Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Salamina, M (2014) Helicobacter pylori Pathogenic Factors. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (salamina_marco_tesi) - Submitted Version
9Mb

Abstract (english)

From 1994, Helicobacter pylori was classified by WHO (World Health Organization) as a class I carcinogen and its infection has been associated to gastroduodenal disease. It colonizes more than half of worldwide population, with a prevalent infection rate in developed countries. In spite of the majority of infected people are asymptomatic, around 20% develop severe pathologies like peptic ulcers and the 1% lymphoma of the mucosa-associated lymphoid tissue (MALT) and stomach cancer. This significant epidemiological study both of the unique characteristics of H. pylori inspired many scientists, as bacteriologist, gastroenterologists, cancer and pharmaceutical scientists to understand physio-pathological aspects of this bacterium, and also microbiologist, taxonomist, microbial ecologist and molecular biologist, for a more detailed molecular approach.
H. pylori, a Gram negative, microaerophilic bacteria that colonize human gastric mucosa. It is not an acidophilus bacterium and even if the stomach lumen presents inhospitable condition for most microbes, it is able to survive for a short period, sufficient to enter in the highly viscous mucosa, reach gastric epithelium, and colonize the gastro-enteric tract. H. pylori colonization is mediated by a predominant virulence factor, the flagellar motility associated to chemotaxis. To avoid its discharge in the intestinal tract by peristalsis, the bacteria establish a persistent infection inside the viscous gastric mucus film that covers the gastric epithelium. A nickel containing enzyme, the urease, hydrolyzes the urea present in the stomach to ammonia and CO2, buffering the pH of the periplasm. The most severe clinical outcomes are always associated to cag+ strains. cag-PAI is defined as the “Cytotoxic Associated Genes Pathogenicity Island” and it consists of a characteristic chromosome, flanked by transposable elements. Another important virulent factor is the vacuolating cytotoxin A, known as VacA, which induces the formation of large cytoplasmic vacuoles in gastric cultured cell lines. Moreover the iron and nickel acquisition is essential grow factors and a large number of genes are responsible of this mechanism.
While the development of an efficient vaccine against H. pylori is now the aim of many researchers, the search for new specific antibiotics as a new pharmaceutical target is required for the complete eradication of H. pylori.
In this thesis has been investigate the structural and function role of different pathogenic proteins involved in the H. pylori colonization of human gastric mucosa. These potential drug targets have been cloned, 8 out of 11 were expressed in a heterologous expression system, after purification, 2 of them generate protein crystals and only one was possible to characterize the molecular structure. In particular it has been elucidated a possible physiological role of CeuE (HP1561), a Class III SPB (Substrate Binding Protein), crystalized with Ni(His)2 complex and it was determined its affinity to the complex by an in vitro approach. The H. pylori flagella play a key role during infection allowing the bacterium to move through the mucous layer. The H. pylori hook scaffolding protein FlgD were cloned, expressed, purified and crystalized. A study of other purified pathogenic H. pylori factors belonging to flagellar component apparatus and transcriptional factors involved in cellular stress response has been reported.

To obtain these results, different experimental approaches has been used. Bioinformatics analysis of target proteins has been performed to predict the best candidates for a crystallographic study and for genetic construction design. Molecular cloning in plasmid vectors has been performed from PCR amplification. The expression conditions were optimized and performed in E. coli, a heterologous system. The solubility of recombinant proteins were checked and obtained also with protein refolding methods. Different purification techniques were used in order to obtain pure protein. Target characterization was performed due analytical gel filtration, UV spectroscopy, DLS (Dynamic Light Scattering) and CD (Circular Dichroism). The proteins were concentrated to crystallization trials. The protein crystals obtained were analyzed at ESRF synchrotron (Grenoble, France). Functional in vitro approaches were performed using fluorescence spectroscopy, SPR (Surface Plasmon Resonance) and Mass spectroscopy.

In the second chapter is described the three dimensional structure of a H. pylori pathogenic protein crystalized in presence with its possible physiological substrate. HP1561 (CeuE) is a H. pylori protein predicted to be an ABC transporter component, periplasmic iron-bind transporter. Recently it was published that CeuE and fecDE genes of H. mustelae encode for a nickel and cobalt acquisition system. In Gram-negative bacteria, nickel uptake is guaranteed by multiple and complex systems that operate at the membrane and periplasmic level. H. pylori employs other yet uncharacterized systems to import the nickel required for the maturation of key enzymes, such as urease and hydrogenase. To understand this contradiction of the data about Ni2+ acquisition system in H. pylori CeuE was cloned, expressed, purified, crystallized and its structure determined. Identity between the sequences of the two Helicobacter is 44%. The two Histidine residues (H103 and H197), potentially involved in Siderophores/Ni2+ binding coordination in H. pylori CeuE, are partially conserved. The His corresponding to H. pylori position 103 is conserved, whilst His197 is replaced by a Leucine. In order to check, if this substitution influence the binding of siderophores/Ni2+, the mutant of H. pylori CeuE H197L was than produced and purified. The crystal structure of H. pylori CeuE has been determined at 1.65Å resolution using the SAD method, in Apo-form and in complex with Ni(His)2. It comprises two structurally similar globular domains, each consisting of a central five-stranded β-sheet surrounded by α-helices, an arrangement commonly classified as a Rossmann-like fold. Structurally, H. pylori CeuE belongs to the class III periplasmic substrate-binding protein. Crystallographic data, fluorescence binding assays and SPR analysis allow to exclude a role of the protein in the transport of VitB12, heme, enterobactin and isolated Ni2+ ions. On the contrary, the crystal structure of the protein/Ni(L-His)2 complex and dissociation constant obtained by SPR technique suggests that H. pylori CeuE binds and transport nickel in vivo thanks to the formation of a Ni2+/histidine complex or to some ligand that mimics it.
In the third chapter is presented the study of FlgD, a flagellar component involved in the formation the extracellular complex, the flagellar hook. The motility of H. pylori is considered a colonization factor, due the fact that less motile strains are less able to colonize or survive in the host than full motile strains. In the flagellum machinery are involved more than 50 genomic genes for regulation and assembly. The three major components are the filament, the hook and the basal body. FlgD is not present when the flagellum is completed, but plays a key role during the assembly. Therefore, it has been classified as the hook-scaffolding protein, considering it also as the hook capping protein, interacting with FlgL and FlgK and the basal body rod – modification protein. In H. pylori G27 strain FlgD correspond to the gene hp0858 that was amplified from purified genomic DNA and cloned in an expression plasmid vector. The protein was produced in E. coli BL21 in reach medium ad it resulted to a soluble protein. DLS and analytical gel filtration confirm the oligomeric state of FlgD that resulted to be a tetramer in solution. The protein was concentrated to 30g/l and crystalized after a couple of month of incubation. The crystals had diffracted at 2.7Å of maximum resolution. For molecular replacement approach was used homology modeling. Different molecular models were built to fit experimental diffraction data. The secondary structure of the generated models was fitted with experimental CD spectra, where FlgD resulted to have around 12% of helices and 45% of β-sheets (190-260nm). Crystallographic statistics do not properly converged to a positive molecular refinement with the tested models. To solve FlgD structure are necessary crystals of recombinant Selenomethionine FlgD that was expressed, purified and crystalized.
In the fourth chapter are reported H. pylori pathogenic proteins that had been characterized. These proteins could be divided in two groups, the first one of flagellar proteins and the second of cellular stress response factors, in collaboration with Professor V. Scarlato of the department of Biology of Bologna University.
FliN is a cytosolic protein, localized in the C ring of the flagellar basal body. It interacts with the other two components FliM and FliG. Missense or mutation of fliN had been associated to non-motile strains. It has been reported that regulates the clockwise/counterclockwise switching of flagella. H. pylori FliN was cloned, expressed and purified from the inclusion body after refolding. Oligomerization after refolding was tested by DLS and analytical gel filtration. The protein resulted to be poly-disperse in solution and no protein crystals have been obtained.
FliD is the filament capping protein and it was observed that interact with FliT that is not only a flagellar type III substrate specific export chaperone but also inhibits the expression of fliD thought its specific interaction with the master regulator FlhD4C2 complex. In order to analyze possible structure of the co-crystalized FliD-FliT, it was plan to co-express these proteins. Both were cloned with a different affinity purification system, but only FliT was possible to express and purify from inclusion bodies. The CD spectra presented a strong β-sheet component in the secondary structure. DLS and analytical gel filtration revealed that this protein is poly-disperse in solution and no protein crystals were be obtained.
FlgN is a type III secretion chaperone and it has been reported to interact with the two hook junction protein FlgK and FlgL preventing the protein proteolysis when the flagellum is not assembled. These proteins have been cloned in different type of plasmid vectors for a co-expression experiment, but only FlgN was properly expressed in E. coli. Recombinant FlgN was purified by Ni-IMAC and resulted to be soluble in solution. The protein was characterized by analytical gel filtration, DLS and CD. The protein resulted to be a monomer in solution with a 30% of not defined secondary structure (190-260nm). FlgN was concentrated and different crystallization conditions were tested.
In the latter group there are three proteins related to Heat shock response, produced when bacteria encounter stress such as the elevated temperatures, ethanol, H2O2 and acid. It was demonstrated that H. pylori Hsps play an important role during the host infection. HrcA and HspR are negative repressor of groESL and dnaK machinery. HrcA activity depends by the presence of HspR, because it is demonstrated that HrcA is not able to bind DNA in absence of HspR. These two proteins were expressed in E. coli and purified by Ni-IMAC affinity. During the concentration step, these proteins present a solubility limit influenced by the concentration. Mutagenesis of a Cys in HspR and detergent solubility screening with HrcA has been performed, but no suitable protein for crystallization trials has been obtained.
Hp1026 is a gene present in the same operon of HspR (hp1025). The function of this gene has not been reported. From sequence homology was possible to identify a helicase domain and ATP-binding domain. This protein, ORF, has been expressed in E. coli and purified by Ni-IMAC affinity. Analytical gel filtration and CD has been performed to characterize this protein. The protein was a dimer in solution with a 35% of α-helices component. Crystallization trials have been performed at different protein concentrations and also in presence of its possible cofactor, ATPγS. No crystals have been obtained in tested condition.

Appendix:
Structural and functional study on a human protease S1P/ SKI1
The study of human S1P/SKI1 protease was performed in collaboration with Professor S. Kunz of the Institute of Microbiology, University Hospital Center and university of Lausanne, Switzerland. S1P/SKI-1 is a serine protease that belongs to the mammalian family of Proprotein Convertases (PC). The aim of this family member is to mediate the activation of different important substrates for cell live. Among these proteases, S1P has been shown to have unique substrate specificity, preferring cleavage after non-basic amino acids. Known S1P cellular targets are SREBP-2, involved in the biosynthesis and uptake of lipids and cholesterol, BDNF, ATF-6 and the surface glycoprotein of viruses belonging to the family of Arenaviridae. S1P is 118 kDa multi-domain protein; two regions of S1P have been investigated, the "Prodomain", involved in the regulation of S1P catalytic activity, and the so called "catalytic domain", which include the residues responsible for the cleavage reaction itself. Moreover it was analyzed an inactive mutant of cS1P: H249A. Also for ProD was chosen one constructs (ProD_AB and ProD_AC) involved in the affinity of the protease substrate. Hence, the sequences corresponding to the domains were synthesized as optimized genes for the expression in E. coli and sub-cloned in expression plasmids in order to obtain C-term His-tagged fusion proteins. These constructs have been expressed in E. coli, purified by Ni-IMAC and positive fractions have been collected and concentrated in order to perform crystallization trials. Unfortunately no protein crystals have been obtained in tested condition. To elucidate the role of a mutated variant of the cleavage site “C” of Pro Domain, it was performed a mass spectrometry analysis. Secreted S1P/SKI1 mutant C was purified from culture medium of HEK293 cell line was isolated by IMAC-Co. The sample, loaded in RP-HPLC, was denatured in 6 M Guanidine-HCl. The chromatographic fractions corresponding to the major HPLC peaks were dried out in a speed-vac concentrator and directly injected in the ESI source. Mass measurements were performed with a quadrupole-TOF spectrometer. Analysis of mass spectra, compared with wild-type form of S1P, allows generating a preliminary Pro Domain auto-processing profile.

