Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Tristo, Gianluca (2014) Tool wear compensation and energy efficiency in micro milling Electrical-Discharge Machining. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
27Mb

Abstract (inglese)

This thesis is aimed at enhancing the accuracy and the sustainability of the micro Milling Electrical-Discharge Machining process.
A framework for the simulation and validation of tool wear compensation models is developed. An on-line tool wear compensation method based on discharge counting and tool wear per discharge is proposed. The mean discharge energy and the variability of the characteristics of the discharges acquired during a pocketing operation are analysed. Optimal trigger values for discharge counting are defined.
A custom hardware interface and software protocol to command the micro EDM machine from Matlab programming language is developed and tested. A strategy to perform on-machine volume measurement is developed and the repeatability and uncertainty of measures are studied. An evaluation of the errors affecting micro EDM on-machine measurements is carried out.
The custom communication interface and the on-machine measurement procedure are employed in automatic assessment of material removal and tool wear per discharge. The procedure is tested in a wide range of process parameters and the variability of MRD and TWD values are evaluated.
A material removal simulation tool for accurate workpiece representation of the machined geometry, based on MRD and counted discharges, is developed and validated.
Finally, a low-cost, modular framework for remote energy monitoring, based on open-hardware and open-source software is developed and employed for the energy efficiency analysis of the micro EDM machine. Expedients to improve the energy efficiency of the micro EDM machine and of the process are suggested.

Abstract (italiano)

Le attività descritte in questa tesi si prefiggono come obiettivo il miglioramento nell'accuratezza e nell'efficienza energetica del processo di micro elettroerosione nella configurazione in fresatura.
A tal fine, è stato sviluppato un pacchetto hardware e software necessario per la simulazione e la validazione di strategie per la compensazione on-line dell'usura utensile. E' stato definito un metodo di compensazione usura utensile basato sul conteggio delle scariche elettriche e sul valore di usura utensile per singolo impulso. L'energia media delle scariche elettriche acquisite durante una lavorazione tipo e la loro variabilità sono state analizzate e sono stati definiti i valori di soglia ottimali per il conteggio degli impulsi tramite frequenzimetro.
Una interfaccia hardware e un protocollo software sono stati implementati e testati al fine di comandare la macchina per micro elettroerosione attraverso un personal computer esterno, programmando in linguaggio Matlab. E' stata definita una strategia per la misura in macchina del volume di materiale rimosso sia dall'utensile sia dal pezzo durante il processo di elettroerosione. Sono stati quindi valutati la ripetibilità, l'incertezza e l'errore relativo caratteristici delle misure effettuate in macchina con la procedura proposta.
L'interfaccia di comunicazione e la strategia per la misura in macchina sono stati quindi adottati in una procedura automatizzata per la stima dei valor medi di materiale rimosso ed usura utensile per singola scarica elettrica. La procedura è stata testata con un ampio campo di parametri di processo, al fine di valutare la variabilità dei risultati.
Uno strumento software per la simulazione del processo di rimozione del materiale dal grezzo basato sul volume rimosso per singola scarica e sul numero di impulsi contati, è stato sviluppato al fine di rappresentare in modo accurato le geometrie effettivamente ottenute durante un generico processo di micro elettroerosione. Le simulazioni sono state validate per mezzo di risultati sperimentali.
Infine, un sistema modulare a basso costo per il monitoraggio remoto del consumo di energia, basato su open-hardware e software open-source è stato sviluppato ed utilizzato per l'analisi dell'efficienza energetica della macchina per micro elettroerosione. Dall'analisi dei risultati sono state individuate delle possibili soluzioni per migliorare l'efficienza energetica della macchina e del processo di micro elettroerosione.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bariani, Paolo F.
Correlatore:Bissacco, Giuliano
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > INGEGNERIA CHIMICA, DEI MATERIALI E DELLA PRODUZIONE
Data di deposito della tesi:28 Gennaio 2014
Anno di Pubblicazione:28 Gennaio 2014
Parole chiave (italiano / inglese):micro elettroerosione usura utensile efficienza energetica electrical discharge machining tool wear energy efficiency
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/16 Tecnologie e sistemi di lavorazione
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6524
Depositato il:03 Nov 2014 13:21
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M Kunieda, B Lauwers, K.P. Rajurkar, and B.M. Schumacher. Advancing EDM through Fundamental Insight into the Process. CIRP Annals - Manufacturing Technology, 54(2):64–87, January 2005. Cerca con Google

[2] Eckart Uhlmann, Sascha Piltz, and Ulrich Doll. Machining of micro/miniature dies and moulds by electrical discharge machiningRecent development. Journal of Materials Processing Technology, 167(2-3):488–493, August 2005. Cerca con Google

[3] K.P. Rajurkar, G. Levy, a. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, and a. DeSilva. Micro and Nano Machining by Electro-Physical and Chemical Processes. CIRP Annals - Manufacturing Technology, 55(2):643–666, January 2006. Cerca con Google

