Transfer Through the Fluvial System, IAHS Publication N. 288. , pp. 276–282. Cerca con Google

Surian N, Cisotto A. 2007. Channel adjustments, bedload transport and sediment sources in a gravel-bed river, Brenta River, Italy. Earth Surface Processes and Landforms 32: 1641-1656. Cerca con Google

Surian N, Mao L, Giacomin M, Ziliani L. 2009a. Morphological effects of different channel-forming discharges in a gravel-bed river. Earth surface processes and landforms 34: 1093-1107. Cerca con Google

Surian N, Ziliani L, Comiti F, Lenzi MA, Mao L. 2009b. Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of north-eastern Italy: Potentials and limitations for channel recovery. River Research and Applications 25: 551-567. Cerca con Google

Taylor J. 1997. An Introduction to Error Analysis: the Study of Uncertainties in Physical Measurements. (2nd eds) University Science Books: Sausalito, CA. Cerca con Google

Thompson A. 1986. Secondary flows and the pool–riffle unit – a case-study of the processes of meander development. Earth Surface Processes and Landforms 11(6): 631–641. Cerca con Google

Tockner K, Malard F, Ward JV. 2000. “An extension of the Flood Pulse Concept”. Hydrol. Process. 14: 2861-2883. Cerca con Google

Tockner K, Ward JV, Arscott DB. 2003 The Tagliamento River: a model ecosystem of European importance. Aquatic Sciences 65: 239–253. Cerca con Google

Tung YK. 1983. Point Rainfall Estimation for a Mountainous Region. Journal of Hydraulic Engineering 109: 1386-1393. Cerca con Google

Vitti P, Picco L, Mao L, Sitzia T, Comiti F, Rigon E, Lenzi MA. 2011. Linking riparian forest structure and fluvio-morphological characteristics in a gravel bed river (Piave river-Italian Alps). Poster presented at the International Workshop Advances in River Science, 18-21 April 2011, Swansea, UK. Cerca con Google

Vosselman G, Mass HG. 2010. Airborne and Terrestrial Laser Scanning, Whittles Publishing, Scotland, UK. Cerca con Google

Ward JV, Tockner K, Edwards PJ, Kollmann J, Bretschko G, Gurnell AM, Petts GE, Rossaro B. 1999. A reference river system for the alps: the Fiume Tagliamento. Regulated rivers: Research & Management 15: 63-75. Cerca con Google

Watson DF, Philip GM. 1985. A Refinement of Inverse Distance Weighted Interpolation. Geo-Processing 2: 315-327. Cerca con Google

Wehr A, Lohr U. 1999. Airborne laser scanning – an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing 54: 68–82. Cerca con Google

Werritty A. 1984. Stream response to flash floods in upland Scotland [in:] TP Bust and DE Walling (eds.). Catchment experiments in fluvial geomorphology. Geobooks. Norwich. Cerca con Google

Westaway RM, Lane SN, Hicks DM. 2003. Remote survey of largescale braided, gravel-bed rivers using digital photogrammetry and image analysis. International Journal of Remote Sensing 24(4): 795– 815. DOI: 10.1080/01431160110113070. Cerca con Google

Wheaton JM. 2008. Uncertainty in morphological sediment budgeting of rivers. Unpublished PhD. University of Southampton. Southampton. 412 p. Available at: http://www.joewheaton.org/Home/ research/projects-1/phdthesis. Vai! Cerca con Google

Wheaton JM, Brasington J, Darby SE, Sear DA. 2010. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surf. Process. Landforms 35: 136–156. Cerca con Google

Winterbottom SJ, Gilvear DJ. 1997. Quantification of channel bed morphology in gravel-bed rivers using airborne multispectral imagery and aerial photography. Regulated Rivers: Research and Management 13: 489–499. Cerca con Google

Winterbottom SJ. 2000. Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland. Geormorphology 34: 195–208. Cerca con Google

Yang CT. 1971. Potential energy and stream morphology. Water Resources Research 7: 311-322. Cerca con Google

Young JAT. 1976. The terraces of glen Feshie, Inversess-shire. Trans. Roy. Soc. Edinburgh 69. Cerca con Google

Zanoni L, Gurnell A, Drake N, Surian N. 2008. Island dynamics in a braided river from analysis of historical maps and air photographs. River Research and Applications 24: 1141-1159. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record