Abstract (italian)

Dal 1994 il batterio Helicobacter pylori è stato classificato come organismo cancerogeneno di prima classe e la sua infezione è associata a patologie gastroduodenali. Più di metà della popolazione mondiale ne è infettata con una maggiore prevalenza nei paesi sviluppati. Nonostante la maggior parte dei casi le infezioni sono asintomatiche, il 20% sviluppa gravi patologie come ulcere peptiche e nell’1% dei casi genera linfomi e gastro carcinomi. L’incidenza e le caratteristiche di questo batterio hanno ispirato batteriologi, gastroenterologi, oncologi e farmacologi per indagare gli aspetti fisiopatologici legati all’infezione, così come microbiologi, ecologi, biologi molecolari hanno cercato i fattori di virulenza coinvolti in nell’infezione.
H. pylori è un batterio microaerofilico Gram negativo che colonizza la mucosa gastrica. Non è un batterio acidofilo, anche se è in grado di sopravvivere nel lume dello stomaco per un breve periodo necessario per raggiungere le cellule epiteliali spostandosi attraverso la mucosa gastrica. La colonizzazione è mediata da fattori di virulenza predominanti come la motilità flagellare associata alla chemiotassi. Per evitare che sia espulso dal tratto intestinale dalla peristalsi, il batterio H. pylori stabilisce un’infezione cronica. L’ureasi, che è un enzima nickel dipendente, che idrolizza l’urea presente in ammoniaca e CO2 tamponando il pH acido dello stomaco. I casi più gravi sono associati ai ceppi che esprimono l’isola di patogenicità cag-PAI, che consiste in un cromosoma delimitato da elementi trasponibili. Un altro importante fattore di virulenza è la tossina vacuolizzante VacA, che induce la formazione di vacuoli citoplasmatici. Anche il meccanismo di acquisizione di ferro e nickel è fondamentale per la colonizzazione batterica e dunque finemente regolata da un gran numero di geni.
Lo sviluppo di un vaccino e nuovi antibiotici nutrono una costante ricerca di nuovi possibili bersagli farmacologici, necessari per completa ed efficiente eradicazione del batterio H. pylori.
In questa tesi sono stati analizzati il ruolo e la struttura di alcune proteine patogenetiche del H. pylori. Questi potenziali target farmacologici sono stati clonati, otto su undici sono stati espressi in un sistema eterologo, due proteine di quelle purificate hanno generato cristalli e di una sola ne è stata definita la struttura molecolare. In particolare è stato definito un possibile ruolo della proteina CeuE (HP1561), appartenete alla famiglia delle proteine che legano un substrato, cristallizzata in presenza del complesso Ni(His)2 e definita l’affinità con lo stesso in vitro.
Del flagello, che svolge un ruolo chiave durante l’infezione, ne è stata studiata la proteina coinvolta nella formazione dell’uncino FlgD che è stata clonata, espressa, purificata e cristallizzata.
Inoltre è stato riportato anche uno studio di altri fattori del flagello e di alcune proteine coinvolte nella risposta allo stress cellulare.
Per ottenere tali risultati sono stati utilizzati approcci differenti. Per individuare le migliori proteine candidate per uno studio cristallografico e progettare costrutti funzionali sono state effettuate predizioni bioinformatiche. Gli amplificati di PCR sono stati clonati in vettori plasmidici. Le condizioni di espressione sono state ottimizzate e fatte in E. coli, un sistema di espressione eterologo. La solubilità delle proteine ricombinanti è stata analizzata e ottenuta anche mediante refolding. Sono stati usati diversi sistemi di purificazione per ottenere un buon grado di purezza. Per la caratterizzazione proteica sono state usate come tecniche la gel filtrazione analitica, spettroscopia UV, DLS (Dynamic Light Scattering) e dicroismo circolare. Le proteine sono state concentrate e sottoposte a esperimenti di cristallizzazione. I cristalli sono stati analizzati al sincrotrone ESRF (Grenoble, France). Spettroscopia di fluorescenza, SPR (surface plasmon resonance) e spettroscopia di massa sono le tecniche utilizzate per la caratterizzazione In Vitro.
Nel secondo capitolo viene decritta la struttura tridimensionale di una proteina patogenetica di H. pylori, cristallizzata in presenza del suo possibile substrato fisiologico. HP1561 (CeuE) è una proteina di H. pylori annotata come componente periplasmatico di un trasportatore ABC che lega e trasporta il ferro. Recentemente è stato pubblicato chele ceuE e fecDE di H. mustelae codificano per proteine coinvolte nel acquisizione del nickel e cobalto. Nei Gram negativi, l’acquisizione del nickel è garantita da sistemi di proteine che operano a livello di membrana e periplasmatico. Per l’acquisizione del nickel, l’ H. pylori integra diversi sistemi non ancora caratterizzati, necessari per la maturazione di enzimi chiave come l’ureasi e l’idrogenasi. Per chiarire tale contraddizione nel sistema di acquisizione del nickel nell’H. pylori, CeuE è stata clonata, espressa, purificata, cristallizzata e la sua struttura è stata risolta. L’identità di sequenza tra i due Helicobacter (pylori e mustelae) è del 44%. Le due Istidine (H103 e H197), potenzialmente coinvolte nel legame di coordinazione del sistema sideroforo/Ni2+ nel H. pylori CeuE, risultano essere parzialmente conservate. L’His corrispondente alla His103 di H. pylori è conservata, mentre His197 è sostituita da una Leucina. Al fine d’identificare se tale mutazione possa influenzare il legame sideroforo/Ni2+, è stato prodotto e purificato il mutante H. pylori CeuE H197L. La struttura molecolare di H. pylori CeuE è stata determinata con una risoluzione di 1.65 Å mediante metodo SAD, sia nella forma apo, che in complesso col Ni(His)2. Essa è costituita da due domini globulari simili, ognuno costituito da cinque foglietti-β circondati da α-eliche, comunemente classificato come Rossman fold. Strutturalmente H. pylori CeuE appartiene alla Classe III della famiglia di proteine che legano un substrato specifico (SBPs). Dati cristallografici, saggi di fluorescenza e analisi all’SPR ci permettono di escludere il coinvolgimento della proteina nel trasporto della VitB12, eme, entrobactina, e ioni Ni2+ isolati. Al contrario la struttura della proteina/complesso Ni(His)2 e le costanti di dissociazione ottenute mediante SPR suggeriscono che H. pylori CeuE lega e trasporta il nickel in vivo mediante il complesso Ni2+/His o altro ligando che lo mima.
Nel terzo capitolo viene presentato lo studio su FlgD, una proteina flagellare fondamentale nella formazione di un complesso extracellulare, l’uncino del flagello. La motilità dell’H. pylori è considerata un fattore di colonizzazione, attraverso il quale ceppi meno motili hanno minori possibilità di colonizzare e sopravvivere nell’ospite di ceppi più motili. Per la formazione del flagello sono coinvolti più di 50 geni per la regolazione e l’assemblaggio delle varie componenti. Le tre componenti principali sono il filamento, l’uncino e il corpo basale. FlgD non è presente quando il flagello è maturo, ma ha un ruolo chiave durante l’assemblaggio. Perciò, è stato classificato come proteina necessaria per l’impalcatura dell’uncino (hook scaffolding protein), considerata anche proteina di testa dell’uncino (capping protein) in quanto interagisce con FlgL, FlgK e le proteine del corpo basale. Nel ceppo H. pylori G27, FlgD corrisponde al gene hp0858 che è stato amplificato dal DNA genomico purificato e clonato in un vettore plasmidico. La proteina è stata prodotta in E. coli BL21 e la proteina è risultata essere solubile. Gel filtrazione analitica e misure al DLS confermano il suo stato di oligomerizzazione, che risulta essere un tetramero in soluzione. La proteina è stata concentrata fino a 30 g/l e cristallizzata dopo un paio di mesi d’incubazione. I cristalli hanno diffratto a una risoluzione massima di 2.7 Å. Per la sostituzione molecolare è stata usata la tecnica del homology modelling. Sono stati costruiti diversi modelli molecolari per fittare i dati sperimentali. La struttura secondaria dei modelli generati è stata comparata con gli spettri di dicroismo circolare, dove FlgD è risultata essere composta da un 12% di eliche e complessivamente da un 45% di foglietti beta (190-260nm). Le statistiche cristallografiche non hanno dato convergenza positiva negli esperimenti di sostituzione molecolare con i modelli testati. Per risolvere la struttura di FlgD sono necessari cristalli di FlgD derivatizzata con Selenometionine, che è stata espressa, purificata e cristallizzata.
Nel quarto capitolo sono riportate le proteine patogenetiche di H. pylori che sono state caratterizzate in questa tesi. Queste proteine possono essere divise in due gruppi, il primo delle proteine flagellarli ed il secondo delle proteine coinvolte nella risposta allo stress cellulare in collaborazione con il Prof. V. Scarlato del dipartimento di Biologia dell’università di Bologna.
FliN è una proteina citosolica localizzata nell’anello C del corpo basale del flagello ed interagisce con altri due componenti FliM e FliG. Mutazioni missenso di fliN sono state associate a ceppi non-motili ed è stato riportato che regola la rotazione oraria/antioraria del flagello. H. pylori FliN è stata clonata, espresso e purificata dai corpi d’inclusione dopo refolding. Lo grado di oligomerizzazione è stato analizzato mediante DLS e gel filtrazione analitica. La proteina è risultata essere polidispersa i soluzione e non sono stati ottenuti cristalli di proteina.
FliD è la proteina “capping” del filamento cellulare ed è stato osservato che interagisce con FliT, che non è solo un chaperon substrato specifico del sistema III di esporto flagellare, ma inibisce anche l’espressione di fliD attraverso l’interazione con il complesso FlhD4C2. Al fine di analizzare la struttura del complesso FliD-FliT, è stata pianificata la co-espressione di queste proteine. Entrambe sono state clonate con un sistema di purificazione differente, ma solo la purificazione di FliT è stata possibile dai corpi d’inclusione. Lo spettro di dicroismo circolare ha rivelato una forte componente di foglietti-β nella struttura secondaria. Secondo le misure di DLS e gel filtrazione analitica FliT è polidispersa in soluzione e perciò non stati ottenuti cristalli della stessa.
FlgN è una proteina del sistema secrezione tipo III ed è stato osservato che interagisce in maniera specifica con le proteine di giunzione dell’uncino con il filamento FlgK ed FlgL, prevenendone la proteolizzazione prima della maturazione del flagello. Queste proteine sono state clonate in differenti tipi di vettori plasmidici, ma solo FlgN è stata efficacemente espressa in E. coli. FlgN ricombinante è stata purificata mediante Ni-IMAC è risultata essere solubile. La proteina è stata caratterizzata con gel filtrazione analitica, DLS e CD. La proteina è un monomero in soluzione con un 30% di struttura secondaria non definita (190-260 nm). FlgN è stata concentrata e sottoposta a test di cristallizzazione.
Nell’ultimo gruppo ci sono tre proteine HSPs (Heat Shock Response), prodotte dal batterio quando incontra stress come elevate temperature, etanolo, H2O2 e acidi. E’ stato accurato che le HSPs di H. pylori svolgono un ruolo importante durante l’infezione dell’ospite. HrcA e HspR reprimono la trascrizione di groESL e dnaK. L’attività di HrcA è influenzata dalla presenza di HspR, in quanto è stato dimostrato che HrcA non è in grado di legare il DNA in assenza di HspR. Queste due proteine sono state espresse in E. coli e purificate con Ni-IMAC. Durante le fasi di concentrazione hanno mostrato un limite di solubilità. Mutagenesi mirata sul costrutto di HspR e screening di detergenti su HrcA sono hanno migliorato il sistema, senza però riuscire ad ottenere una condizione ottimale per la formazione di cristalli di proteina.
HP1026 (ORF) è un gene presente nello stesso operone di HspR (hp1025), ma con funzione non nota. Dall’analisi della sequenza è stato identificato un dominio con attività elicasica ed un dominio legante l’ATP. La proteina è stata espressa in E. coli e purificata con Ni-IMAC. Per la caratterizzazione sono state effettuate gel filtrazione analitica e dicroismo circolare. La proteina risulta essere un dimero in soluzione con un 35% di α-elica. I test di cristallizzazione son stati effettuati scrinando diverse concentrazioni e anche in presenza del possibile cofattore, ATPγS in forma non idrolizzabile. Nessun cristallo è stato ottenuto dalle condizioni testate.
Appendice:
Studio strutturale e funzionale della proteasi umana S1P/SKI1
Lo studio di questa proteasi umana è stato effettuato in collaborazione con il Prof. S. Kunz dell’Istituto di Microbiologia, del Centro Universitario Ospedaliero e dall’ Univ. Di Lausanne, Svizzera. S1P/SKI1 è una serina proteasi della famiglia delle Proprotein Convertasi (PCs). Lo scopo di membri di questa famiglia è quello di mediare l’attivazione di diversi importanti substrati per la vita cellulare. Tra queste proteasi, S1P presenta una specificità di substrato, con un sito di taglio dopo un residuo non basico. Tra i target cellulari di S1P sono stati identificati SREBP-2, coinvolto nella biosintesi dei lipidi e del colesterolo, BDNF, ATF-6 e glicoproteine superficiali di virus appartenenti alla famiglia delle Arenaviridae. S1P pesa 118kDa ed è una proteina multidominio; quindi 2 regioni di S1P sono state studiate, il “Prodomain” (ProD) che regola l’attività catalitica, ed il “cathalytic domain” (cS1P) che include i residui responsabili per la reazione proteasica. Inoltre è stato analizzato un mutante inattivo (cS1P_H249A) e due costrutti per il dominio di regolazione (ProD_AB e ProD_AC). Le sequenze nucleotidiche dei corrispettivi costrutti sono state sintetizzate come geni ottimizzati per l’espressione in E. coli e subclonati in vettori plasmidici per l’espressione ottenendo proteine in fusione con una coda di 6-His. Questi costrutti sono stati espressi in E. coli, purificati con Ni-IMAC e le frazioni positive sono state raccolte e concentrate per test di cristallizzazione. Sfortunatamente non sono stati ottenuti cristalli di proteina nelle condizioni testate.
Per chiarire il ruolo di una variante mutata nel sito di taglio “C” del dominio di regolazione è stata effettuata una analisi di spettrometria di massa. La proteina secreta S1P mut C (sS1P_MutC, 116kDa) è stata purificata dal medium di coltura di una linea di HEK293 trasfettate e isolata con Co-IMAC. Il campione è stato denaturato in Guanidinio 6M e caricato in HPLC. Le frazioni corrispondenti ai picchi predominanti sono stati essiccati ed iniettati in spettrometro di massa (ESI-TOF). L’analisi delle masse, confrontate con la forma nativa (sS1P_WT) ha permesso di generare un profilo preliminare del pattern di processamento del dominio di regolazione (ProD)
with a quadrupole-TOF spectrometer. Analysis of mass spectra, compared with wild-type form of S1P, allows generating a Pro Domain auto-processing profile.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Zanotti, G
Ph.D. course:Ciclo 26 > Scuole 26 > BIOSCIENZE E BIOTECNOLOGIE > BIOTECNOLOGIE
Data di deposito della tesi:28 January 2014
Anno di Pubblicazione:28 January 2014
Key Words:Helicobacter pylori fattori patogenici / Pathigenic factors studi strutturali / structural studies
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:6488
Depositato il:04 Nov 2014 14:14
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bibliography Cerca con Google

Addy C, Ohara M, Kawai F, Kidera A, Ikeguchi M, Fuchigami S, Osawa M, Shimada I, Park SY, Tame JR, Heddle JG. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography. Acta Crystallogr D Biol Crystallogr. 2007 Feb;63(Pt 2):221-9. PubMed PMID: 17242515. Cerca con Google

Agarwal K, Agarwal S. Helicobacter pylori vaccine: from past to future. Mayo Clin Proc. 2008 Feb;83(2):169-75. PubMed PMID: 18241627. Cerca con Google

Andersen LP, Holck S, Janulaityte-Günther D, Kupcinskas L, Kiudelis G, Jonaitis L, Janciauskas D, Holck P, Bennedsen M, Permin H, Norn S, Wadström T. Gastric inflammatory markers and interleukins in patients with functional dyspepsia, with and without Helicobacter pylori infection. FEMS Immunol Med Microbiol. 2005 May 1;44(2):233-8. PubMed PMID: 15866221. Cerca con Google

Andersen MT, Brøndsted L, Pearson BM, Mulholland F, Parker M, Pin C, Wells JM, Ingmer H. Diverse roles for HspR in Campylobacter jejuni revealed by the proteome, transcriptome and phenotypic characterization of an hspR mutant. Microbiology. 2005 Mar;151(Pt 3):905-15. PubMed PMID: 15758235. Cerca con Google

Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol. 2004 Sep;186(18):6220-9. PubMed PMID: 15342592; PubMed Central PMCID: PMC515168. Cerca con Google

Andrutis KA, Fox JG, Schauer DB, Marini RP, Li X, Yan L, Josenhans C, Suerbaum S. Infection of the ferret stomach by isogenic flagellar mutant strains of Helicobacter mustelae. Infect Immun. 1997 May;65(5):1962-6. PubMed PMID: 9125590; PubMed Central PMCID: PMC175254. Cerca con Google

Angelakopoulos H, Hohmann EL. Pilot study of phoP/phoQ-deleted Salmonella enterica serovar typhimurium expressing Helicobacter pylori urease in adult volunteers. Infect Immun. 2000 Apr;68(4):2135-41. PubMed PMID: 10722611; PubMed Central PMCID: PMC97395. Cerca con Google

Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006 Jan 15;22(2):195-201. PubMed PMID: 16301204. Cerca con Google

Banaszak K, Martin-Diaconescu V, Bellucci M, Zambelli B, Rypniewski W, Maroney MJ, Ciurli S. Crystallographic and X-ray absorption spectroscopic characterization of Helicobacter pylori UreE bound to Ni²⁺ and Zn²⁺ reveals a role for the disordered C-terminal arm in metal trafficking. Biochem J. 2012 Feb 1;441(3):1017-26. PubMed PMID: 22010876; PubMed Central PMCID: PMC3501991. Cerca con Google

Bardhan KD, Bjarnason I, Scott DL, Griffin WM, Fenn GC, Shield MJ, Morant SV. The prevention and healing of acute non-steroidal anti-inflammatory drug-associated gastroduodenal mucosal damage by misoprostol. Br J Rheumatol. 1993 Nov;32(11):990-5. PubMed PMID: 8220939. Cerca con Google

Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G, Ceroti M, Nitti D, Rugge M, Plebani M, Atherton JC. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008 Jul;135(1):91-9. PubMed PMID: 18474244. Cerca con Google

Bauerfeind P, Garner RM, Mobley LT. Allelic exchange mutagenesis of nixA in Helicobacter pylori results in reduced nickel transport and urease activity. Infect Immun. 1996 Jul;64(7):2877-80. PubMed PMID: 8698529; PubMed Central PMCID: PMC174160. Cerca con Google

Belzer C, Stoof J, Beckwith CS, Kuipers EJ, Kusters JG, van Vliet AH. Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori. Microbiology. 2005 Dec;151(Pt 12):3989-95. PubMed PMID: 16339943. Cerca con Google

Benoit S, Maier RJ. Dependence of Helicobacter pylori urease activity on the nickel-sequestering ability of the UreE accessory protein. J Bacteriol. 2003 Aug;185(16):4787-95. PubMed PMID: 12896998; PubMed Central PMCID: PMC166491. Cerca con Google

Benoit SL, Mehta N, Weinberg MV, Maier C, Maier RJ. Interaction between the Helicobacter pylori accessory proteins HypA and UreE is needed for urease maturation. Microbiology. 2007 May;153(Pt 5):1474-82. PubMed PMID: 17464061; PubMed Central PMCID: PMC2553680. Cerca con Google

Benoit SL, Maier RJ. Mua (HP0868) is a nickel-binding protein that modulates urease activity in Helicobacter pylori. MBio. 2011;2(2):e00039-11. PubMed PMID: 21505055; PubMed Central PMCID: PMC3086059. Cerca con Google

Benoit SL, Zbell AL, Maier RJ. Nickel enzyme maturation in Helicobacter hepaticus: roles of accessory proteins in hydrogenase and urease activities. Microbiology. 2007 Nov;153(Pt 11):3748-56. PubMed PMID: 17975083; PubMed Central PMCID: PMC2562792. Cerca con Google

Benoit SL, Maier RJ. Hydrogen and nickel metabolism in helicobacter species. Ann N Y Acad Sci. 2008 Mar;1125:242-51. PubMed PMID: 18378596. Cerca con Google

Benoit SL, McMurry JL, Hill SA, Maier RJ. Helicobacter pylori hydrogenase accessory protein HypA and urease accessory protein UreG compete with each other for UreE recognition. Biochim Biophys Acta. 2012 Oct;1820(10):1519-25. PubMed PMID: 22698670. Cerca con Google

Benoit SL, Miller EF, Maier RJ. Helicobacter pylori stores nickel to aid its host colonization. Infect Immun. 2013 Feb;81(2):580-4. PubMed PMID: 23230291; PubMed Central PMCID: PMC3553817. Cerca con Google

Beyer WR, Pöpplau D, Garten W, von Laer D, Lenz O. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol. 2003 Mar;77(5):2866-72. PubMed PMID: 12584310; PubMed Central PMCID: PMC149737. Cerca con Google

Bina JE, Alm RA, Uria-Nickelsen M, Thomas SR, Trust TJ, Hancock RE. Helicobacter pylori uptake and efflux: basis for intrinsic susceptibility to antibiotics in vitro. Antimicrob Agents Chemother. 2000 Feb;44(2):248-54. PubMed PMID: 10639345; PubMed Central PMCID: PMC89666. Cerca con Google

Blaser MJ. Helicobacters are indigenous to the human stomach: duodenal ulceration is due to changes in gastric microecology in the modern era. Gut. 1998 Nov;43(5):721-7. PubMed PMID: 9824358; PubMed Central PMCID: PMC1727310. Cerca con Google

Bodvard K, Mohlin J, Knecht W. Recombinant expression, purification, and kinetic and inhibitor characterisation of human site-1-protease. Protein Expr Purif. 2007 Feb;51(2):308-19. PubMed PMID: 16973377. Cerca con Google

Boncristiano M, Paccani SR, Barone S, Ulivieri C, Patrussi L, Ilver D, Amedei A, D'Elios MM, Telford JL, Baldari CT. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J Exp Med. 2003 Dec 15;198(12):1887-97. PubMed PMID: 14676300; PubMed Central PMCID: PMC2194151. Cerca con Google

Brown MS, Goldstein JL. A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11041-8. PubMed PMID: 10500120; PubMed Central PMCID: PMC34238. Cerca con Google

Bruggraber SF, French G, Thompson RP, Powell JJ. Selective and effective bactericidal activity of the cobalt (II) cation against Helicobacter pylori. Helicobacter. 2004 Oct;9(5):422-8. PubMed PMID: 15361081. Cerca con Google

Bucca G, Ferina G, Puglia AM, Smith CP. The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol Microbiol. 1995 Aug;17(4):663-74. PubMed PMID: 8801421. Cerca con Google

Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol. 1993 Aug;9(4):671-80. PubMed PMID: 7901731. Cerca con Google

Bumann D, Metzger WG, Mansouri E, Palme O, Wendland M, Hurwitz R, Haas G, Aebischer T, von Specht BU, Meyer TF. Safety and immunogenicity of live recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from Helicobacter pylori in human volunteers. Vaccine. 2001 Dec 12;20(5-6):845-52. PubMed PMID: 11738748. Cerca con Google

Cavazza C, Martin L, Laffly E, Lebrette H, Cherrier MV, Zeppieri L, Richaud P, Carrière M, Fontecilla-Camps JC. Histidine 416 of the periplasmic binding protein NikA is essential for nickel uptake in Escherichia coli. FEBS Lett. 2011 Feb 18;585(4):711-5. PubMed PMID: 21281641. Cerca con Google

Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14648-53. PubMed PMID: 8962108; PubMed Central PMCID: PMC26189. Cerca con Google

Cheng D, Espenshade PJ, Slaughter CA, Jaen JC, Brown MS, Goldstein JL. Secreted site-1 protease cleaves peptides corresponding to luminal loop of sterol regulatory element-binding proteins. J Biol Chem. 1999 Aug 6;274(32):22805-12. PubMed PMID: 10428865. Cerca con Google

Cheng T, Li H, Xia W, Sun H. Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation. J Biol Inorg Chem. 2012 Mar;17(3):331-43. PubMed PMID: 22045417; PubMed Central PMCID: PMC3292732. Cerca con Google

Cherrier MV, Martin L, Cavazza C, Jacquamet L, Lemaire D, Gaillard J, Fontecilla-Camps JC. Crystallographic and spectroscopic evidence for high affinity binding of FeEDTA(H2O)- to the periplasmic nickel transporter NikA. J Am Chem Soc. 2005 Jul 20;127(28):10075-82. PubMed PMID: 16011372. Cerca con Google

Cherrier MV, Cavazza C, Bochot C, Lemaire D, Fontecilla-Camps JC. Structural characterization of a putative endogenous metal chelator in the periplasmic nickel transporter NikA. Biochemistry. 2008 Sep 23;47(38):9937-43. PubMed PMID: 18759453. Cerca con Google

Chivers PT, Benanti EL, Heil-Chapdelaine V, Iwig JS, Rowe JL. Identification of Ni-(L-His)₂ as a substrate for NikABCDE-dependent nickel uptake in Escherichia coli. Metallomics. 2012 Oct;4(10):1043-50. PubMed PMID: 22885853. Cerca con Google

Chu BC, Vogel HJ. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem. 2011 Jan;392(1-2):39-52. PubMed PMID: 21194366. Cerca con Google

Clarke TE, Rohrbach MR, Tari LW, Vogel HJ, Köster W. Ferric hydroxamate binding protein FhuD from Escherichia coli: mutants in conserved and non-conserved regions. Biometals. 2002 Jun;15(2):121-31. PubMed PMID: 12046920. Cerca con Google

Clarke TE, Braun V, Winkelmann G, Tari LW, Vogel HJ. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J Biol Chem. 2002 Apr 19;277(16):13966-72. PubMed PMID: 11805094. Cerca con Google

Clarke TE, Tari LW, Vogel HJ. Structural biology of bacterial iron uptake systems. Curr Top Med Chem. 2001 May;1(1):7-30. PubMed PMID: 11895294. Cerca con Google

Cole C, Barber JD, Barton GJ. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W197-201. PubMed PMID: 18463136; PubMed Central PMCID: PMC2447793. Cerca con Google

Colland F, Rain JC, Gounon P, Labigne A, Legrain P, De Reuse H. Identification of the Helicobacter pylori anti-sigma28 factor. Mol Microbiol. 2001 Jul;41(2):477-87. PubMed PMID: 11489132. Cerca con Google

Contreras M, Thiberge JM, Mandrand-Berthelot MA, Labigne A. Characterization of the roles of NikR, a nickel-responsive pleiotropic autoregulator of Helicobacter pylori. Mol Microbiol. 2003 Aug;49(4):947-63. PubMed PMID: 12890020. Cerca con Google

Couture F, D'Anjou F, Desjardins R, Boudreau F, Day R. Role of proprotein convertases in prostate cancer progression. Neoplasia. 2012 Nov;14(11):1032-42. PubMed PMID: 23226097; PubMed Central PMCID: PMC3514743. Cerca con Google

Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5791-5. PubMed PMID: 8516329; PubMed Central PMCID: PMC46808. Cerca con Google

Cover TL, Blaser MJ. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem. 1992 May 25;267(15):10570-5. PubMed PMID: 1587837. Cerca con Google

Cover TL, Hanson PI, Heuser JE. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J Cell Biol. 1997 Aug 25;138(4):759-69. PubMed PMID: 9265644; PubMed Central PMCID: PMC2138037. Cerca con Google

Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology. 2009 May;136(6):1863-73. PubMed PMID: 19457415; PubMed Central PMCID: PMC3644425. Cerca con Google

Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev. 1993 Jun;57(2):402-14. PubMed PMID: 8336673; PubMed Central PMCID: PMC372916. Cerca con Google

Craig TA, Lutz WH, Kumar R. Association of prokaryotic and eukaryotic chaperone proteins with the human 1alpha,25-dihydroxyvitamin D(3) receptor. Biochem Biophys Res Commun. 1999 Jul 5;260(2):446-52. PubMed PMID: 10403788. Cerca con Google

Creemers JW, Ines Dominguez D, Plets E, Serneels L, Taylor NA, Multhaup G, Craessaerts K, Annaert W, De Strooper B. Processing of beta-secretase by furin and other members of the proprotein convertase family. J Biol Chem. 2001 Feb 9;276(6):4211-7. PubMed PMID: 11071887. Cerca con Google

Cun S, Li H, Ge R, Lin MC, Sun H. A histidine-rich and cysteine-rich metal-binding domain at the C terminus of heat shock protein A from Helicobacter pylori: implication for nickel homeostasis and bismuth susceptibility. J Biol Chem. 2008 May 30;283(22):15142-51. PubMed PMID: 18364351; PubMed Central PMCID: PMC3258894. Cerca con Google

D'Elios MM, Andersen LP. Helicobacter pylori inflammation, immunity, and vaccines. Helicobacter. 2007 Oct;12 Suppl 1:15-9. PubMed PMID: 17727455. Cerca con Google

Davis GS, Flannery EL, Mobley HL. Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. Infect Immun. 2006 Dec;74(12):6811-20. PubMed PMID: 17030579; PubMed Central PMCID: PMC1698071. Cerca con Google

de Pina K, Navarro C, McWalter L, Boxer DH, Price NC, Kelly SM, Mandrand-Berthelot MA, Wu LF. Purification and characterization of the periplasmic nickel-binding protein NikA of Escherichia coli K12. Eur J Biochem. 1995 Feb 1;227(3):857-65. PubMed PMID: 7867647. Cerca con Google

de Reuse H, Vinella D, Cavazza C. Common themes and unique proteins for the uptake and trafficking of nickel, a metal essential for the virulence of <i>Helicobacter pylori</i>. Front Cell Infect Microbiol. 2013 Dec 9;3:94. PubMed PMID: 24367767; PubMed Central PMCID: PMC3856676. Cerca con Google

Delany I, Spohn G, Rappuoli R, Scarlato V. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori. Mol Microbiol. 2001 Dec;42(5):1297-309. PubMed PMID: 11886560. Cerca con Google

Dian C, Vitale S, Leonard GA, Bahlawane C, Fauquant C, Leduc D, Muller C, de Reuse H, Michaud-Soret I, Terradot L. The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol. 2011 Mar;79(5):1260-75. PubMed PMID: 21208302. Cerca con Google

DiPetrillo MD, Tibbetts T, Kleanthous H, Killeen KP, Hohmann EL. Safety and immunogenicity of phoP/phoQ-deleted Salmonella typhi expressing Helicobacter pylori urease in adult volunteers. Vaccine. 1999 Oct 14;18(5-6):449-59. PubMed PMID: 10519934. Cerca con Google

Dosanjh NS, Michel SL. Microbial nickel metalloregulation: NikRs for nickel ions. Curr Opin Chem Biol. 2006 Apr;10(2):123-30. PubMed PMID: 16504569. Cerca con Google

Eaton KA, Radin MJ, Kramer L, Wack R, Sherding R, Krakowka S, Morgan DR. Gastric spiral bacilli in captive cheetahs. Scand J Gastroenterol Suppl. 1991;181:38-42. PubMed PMID: 1866593. Cerca con Google

Eaton KA, Brooks CL, Morgan DR, Krakowka S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun. 1991 Jul;59(7):2470-5. PubMed PMID: 2050411; PubMed Central PMCID: PMC258033. Cerca con Google

Eitinger T, Mandrand-Berthelot MA. Nickel transport systems in microorganisms. Arch Microbiol. 2000 Jan;173(1):1-9. PubMed PMID: 10648098. Cerca con Google

Elagoz A, Benjannet S, Mammarbassi A, Wickham L, Seidah NG. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J Biol Chem. 2002 Mar 29;277(13):11265-75. PubMed PMID: 11756446. Cerca con Google

Englert DL, Adase CA, Jayaraman A, Manson MD. Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic NikA binding protein. J Bacteriol. 2010 May;192(10):2633-7. PubMed PMID: 20233931; PubMed Central PMCID: PMC2863559. Cerca con Google

Ernst FD, Kuipers EJ, Heijens A, Sarwari R, Stoof J, Penn CW, Kusters JG, van Vliet AH. The nickel-responsive regulator NikR controls activation and repression of gene transcription in Helicobacter pylori. Infect Immun. 2005 Nov;73(11):7252-8. PubMed PMID: 16239520; PubMed Central PMCID: PMC1273850. Cerca con Google

Ernst FD, Stoof J, Horrevoets WM, Kuipers EJ, Kusters JG, van Vliet AH. NikR mediates nickel-responsive transcriptional repression of the Helicobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). Infect Immun. 2006 Dec;74(12):6821-8. PubMed PMID: 17015456; PubMed Central PMCID: PMC1698083. Cerca con Google

Evans DG, Evans DJ Jr, Graham DY. Adherence and internalization of Helicobacter pylori by HEp-2 cells. Gastroenterology. 1992 May;102(5):1557-67. PubMed PMID: 1568565. Cerca con Google

Evans DJ Jr, Evans DG, Engstrand L, Graham DY. Urease-associated heat shock protein of Helicobacter pylori. Infect Immun. 1992 May;60(5):2125-7. PubMed PMID: 1348725; PubMed Central PMCID: PMC257126. Cerca con Google

Evans DJ Jr, Evans DG, Lampert HC, Nakano H. Identification of four new prokaryotic bacterioferritins, from Helicobacter pylori, Anabaena variabilis, Bacillus subtilis and Treponema pallidum, by analysis of gene sequences. Gene. 1995 Feb 3;153(1):123-7. PubMed PMID: 7883175. Cerca con Google

Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82. PubMed PMID: 16369096. Cerca con Google

Farinha P, Gascoyne RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Oncol. 2005 Sep 10;23(26):6370-8. PubMed PMID: 16155022. Cerca con Google

Fauquant C, Diederix RE, Rodrigue A, Dian C, Kapp U, Terradot L, Mandrand-Berthelot MA, Michaud-Soret I. pH dependent Ni(II) binding and aggregation of Escherichia coli and Helicobacter pylori NikR. Biochimie. 2006 Nov;88(11):1693-705. PubMed PMID: 16930800. Cerca con Google

Fiedorek SC, Casteel HB, Pumphrey CL, Evans DJ Jr, Evans DG, Klein PD, Graham DY. The role of Helicobacter pylori in recurrent, functional abdominal pain in children. Am J Gastroenterol. 1992 Mar;87(3):347-9. PubMed PMID: 1539570. Cerca con Google

Fong YH, Wong HC, Chuck CP, Chen YW, Sun H, Wong KB. Assembly of preactivation complex for urease maturation in Helicobacter pylori: crystal structure of UreF-UreH protein complex. J Biol Chem. 2011 Dec 16;286(50):43241-9. PubMed PMID: 22013070; PubMed Central PMCID: PMC3234868. Cerca con Google

Fong YH, Wong HC, Yuen MH, Lau PH, Chen YW, Wong KB. Structure of UreG/UreF/UreH complex reveals how urease accessory proteins facilitate maturation of Helicobacter pylori urease. PLoS Biol. 2013 Oct;11(10):e1001678. PubMed PMID: 24115911; PubMed Central PMCID: PMC3792862. Cerca con Google

Fugère M, Day R. Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition. Trends Pharmacol Sci. 2005 Jun;26(6):294-301. PubMed PMID: 15925704. Cerca con Google

Fulkerson JF Jr, Garner RM, Mobley HL. Conserved residues and motifs in the NixA protein of Helicobacter pylori are critical for the high affinity transport of nickel ions. J Biol Chem. 1998 Jan 2;273(1):235-41. PubMed PMID: 9417070. Cerca con Google

Fulkerson JF Jr, Mobley HL. Membrane topology of the NixA nickel transporter of Helicobacter pylori: two nickel transport-specific motifs within transmembrane helices II and III. J Bacteriol. 2000 Mar;182(6):1722-30. PubMed PMID: 10692379; PubMed Central PMCID: PMC94471. Cerca con Google

Galmiche A, Rassow J, Doye A, Cagnol S, Chambard JC, Contamin S, de Thillot V, Just I, Ricci V, Solcia E, Van Obberghen E, Boquet P. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 2000 Dec 1;19(23):6361-70. PubMed PMID: 11101509; PubMed Central PMCID: PMC305856. Cerca con Google

Garcia-Herrero A, Peacock RS, Howard SP, Vogel HJ. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins. Mol Microbiol. 2007 Nov;66(4):872-89. PubMed PMID: 17927700. Cerca con Google

Ge R, Watt RM, Sun X, Tanner JA, He QY, Huang JD, Sun H. Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. Biochem J. 2006 Jan 1;393(Pt 1):285-93. PubMed PMID: 16164421; PubMed Central PMCID: PMC1383687. Cerca con Google

Ge RG, Wang DX, Hao MC, Sun XS. Nickel trafficking system responsible for urease maturation in <i>Helicobacter pylori</i>. World J Gastroenterol. 2013 Dec 7;19(45):8211-8218. PubMed PMID: 24363511; PubMed Central PMCID: PMC3857443. Cerca con Google

Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol. 1993 May;38(5):371-7. PubMed PMID: 8487294. Cerca con Google

Gilbert JV, Ramakrishna J, Sunderman FW Jr, Wright A, Plaut AG. Protein Hpn: cloning and characterization of a histidine-rich metal-binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect Immun. 1995 Jul;63(7):2682-8. PubMed PMID: 7790085; PubMed Central PMCID: PMC173359. Cerca con Google

Gilbreath JJ, Pich OQ, Benoit SL, Besold AN, Cha JH, Maier RJ, Michel SL, Maynard EL, Merrell DS. Random and site-specific mutagenesis of the Helicobacter pylori ferric uptake regulator provides insight into Fur structure-function relationships. Mol Microbiol. 2013 Jul;89(2):304-23. PubMed PMID: 23710935; PubMed Central PMCID: PMC3713617. Cerca con Google

González-Pedrajo B, Minamino T, Kihara M, Namba K. Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol. 2006 May;60(4):984-98. PubMed PMID: 16677309. Cerca con Google

Goodwin CS, Bell B, McCullough C, Turner M. Sensitivity of Campylobacter pylori to colloidal bismuth subcitrate. J Clin Pathol. 1989 Feb;42(2):216-7. PubMed PMID: 2921366; PubMed Central PMCID: PMC1141833. Cerca con Google

Goodwin CS, McCulloch RK, Armstrong JA, Wee SH. Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol. 1985 Apr;19(2):257-67. PubMed PMID: 3981612. Cerca con Google

Graham DY, Go MF, Evans DJ Jr. Review article: urease, gastric ammonium/ammonia, and Helicobacter pylori--the past, the present, and recommendations for future research. Aliment Pharmacol Ther. 1992 Dec;6(6):659-69. PubMed PMID: 1486153. Cerca con Google

Graham DY, Lew GM, Klein PD, Evans DG, Evans DJ Jr, Saeed ZA, Malaty HM. Effect of treatment of Helicobacter pylori infection on the long-term recurrence of gastric or duodenal ulcer A randomized, controlled study. Ann Intern Med. 1992 May 1;116(9):705-8. PubMed PMID: 1558340. Cerca con Google

Graham DY, Lew GM, Malaty HM, Evans DG, Evans DJ Jr, Klein PD, Alpert LC, Genta RM. Factors influencing the eradication of Helicobacter pylori with triple therapy. Gastroenterology. 1992 Feb;102(2):493-6. PubMed PMID: 1732120. Cerca con Google

Groeger W, Köster W. Transmembrane topology of the two FhuB domains representing the hydrophobic components of bacterial ABC transporters involved in the uptake of siderophores, haem and vitamin B12. Microbiology. 1998 Oct;144 ( Pt 10):2759-69. PubMed PMID: 9802017. Cerca con Google

Ha NC, Oh ST, Sung JY, Cha KA, Lee MH, Oh BH. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Biol. 2001 Jun;8(6):505-9. PubMed PMID: 11373617. Cerca con Google

Haas R, Meyer TF, van Putten JP. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol Microbiol. 1993 May;8(4):753-60. PubMed PMID: 8332066. Cerca con Google

Hatakeyama M. The role of Helicobacter pylori CagA in gastric carcinogenesis. Int J Hematol. 2006 Nov;84(4):301-8. PubMed PMID: 17118755. Cerca con Google

Hatakeyama M. Helicobacter pylori causes gastric cancer by hijacking cell growth signaling. Discov Med. 2004 Dec;4(24):476-81. PubMed PMID: 20704951. Cerca con Google

Hatakeyama M, Higashi H. Helicobacter pylori CagA: a new paradigm for bacterial carcinogenesis. Cancer Sci. 2005 Dec;96(12):835-43. PubMed PMID: 16367902. Cerca con Google

Hatakeyama M. Helicobacter pylori and gastric carcinogenesis. J Gastroenterol. 2009;44(4):239-48. PubMed PMID: 19271114. Cerca con Google

Hazell SL, Eichberg JW, Lee DR, Alpert L, Evans DG, Evans DJ Jr, Graham DY. Selection of the chimpanzee over the baboon as a model for Helicobacter pylori infection. Gastroenterology. 1992 Sep;103(3):848-54. PubMed PMID: 1499934. Cerca con Google

Heddle J, Scott DJ, Unzai S, Park SY, Tame JR. Crystal structures of the liganded and unliganded nickel-binding protein NikA from Escherichia coli. J Biol Chem. 2003 Dec 12;278(50):50322-9. PubMed PMID: 12960164. Cerca con Google

Hendricks JK, Mobley HL. Helicobacter pylori ABC transporter: effect of allelic exchange mutagenesis on urease activity. J Bacteriol. 1997 Sep;179(18):5892-902. PubMed PMID: 9294450; PubMed Central PMCID: PMC179482. Cerca con Google

Herbst RW, Perovic I, Martin-Diaconescu V, O'Brien K, Chivers PT, Pochapsky SS, Pochapsky TC, Maroney MJ. Communication between the zinc and nickel sites in dimeric HypA: metal recognition and pH sensing. J Am Chem Soc. 2010 Aug 4;132(30):10338-51. PubMed PMID: 20662514; PubMed Central PMCID: PMC2934764. Cerca con Google

Heyl KA, Fischer A, Göbel UB, Henklein P, Heimesaat MM, Bereswill S. Inhibition of Helicobacter pylori urease activity in vivo by the synthetic nickel binding protein Hpn. Eur J Microbiol Immunol (Bp). 2013 Mar;3(1):77-80. PubMed PMID: 24265922; PubMed Central PMCID: PMC3832076. Cerca con Google

Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science. 2002 Jan 25;295(5555):683-6. PubMed PMID: 11743164. Cerca con Google

Higgins KA, Carr CE, Maroney MJ. Specific metal recognition in nickel trafficking. Biochemistry. 2012 Oct 9;51(40):7816-32. PubMed PMID: 22970729; PubMed Central PMCID: PMC3502001. Cerca con Google

Ho WW, Li H, Eakanunkul S, Tong Y, Wilks A, Guo M, Poulos TL. Holo- and apo-bound structures of bacterial periplasmic heme-binding proteins. J Biol Chem. 2007 Dec 7;282(49):35796-802. PubMed PMID: 17925389. Cerca con Google

Hoffman PS, Vats N, Hutchison D, Butler J, Chisholm K, Sisson G, Raudonikiene A, Marshall JS, Veldhuyzen van Zanten SJ. Development of an interleukin-12-deficient mouse model that is permissive for colonization by a motile KE26695 strain of Helicobacter pylori. Infect Immun. 2003 May;71(5):2534-41. PubMed PMID: 12704125; PubMed Central PMCID: PMC153236. Cerca con Google

Homma M, Iino T, Kutsukake K, Yamaguchi S. In vitro reconstitution of flagellar filaments onto hooks of filamentless mutants of Salmonella typhimurium by addition of hook-associated proteins. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6169-73. PubMed PMID: 3526353; PubMed Central PMCID: PMC386461. Cerca con Google

Homma M, DeRosier DJ, Macnab RM. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J Mol Biol. 1990 Jun 20;213(4):819-32. PubMed PMID: 2193164. Cerca con Google

Homma M, Kutsukake K, Iino T, Yamaguchi S. Hook-associated proteins essential for flagellar filament formation in Salmonella typhimurium. J Bacteriol. 1984 Jan;157(1):100-8. PubMed PMID: 6360991; PubMed Central PMCID: PMC215136. Cerca con Google

Hosaka M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K. Arg-X-Lys/Arg-Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J Biol Chem. 1991 Jul 5;266(19):12127-30. PubMed PMID: 1905715. Cerca con Google

Howlett RM, Hughes BM, Hitchcock A, Kelly DJ. Hydrogenase activity in the foodborne pathogen Campylobacter jejuni depends upon a novel ABC-type nickel transporter (NikZYXWV) and is SlyD-independent. Microbiology. 2012 Jun;158(Pt 6):1645-55. PubMed PMID: 22403188. Cerca con Google

Hu LT, Mobley HL. Expression of catalytically active recombinant Helicobacter pylori urease at wild-type levels in Escherichia coli. Infect Immun. 1993 Jun;61(6):2563-9. PubMed PMID: 8500893; PubMed Central PMCID: PMC280885. Cerca con Google

Hu Y, Jiang F, Guo Y, Shen X, Zhang Y, Zhang R, Guo G, Mao X, Zou Q, Wang DC. Crystal structure of HugZ, a novel heme oxygenase from Helicobacter pylori. J Biol Chem. 2011 Jan 14;286(2):1537-44. PubMed PMID: 21030596; PubMed Central PMCID: PMC3020762. Cerca con Google

Imada K, Minamino T, Kinoshita M, Furukawa Y, Namba K. Structural insight into the regulatory mechanisms of interactions of the flagellar type III chaperone FliT with its binding partners. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8812-7. PubMed PMID: 20421493; PubMed Central PMCID: PMC2889304. Cerca con Google

Jin UH, Chung TW, Lee YC, Ha SD, Kim CH. Molecular cloning and functional expression of the rfaE gene required for lipopolysaccharide biosynthesis in Salmonella typhimurium. Glycoconj J. 2001 Oct;18(10):779-87. PubMed PMID: 12441667. Cerca con Google

Jones AC, Logan RP, Foynes S, Cockayne A, Wren BW, Penn CW. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneuraminyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J Bacteriol. 1997 Sep;179(17):5643-7. PubMed PMID: 9287032; PubMed Central PMCID: PMC179448. Cerca con Google

Josenhans C, Labigne A, Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J Bacteriol. 1995 Jun;177(11):3010-20. PubMed PMID: 7768796; PubMed Central PMCID: PMC176987. Cerca con Google

Jubier-Maurin V, Rodrigue A, Ouahrani-Bettache S, Layssac M, Mandrand-Berthelot MA, Köhler S, Liautard JP. Identification of the nik gene cluster of Brucella suis: regulation and contribution to urease activity. J Bacteriol. 2001 Jan;183(2):426-34. PubMed PMID: 11133934; PubMed Central PMCID: PMC94896. Cerca con Google

Kang JM, Iovine NM, Blaser MJ. A paradigm for direct stress-induced mutation in prokaryotes. FASEB J. 2006 Dec;20(14):2476-85. PubMed PMID: 17142797. Cerca con Google

Kansau I, Labigne A. Heat shock proteins of Helicobacter pylori. Aliment Pharmacol Ther. 1996 Apr;10 Suppl 1:51-6. PubMed PMID: 8730259. Cerca con Google

Kansau I, Guillain F, Thiberge JM, Labigne A. Nickel binding and immunological properties of the C-terminal domain of the Helicobacter pylori GroES homologue (HspA). Mol Microbiol. 1996 Dec;22(5):1013-23. PubMed PMID: 8971721. Cerca con Google

Kao CY, Sheu BS, Sheu SM, Yang HB, Chang WL, Cheng HC, Wu JJ. Higher motility enhances bacterial density and inflammatory response in dyspeptic patients infected with Helicobacter pylori. Helicobacter. 2012 Dec;17(6):411-6. PubMed PMID: 23066970. Cerca con Google

Karpowich NK, Huang HH, Smith PC, Hunt JF. Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J Biol Chem. 2003 Mar 7;278(10):8429-34. PubMed PMID: 12468528. Cerca con Google

Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W, Melchers K, Haas R. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J Exp Med. 2003 Apr 7;197(7):813-22. PubMed PMID: 12668646; PubMed Central PMCID: PMC2193887. Cerca con Google

Kawagishi I, Homma M, Williams AW, Macnab RM. Characterization of the flagellar hook length control protein fliK of Salmonella typhimurium and Escherichia coli. J Bacteriol. 1996 May;178(10):2954-9. PubMed PMID: 8631687; PubMed Central PMCID: PMC178034. Cerca con Google

Kersulyte D, Mukhopadhyay AK, Shirai M, Nakazawa T, Berg DE. Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J Bacteriol. 2000 Oct;182(19):5300-8. PubMed PMID: 10986230; PubMed Central PMCID: PMC110970. Cerca con Google

Khatib AM, Siegfried G, Chrétien M, Metrakos P, Seidah NG. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am J Pathol. 2002 Jun;160(6):1921-35. PubMed PMID: 12057895; PubMed Central PMCID: PMC1850825. Cerca con Google

Klein PD, Graham DY, Gaillour A, Opekun AR, Smith EO. Water source as risk factor for Helicobacter pylori infection in Peruvian children Gastrointestinal Physiology Working Group. Lancet. 1991 Jun 22;337(8756):1503-6. PubMed PMID: 1675369. Cerca con Google

Krakowka S, Eaton KA, Rings DM, Morgan DR. Gastritis induced by Helicobacter pylori in gnotobiotic piglets. Rev Infect Dis. 1991 Jul-Aug;13 Suppl 8:S681-5. PubMed PMID: 1925308. Cerca con Google

Krewulak KD, Vogel HJ. TonB or not TonB: is that the question?. Biochem Cell Biol. 2011 Apr;89(2):87-97. PubMed PMID: 21455261. Cerca con Google

Krukonis ES, Yu RR, Dirita VJ. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol. 2000 Oct;38(1):67-84. PubMed PMID: 11029691. Cerca con Google

Kubori T, Shimamoto N, Yamaguchi S, Namba K, Aizawa S. Morphological pathway of flagellar assembly in Salmonella typhimurium. J Mol Biol. 1992 Jul 20;226(2):433-46. PubMed PMID: 1640458. Cerca con Google

Kuo WT, Chin KH, Lo WT, Wang AH, Chou SH. Crystal structure of the C-terminal domain of a flagellar hook-capping protein from Xanthomonas campestris. J Mol Biol. 2008 Aug 1;381(1):189-99. PubMed PMID: 18599076. Cerca con Google

Kurihara N, Kamiya S, Yamaguchi H, Osaki T, Shinohara H, Kitahora T, Ishida H, Ozawa A, Otani Y, Kubota T, Kumai K, Kitajima M. Characteristics of Helicobacter pylori strains isolated from patients with different gastric diseases. J Gastroenterol. 1998;33 Suppl 10:10-3. PubMed PMID: 9840009. Cerca con Google

Kutsukake K, Minamino T, Yokoseki T. Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium. J Bacteriol. 1994 Dec;176(24):7625-9. PubMed PMID: 8002586; PubMed Central PMCID: PMC197219. Cerca con Google

Lam R, Romanov V, Johns K, Battaile KP, Wu-Brown J, Guthrie JL, Hausinger RP, Pai EF, Chirgadze NY. Crystal structure of a truncated urease accessory protein UreF from Helicobacter pylori. Proteins. 2010 Oct;78(13):2839-48. PubMed PMID: 20635345; PubMed Central PMCID: PMC2978904. Cerca con Google

Lebrette H, Iannello M, Fontecilla-Camps JC, Cavazza C. The binding mode of Ni-(L-His)2 in NikA revealed by X-ray crystallography. J Inorg Biochem. 2013 Apr;121:16-8. PubMed PMID: 23314594. Cerca con Google

Lee TH, Yang JC, Lee SC, Farn SS, Wang TH. Effect of mouth washing on the. J Gastroenterol Hepatol. 2001 Mar;16(3):261-3. PubMed PMID: 11339415. Cerca con Google

Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A. 2001 Oct 23;98(22):12701-5. PubMed PMID: 11606739; PubMed Central PMCID: PMC60117. Cerca con Google

Lertsethtakarn P, Ottemann KM, Hendrixson DR. Motility and chemotaxis in Campylobacter and Helicobacter . Annu Rev Microbiol. 2011;65:389-410. PubMed PMID: 21939377. Cerca con Google

Leslie AG. The integration of macromolecular diffraction data. Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):48-57. PubMed PMID: 16369093. Cerca con Google

Leunk RD, Johnson PT, David BC, Kraft WG, Morgan DR. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med Microbiol. 1988 Jun;26(2):93-9. PubMed PMID: 3385767. Cerca con Google

Liu J, Huang C, Shin DH, Yokota H, Jancarik J, Kim JS, Adams PD, Kim R, Kim SH. Crystal structure of a heat-inducible transcriptional repressor HrcA from Thermotoga maritima: structural insight into DNA binding and dimerization. J Mol Biol. 2005 Jul 29;350(5):987-96. PubMed PMID: 15979091. Cerca con Google

Losonsky GA, Kotloff KL, Walker RI. B cell responses in gastric antrum and duodenum following oral inactivated Helicobacter pylori whole cell (HWC) vaccine and LT(R192G) in H pylori seronegative individuals. Vaccine. 2003 Jan 17;21(5-6):562-5. PubMed PMID: 12531656. Cerca con Google

Lowenthal AC, Hill M, Sycuro LK, Mehmood K, Salama NR, Ottemann KM. Functional analysis of the Helicobacter pylori flagellar switch proteins. J Bacteriol. 2009 Dec;191(23):7147-56. PubMed PMID: 19767432; PubMed Central PMCID: PMC2786559. Cerca con Google

Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA, Altraja S, Wadström T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarström L, Borén T. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science. 2002 Jul 26;297(5581):573-8. PubMed PMID: 12142529; PubMed Central PMCID: PMC2570540. Cerca con Google

Maier RJ, Benoit SL, Seshadri S. Nickel-binding and accessory proteins facilitating Ni-enzyme maturation in Helicobacter pylori. Biometals. 2007 Jun;20(3-4):655-64. PubMed PMID: 17205208; PubMed Central PMCID: PMC2665251. Cerca con Google

Malaty HM, Engstrand L, Pedersen NL, Graham DY. Helicobacter pylori infection: genetic and environmental influences A study of twins. Ann Intern Med. 1994 Jun 15;120(12):982-6. PubMed PMID: 8185146. Cerca con Google

Malaty HM, Evans DJ Jr, Abramovitch K, Evans DG, Graham DY. Helicobacter pylori infection in dental workers: a seroepidemiology study. Am J Gastroenterol. 1992 Dec;87(12):1728-31. PubMed PMID: 1449133. Cerca con Google

Malaty HM, Evans DG, Evans DJ Jr, Graham DY. Helicobacter pylori in Hispanics: comparison with blacks and whites of similar age and socioeconomic class. Gastroenterology. 1992 Sep;103(3):813-6. PubMed PMID: 1499931. Cerca con Google

Malfertheiner P, Megraud F, O'Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut. 2007 Jun;56(6):772-81. PubMed PMID: 17170018; PubMed Central PMCID: PMC1954853. Cerca con Google

Marcus EA, Sachs G, Scott DR. The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori. Helicobacter. 2013 Oct;18(5):363-72. PubMed PMID: 23600974; PubMed Central PMCID: PMC3742559. Cerca con Google

Marcus EA, Sachs G, Wen Y, Feng J, Scott DR. Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol. 2012 Oct;194(20):5545-51. PubMed PMID: 22865848; PubMed Central PMCID: PMC3458681. Cerca con Google

Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984 Jun 16;1(8390):1311-5. PubMed PMID: 6145023. Cerca con Google

Mattle D, Zeltina A, Woo JS, Goetz BA, Locher KP. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J Mol Biol. 2010 Nov 26;404(2):220-31. PubMed PMID: 20888343. Cerca con Google

McGee DJ, Coker C, Testerman TL, Harro JM, Gibson SV, Mobley HL. The Helicobacter pylori flbA flagellar biosynthesis and regulatory gene is required for motility and virulence and modulates urease of H pylori and Proteus mirabilis. J Med Microbiol. 2002 Nov;51(11):958-70. PubMed PMID: 12448680. Cerca con Google

McGee DJ, May CA, Garner RM, Himpsl JM, Mobley HL. Isolation of Helicobacter pylori genes that modulate urease activity. J Bacteriol. 1999 Apr;181(8):2477-84. PubMed PMID: 10198012; PubMed Central PMCID: PMC93674. Cerca con Google

Mehta N, Olson JW, Maier RJ. Characterization of Helicobacter pylori nickel metabolism accessory proteins needed for maturation of both urease and hydrogenase. J Bacteriol. 2003 Feb;185(3):726-34. PubMed PMID: 12533448; PubMed Central PMCID: PMC142838. Cerca con Google

Mehta N, Benoit S, Maier RJ. Roles of conserved nucleotide-binding domains in accessory proteins, HypB and UreG, in the maturation of nickel-enzymes required for efficient Helicobacter pylori colonization. Microb Pathog. 2003 Nov;35(5):229-34. PubMed PMID: 14521881. Cerca con Google

Mitchell HM, Li YY, Hu PJ, Liu Q, Chen M, Du GG, Wang ZJ, Lee A, Hazell SL. Epidemiology of Helicobacter pylori in southern China: identification of early childhood as the critical period for acquisition. J Infect Dis. 1992 Jul;166(1):149-53. PubMed PMID: 1607687. Cerca con Google

Mobley HL, Garner RM, Bauerfeind P. Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol. 1995 Apr;16(1):97-109. PubMed PMID: 7651142. Cerca con Google

Molinari M, Salio M, Galli C, Norais N, Rappuoli R, Lanzavecchia A, Montecucco C. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J Exp Med. 1998 Jan 5;187(1):135-40. PubMed PMID: 9419220; PubMed Central PMCID: PMC2199184. Cerca con Google

Montecucco C, Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol. 2001 Jun;2(6):457-66. PubMed PMID: 11389469. Cerca con Google

Morris A, Nicholson G, Lloyd G, Haines D, Rogers A, Taylor D. Seroepidemiology of Campylobacter pyloridis. N Z Med J. 1986 Sep 10;99(809):657-9. PubMed PMID: 3463897. Cerca con Google

Morris A, Lloyd G, Nicholson G. Campylobacter pyloridis serology among gastroendoscopy clinic staff. N Z Med J. 1986 Oct 22;99(812):819-20. PubMed PMID: 3466096. Cerca con Google

Moulard M, Hallenberger S, Garten W, Klenk HD. Processing and routage of HIV glycoproteins by furin to the cell surface. Virus Res. 1999 Mar;60(1):55-65. PubMed PMID: 10225274. Cerca con Google

Namavar F, Roosendaal R, Kuipers EJ, de Groot P, van der Bijl MW, Peña AS, de Graaff J. Presence of Helicobacter pylori in the oral cavity, oesophagus, stomach and faeces of patients with gastritis. Eur J Clin Microbiol Infect Dis. 1995 Mar;14(3):234-7. PubMed PMID: 7614967. Cerca con Google

Namba K, Vonderviszt F. Molecular architecture of bacterial flagellum. Q Rev Biophys. 1997 Feb;30(1):1-65. PubMed PMID: 9134575. Cerca con Google

Narberhaus F. Negative regulation of bacterial heat shock genes. Mol Microbiol. 1999 Jan;31(1):1-8. PubMed PMID: 9987104. Cerca con Google

Navarro C, Wu LF, Mandrand-Berthelot MA. The nik operon of Escherichia coli encodes a periplasmic binding-protein-dependent transport system for nickel. Mol Microbiol. 1993 Sep;9(6):1181-91. PubMed PMID: 7934931. Cerca con Google

Niehus E, Gressmann H, Ye F, Schlapbach R, Dehio M, Dehio C, Stack A, Meyer TF, Suerbaum S, Josenhans C. Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori. Mol Microbiol. 2004 May;52(4):947-61. PubMed PMID: 15130117. Cerca con Google

Norris V, Baisley K, Dunn K, Warrington S, Morocutti A. Combined analysis of three crossover clinical pharmacology studies of effects of rabeprazole and esomeprazole on 24-h intragastric pH in healthy volunteers. Aliment Pharmacol Ther. 2007 Feb 15;25(4):501-10. PubMed PMID: 17270006. Cerca con Google

O'Toole PW, Lane MC, Porwollik S. Helicobacter pylori motility. Microbes Infect. 2000 Aug;2(10):1207-14. PubMed PMID: 11008110. Cerca con Google

Oganesyan N, Kim SH, Kim R. On-column protein refolding for crystallization. J Struct Funct Genomics. 2005;6(2-3):177-82. PubMed PMID: 16211516. Cerca con Google

Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2272-81. PubMed PMID: 8157595; PubMed Central PMCID: PMC205349. Cerca con Google

Olson JW, Mehta NS, Maier RJ. Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori. Mol Microbiol. 2001 Jan;39(1):176-82. PubMed PMID: 11123699. Cerca con Google

Pallen MJ, Penn CW, Chaudhuri RR. Bacterial flagellar diversity in the post-genomic era. Trends Microbiol. 2005 Apr;13(4):143-9. PubMed PMID: 15817382. Cerca con Google

Parsonnet J, Replogle M, Yang S, Hiatt R. Seroprevalence of CagA-positive strains among Helicobacter pylori-infected, healthy young adults. J Infect Dis. 1997 May;175(5):1240-2. PubMed PMID: 9129095. Cerca con Google

Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D. Architecture of the flagellar rotor. EMBO J. 2011 Jun 14;30(14):2962-71. PubMed PMID: 21673656; PubMed Central PMCID: PMC3160249. Cerca con Google

Peek RM Jr, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002 Jan;2(1):28-37. PubMed PMID: 11902583. Cerca con Google

Peek RM Jr. Helicobacter pylori strain-specific modulation of gastric mucosal cellular turnover: implications for carcinogenesis. J Gastroenterol. 2002;37 Suppl 13:10-6. PubMed PMID: 12109657. Cerca con Google

Penagini R, Carmagnola S, Cantu P. Review article: gastro-oesophageal reflux disease--pathophysiological issues of clinical relevance. Aliment Pharmacol Ther. 2002 Jul;16 Suppl 4:65-71. PubMed PMID: 12047263. Cerca con Google

Perez-Perez GI, Rothenbacher D, Brenner H. Epidemiology of Helicobacter pylori infection. Helicobacter. 2004;9 Suppl 1:1-6. PubMed PMID: 15347299. Cerca con Google

Pfeiffer J, Guhl J, Waidner B, Kist M, Bereswill S. Magnesium uptake by CorA is essential for viability of the gastric pathogen Helicobacter pylori. Infect Immun. 2002 Jul;70(7):3930-4. PubMed PMID: 12065537; PubMed Central PMCID: PMC128062. Cerca con Google

Pflock M, Dietz P, Schär J, Beier D. Genetic evidence for histidine kinase HP165 being an acid sensor of Helicobacter pylori. FEMS Microbiol Lett. 2004 May 1;234(1):51-61. PubMed PMID: 15109719. Cerca con Google

Pflock M, Kennard S, Finsterer N, Beier D. Acid-responsive gene regulation in the human pathogen Helicobacter pylori. J Biotechnol. 2006 Oct 20;126(1):52-60. PubMed PMID: 16713649. Cerca con Google

Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun. 1996 Mar;64(3):905-12. PubMed PMID: 8641799; PubMed Central PMCID: PMC173855. Cerca con Google

Richardson PT, Park SF. Enterochelin acquisition in Campylobacter coli: characterization of components of a binding-protein-dependent transport system. Microbiology. 1995 Dec;141 ( Pt 12):3181-91. PubMed PMID: 8574410. Cerca con Google

Robertson BR, Button DK. Toluene induction and uptake kinetics and their inclusion in the specific-affinity relationship for describing rates of hydrocarbon metabolism. Appl Environ Microbiol. 1987 Sep;53(9):2193-205. PubMed PMID: 16347440; PubMed Central PMCID: PMC204080. Cerca con Google

Romaniuk PJ, Zoltowska B, Trust TJ, Lane DJ, Olsen GJ, Pace NR, Stahl DA. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp. J Bacteriol. 1987 May;169(5):2137-41. PubMed PMID: 3571163; PubMed Central PMCID: PMC212113. Cerca con Google

Roncarati D, Spohn G, Tango N, Danielli A, Delany I, Scarlato V. Expression, purification and characterization of the membrane-associated HrcA repressor protein of Helicobacter pylori. Protein Expr Purif. 2007 Feb;51(2):267-75. PubMed PMID: 16997572. Cerca con Google

Ruiz T, Francis NR, Morgan DG, DeRosier DJ. Size of the export channel in the flagellar filament of Salmonella typhimurium. Ultramicroscopy. 1993 Feb;49(1-4):417-25. PubMed PMID: 8475605. Cerca con Google

Sarkar MK, Paul K, Blair D. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A. 2010 May 18;107(20):9370-5. PubMed PMID: 20439729; PubMed Central PMCID: PMC2889077. Cerca con Google

Saunders NJ, Peden JF, Hood DW, Moxon ER. Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol. 1998 Mar;27(6):1091-8. PubMed PMID: 9570395. Cerca con Google

Schauer K, Gouget B, Carrière M, Labigne A, de Reuse H. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol. 2007 Feb;63(4):1054-68. PubMed PMID: 17238922. Cerca con Google

Schauer K, Muller C, Carrière M, Labigne A, Cavazza C, De Reuse H. The Helicobacter pylori GroES cochaperonin HspA functions as a specialized nickel chaperone and sequestration protein through its unique C-terminal extension. J Bacteriol. 2010 Mar;192(5):1231-7. PubMed PMID: 20061471; PubMed Central PMCID: PMC2820833. Cerca con Google

Sebbane F, Mandrand-Berthelot MA, Simonet M. Genes encoding specific nickel transport systems flank the chromosomal urease locus of pathogenic yersiniae. J Bacteriol. 2002 Oct;184(20):5706-13. PubMed PMID: 12270829; PubMed Central PMCID: PMC139606. Cerca con Google

Seidah NG, Day R, Marcinkiewicz M, Chrétien M. Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci. 1998 May 15;839:9-24. PubMed PMID: 9629127. Cerca con Google

Seshadri S, Benoit SL, Maier RJ. Roles of His-rich hpn and hpn-like proteins in Helicobacter pylori nickel physiology. J Bacteriol. 2007 Jun;189(11):4120-6. PubMed PMID: 17384182; PubMed Central PMCID: PMC1913394. Cerca con Google

Shaik MM, Cendron L, Salamina M, Ruzzene M, Zanotti G. Helicobacter pylori periplasmic receptor CeuE (HP1561) modulates its nickel affinity via organic metallophores. Mol Microbiol. 2013 Dec 12;PubMed PMID: 24330328. Cerca con Google

Shepherd M, Heath MD, Poole RK. NikA binds heme: a new role for an Escherichia coli periplasmic nickel-binding protein. Biochemistry. 2007 May 1;46(17):5030-7. PubMed PMID: 17411076. Cerca con Google

Shi R, Munger C, Asinas A, Benoit SL, Miller E, Matte A, Maier RJ, Cygler M. Crystal structures of apo and metal-bound forms of the UreE protein from Helicobacter pylori: role of multiple metal binding sites. Biochemistry. 2010 Aug 24;49(33):7080-8. PubMed PMID: 20681615. Cerca con Google

Shomer NH, Dangler CA, Schrenzel MD, Whary MT, Xu S, Feng Y, Paster BJ, Dewhirst FE, Fox JG. Cholangiohepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac:ICR:HascidfRF mice. Exp Biol Med (Maywood). 2001 May;226(5):420-8. PubMed PMID: 11393169. Cerca con Google

Skorupski K, Taylor RK. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol. 1997 Sep;25(6):1003-9. PubMed PMID: 9350858. Cerca con Google

Sorger PK, Nelson HC. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell. 1989 Dec 1;59(5):807-13. PubMed PMID: 2686840. Cerca con Google

Souza RC, Lima JH. Helicobacter pylori and gastroesophageal reflux disease: a review of this intriguing relationship. Dis Esophagus. 2009;22(3):256-63. PubMed PMID: 19425207. Cerca con Google

Spohn G, Danielli A, Roncarati D, Delany I, Rappuoli R, Scarlato V. Dual control of Helicobacter pylori heat shock gene transcription by HspR and HrcA. J Bacteriol. 2004 May;186(10):2956-65. PubMed PMID: 15126455; PubMed Central PMCID: PMC400627. Cerca con Google

Spohn G, Scarlato V. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol Microbiol. 1999 Nov;34(4):663-74. PubMed PMID: 10564507. Cerca con Google

Spohn G, Scarlato V. Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J Bacteriol. 1999 Jan;181(2):593-9. PubMed PMID: 9882675; PubMed Central PMCID: PMC93415. Cerca con Google

Stähler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S. The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, urease modulation, and gastric colonization. Infect Immun. 2006 Jul;74(7):3845-52. PubMed PMID: 16790756; PubMed Central PMCID: PMC1489693. Cerca con Google

Stoof J, Kuipers EJ, Klaver G, van Vliet AH. An ABC transporter and a TonB ortholog contribute to Helicobacter mustelae nickel and cobalt acquisition. Infect Immun. 2010 Oct;78(10):4261-7. PubMed PMID: 20643857; PubMed Central PMCID: PMC2950367. Cerca con Google

Stoof J, Kuipers EJ, van Vliet AH. Characterization of NikR-responsive promoters of urease and metal transport genes of Helicobacter mustelae. Biometals. 2010 Feb;23(1):145-59. PubMed PMID: 19894125. Cerca con Google

Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med. 2002 Oct 10;347(15):1175-86. PubMed PMID: 12374879. Cerca con Google

Suerbaum S, Josenhans C. Helicobacter pylori evolution and phenotypic diversification in a changing host. Nat Rev Microbiol. 2007 Jun;5(6):441-52. PubMed PMID: 17505524. Cerca con Google

Suerbaum S, Josenhans C, Labigne A. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J Bacteriol. 1993 Jun;175(11):3278-88. PubMed PMID: 8501031; PubMed Central PMCID: PMC204724. Cerca con Google

Suerbaum S, Thiberge JM, Kansau I, Ferrero RL, Labigne A. Helicobacter pylori hspA-hspB heat-shock gene cluster: nucleotide sequence, expression, putative function and immunogenicity. Mol Microbiol. 1994 Dec;14(5):959-74. PubMed PMID: 7715457. Cerca con Google

Suganuma M, Kurusu M, Okabe S, Sueoka N, Yoshida M, Wakatsuki Y, Fujiki H. Helicobacter pylori membrane protein 1: a new carcinogenic factor of Helicobacter pylori. Cancer Res. 2001 Sep 1;61(17):6356-9. PubMed PMID: 11522625. Cerca con Google

Sydor AM, Lebrette H, Ariyakumaran R, Cavazza C, Zamble DB. Relationship between Ni(II) and Zn(II) coordination and nucleotide binding by the Helicobacter pylori [NiFe]-hydrogenase and urease maturation factor HypB. J Biol Chem. 2013 Dec 12;PubMed PMID: 24338018. Cerca con Google

Sydor AM, Liu J, Zamble DB. Effects of metal on the biochemical properties of Helicobacter pylori HypB, a maturation factor of [NiFe]-hydrogenase and urease. J Bacteriol. 2011 Mar;193(6):1359-68. PubMed PMID: 21239585; PubMed Central PMCID: PMC3067625. Cerca con Google

Szeto ML, Lee CK, Yee YK, Li KF, Lee WK, Lee CC, Que TL, Wong BC. Evaluation of five commercial serological tests for the detection of Helicobacter pylori infection in Chinese. Aliment Pharmacol Ther. 2001 May;15(5):703-6. PubMed PMID: 11328265. Cerca con Google

Thomas J, Stafford GP, Hughes C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3945-50. PubMed PMID: 15001708; PubMed Central PMCID: PMC374349. Cerca con Google

Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997 Aug 7;388(6642):539-47. PubMed PMID: 9252185. Cerca con Google

Touré BB, Munzer JS, Basak A, Benjannet S, Rochemont J, Lazure C, Chrétien M, Seidah NG. Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J Biol Chem. 2000 Jan 28;275(4):2349-58. PubMed PMID: 10644685. Cerca con Google

Tran AX, Karbarz MJ, Wang X, Raetz CR, McGrath SC, Cotter RJ, Trent MS. Periplasmic cleavage and modification of the 1-phosphate group of Helicobacter pylori lipid A. J Biol Chem. 2004 Dec 31;279(53):55780-91. PubMed PMID: 15489235; PubMed Central PMCID: PMC2552395. Cerca con Google

Tummuru MK, Cover TL, Blaser MJ. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun. 1993 May;61(5):1799-809. PubMed PMID: 8478069; PubMed Central PMCID: PMC280768. Cerca con Google

Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001 Sep 13;345(11):784-9. PubMed PMID: 11556297. Cerca con Google

Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5. PubMed PMID: 20057045. Cerca con Google

van Vliet AH, Stoof J, Poppelaars SW, Bereswill S, Homuth G, Kist M, Kuipers EJ, Kusters JG. Differential regulation of amidase- and formamidase-mediated ammonia production by the Helicobacter pylori fur repressor. J Biol Chem. 2003 Mar 14;278(11):9052-7. PubMed PMID: 12499381. Cerca con Google

van Vliet AH, Kuipers EJ, Waidner B, Davies BJ, de Vries N, Penn CW, Vandenbroucke-Grauls CM, Kist M, Bereswill S, Kusters JG. Nickel-responsive induction of urease expression in Helicobacter pylori is mediated at the transcriptional level. Infect Immun. 2001 Aug;69(8):4891-7. PubMed PMID: 11447165; PubMed Central PMCID: PMC98579. Cerca con Google

van Vliet AH, Poppelaars SW, Davies BJ, Stoof J, Bereswill S, Kist M, Penn CW, Kuipers EJ, Kusters JG. NikR mediates nickel-responsive transcriptional induction of urease expression in Helicobacter pylori. Infect Immun. 2002 Jun;70(6):2846-52. PubMed PMID: 12010971; PubMed Central PMCID: PMC128006. Cerca con Google

Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol. 2000 Jul;37(2):274-86. PubMed PMID: 10931324. Cerca con Google

Vergauwen B, Van der Meeren R, Dansercoer A, Savvides SN. Delineation of the Pasteurellaceae-specific GbpA-family of glutathione-binding proteins. BMC Biochem. 2011 Nov 16;12:59. PubMed PMID: 22087650; PubMed Central PMCID: PMC3295651. Cerca con Google

Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST. Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol. 2003 Aug;77(16):8640-9. PubMed PMID: 12885882; PubMed Central PMCID: PMC167219. Cerca con Google

Watanabe S, Takagi A, Tada U, Kabir AM, Koga Y, Kamiya S, Osaki T, Miwa T. Cytotoxicity and motility of Helicobacter pylori. J Clin Gastroenterol. 1997;25 Suppl 1:S169-71. PubMed PMID: 9479644. Cerca con Google

West AL, Evans SE, González JM, Carter LG, Tsuruta H, Pozharski E, Michel SL. Ni(II) coordination to mixed sites modulates DNA binding of HpNikR via a long-range effect. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5633-8. PubMed PMID: 22451934; PubMed Central PMCID: PMC3326501. Cerca con Google

Windle HJ, Fox A, Ní Eidhin D, Kelleher D. The thioredoxin system of Helicobacter pylori. J Biol Chem. 2000 Feb 18;275(7):5081-9. PubMed PMID: 10671551. Cerca con Google

Wolfram L, Bauerfeind P. Conserved low-affinity nickel-binding amino acids are essential for the function of the nickel permease NixA of Helicobacter pylori. J Bacteriol. 2002 Mar;184(5):1438-43. PubMed PMID: 11844775; PubMed Central PMCID: PMC134868. Cerca con Google

Wolfram L, Bauerfeind P. Activities of urease and nickel uptake of Helicobacter pylori proteins are media- and host-dependent. Helicobacter. 2009 Aug;14(4):264-70. PubMed PMID: 19674130. Cerca con Google

Worst DJ, Otto BR, de Graaff J. Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake. Infect Immun. 1995 Oct;63(10):4161-5. PubMed PMID: 7558334; PubMed Central PMCID: PMC173585. Cerca con Google

Wu LF, Mandrand MA. Microbial hydrogenases: primary structure, classification, signatures and phylogeny. FEMS Microbiol Rev. 1993 Apr;10(3-4):243-69. PubMed PMID: 8318259. Cerca con Google

Xia W, Li H, Sze KH, Sun H. Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites. J Am Chem Soc. 2009 Jul 29;131(29):10031-40. PubMed PMID: 19621959. Cerca con Google

Xia W, Li H, Yang X, Wong KB, Sun H. Metallo-GTPase HypB from Helicobacter pylori and its interaction with nickel chaperone protein HypA. J Biol Chem. 2012 Feb 24;287(9):6753-63. PubMed PMID: 22179820; PubMed Central PMCID: PMC3307304. Cerca con Google

Yamaoka Y, Ojo O, Fujimoto S, Odenbreit S, Haas R, Gutierrez O, El-Zimaity HM, Reddy R, Arnqvist A, Graham DY. Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut. 2006 Jun;55(6):775-81. PubMed PMID: 16322107; PubMed Central PMCID: PMC1856239. Cerca con Google

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS, Goldstein JL. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000 Dec;6(6):1355-64. PubMed PMID: 11163209. Cerca con Google

Yoshida N, Granger DN, Evans DJ Jr, Evans DG, Graham DY, Anderson DC, Wolf RE, Kvietys PR. Mechanisms involved in Helicobacter pylori-induced inflammation. Gastroenterology. 1993 Nov;105(5):1431-40. PubMed PMID: 7901109. Cerca con Google

Yoshiyama H, Nakamura H, Kimoto M, Okita K, Nakazawa T. Chemotaxis and motility of Helicobacter pylori in a viscous environment. J Gastroenterol. 1999;34 Suppl 11:18-23. PubMed PMID: 10616760. Cerca con Google

Zambelli B, Turano P, Musiani F, Neyroz P, Ciurli S. Zn2+-linked dimerization of UreG from Helicobacter pylori, a chaperone involved in nickel trafficking and urease activation. Proteins. 2009 Jan;74(1):222-39. PubMed PMID: 18767150. Cerca con Google

Zambelli B, Danielli A, Romagnoli S, Neyroz P, Ciurli S, Scarlato V. High-affinity Ni2+ binding selectively promotes binding of Helicobacter pylori NikR to its target urease promoter. J Mol Biol. 2008 Nov 28;383(5):1129-43. PubMed PMID: 18790698. Cerca con Google

Zambelli B, Berardi A, Martin-Diaconescu V, Mazzei L, Musiani F, Maroney MJ, Ciurli S. Nickel binding properties of Helicobacter pylori UreF, an accessory protein in the nickel-based activation of urease. J Biol Inorg Chem. 2013 Nov 30;PubMed PMID: 24292245. Cerca con Google

Zambelli B, Musiani F, Benini S, Ciurli S. Chemistry of Ni2+ in urease: sensing, trafficking, and catalysis. Acc Chem Res. 2011 Jul 19;44(7):520-30. PubMed PMID: 21542631. Cerca con Google

Zanotti G, Papinutto E, Dundon W, Battistutta R, Seveso M, Giudice G, Rappuoli R, Montecucco C. Structure of the neutrophil-activating protein from Helicobacter pylori. J Mol Biol. 2002 Oct 11;323(1):125-30. PubMed PMID: 12368104. Cerca con Google

Zhang Y, Rodionov DA, Gelfand MS, Gladyshev VN. Comparative genomic analyses of nickel, cobalt and vitamin B12 utilization. BMC Genomics. 2009 Feb 10;10:78. PubMed PMID: 19208259; PubMed Central PMCID: PMC2667541. Cerca con Google

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008 Jan 23;9:40. PubMed PMID: 18215316; PubMed Central PMCID: PMC2245901. Cerca con Google

Zhou H, Luo M, Cai X, Tang J, Niu S, Zhang W, Hu Y, Yin Y, Huang A, Wang D, Wang D. Crystal structure of a novel dimer form of FlgD from P aeruginosa PAO1. Proteins. 2011 Jul;79(7):2346-51. PubMed PMID: 21604306. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record