[4] Bernd M Schumacher. After 60 years of EDM the discharge process remains still disputed. Journal of Materials Processing Technology, 149(1-3):376–381, June 2004. Cerca con Google

[5] B Sen, N Kiyawat, P K Singh, S Mitra, J H Ye, and P Purkait. Developments in electric power supply configurations for electrical-discharge-machining (EDM), 2003. Cerca con Google

[6] K P Rajurkar and S M Pandit. Formation and Ejection of EDM Debris. Journal of Engineering for Industry, 108(1):22, 1986. Cerca con Google

[7] Masanori KUNIEDA and Kenji YANATORI. Study on debris movement in EDM gap. International journal of electrical machining, 2:43–49, 1997. Cerca con Google

[8] H.K. Kansal, Sehijpal Singh, and Pradeep Kumar. Technology and research developments in powder mixed electric discharge machining (PMEDM). Journal of Materials Processing Technology, 184(1-3):32–41, April 2007. Cerca con Google

[9] Y.F. Luo. An evaluation of spark mobility in electrical discharge machining. IEEE Transactions on Plasma Science, 26(3):1010–1016, June 1998. Cerca con Google

[10] Shuvra Das, Mathias Klotz, and F Klocke. EDM simulation: finite element-based calculation of deformation, microstructure and residual stresses. Journal of Materials Processing Technology, 142(2):434–451, November 2003. Cerca con Google

[11] Dominiek Reynaerts, Paul-henri Heeren, and Hendrik Van Brussel. Microstructuring of silicon by electro-discharge machining ( EDM ) part I theory. 60(c):212–218. Cerca con Google

[12] K.H Ho and S.T Newman. State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43(13):1287–1300, October 2003. Cerca con Google

[13] U. Maradia, M. Boccadoro, J. Stirnimann, I. Beltrami, F. Kuster, and K. Wegener. Die-sink EDM in Meso-Micro Machining. Procedia CIRP, 1:166–171, January 2012. Cerca con Google

[14] Z Y Yu, H Shen, and Management Systems Engineering. High Aspect Ratio and Complex Shaped Blind Micro Holes. (1):1–4. Cerca con Google

[15] K.H Ho, S.T Newman, S Rahimifard, and R.D Allen. State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12-13):1247–1259, October 2004. Cerca con Google

[16] T Kaneko and M Tsuchiya. Three-dimensional numerically controlled contouring by electric discharge machining with compensation for the deformation of cylindrical tool electrodes. Precision Engineering, 10(3):157–163, 1988. Cerca con Google

[17] Z Y Yu and M Fujino. Micro-EDM for Three-Dimensional Cavities - Development of Uniform Wear Method -. 47:169–172, 1998. Cerca con Google

[18] T. Masuzawa. State of the Art of Micromachining. CIRP Annals - Manufacturing Technology, 49(2):473–488, January 2000. Cerca con Google

[19] T Masuzawa and HK T¨onshoff. Three-dimensional micromachining by machine tools. CIRP Annals-Manufacturing Technology, 1997. Cerca con Google

[20] D.T Pham, S.S Dimov, S Bigot, a Ivanov, and K Popov. Micro-EDMrecent developments and research issues. Journal of Materials Processing Technology, 149(1-3):50–57, June Cerca con Google

[21] a. Kojima, W. Natsu, and M. Kunieda. Spectroscopic measurement of arc plasma diameter in EDM. CIRP Annals - Manufacturing Technology, 57(1):203–207, January 2008. Cerca con Google

[22] Kai Egashira, Akihiro Matsugasako, Hachiro Tsuchiya, and Makoto Miyazaki. Electrical discharge machining with ultralow discharge energy. Precision Engineering, 30(4):414–420, October 2006. Cerca con Google

[23] Fuzhu Han, Shinya Wachi, and Masanori Kunieda. Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precision Engineering, 28(4):378–385, October 2004. Cerca con Google

[24] M. Kunieda, a. Hayasaka, X.D. Yang, S. Sano, and I. Araie. Study on Nano EDM Using Capacity Coupled Pulse Generator. CIRP Annals - Manufacturing Technology, 56(1):213–216, January 2007. Cerca con Google

[25] J. Murray, D. Zdebski, and a.T. Clare. Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. Journal of Materials Processing Technology, 212(7):1537–1547, July 2012. Cerca con Google

[26] R Snoeys, D Dauw, and M Jennes. Survey of EDM Adaptive Control and Detection Systems. CIRP Annals - Manufacturing Technology, 31(2):483–489, 1982. Cerca con Google

[27] D Dauw and R Snoeys. On the Derivation and Application of a RealTime Tool Wear Sensor in EDM. CIRP Annals - Manufacturing Technology, 35(1):111–116, 1986. Cerca con Google

[28] D T Pham, A Ivanov, S Bigot, K Popov, and S Dimov. A study of micro-electro discharge machining electrode wear. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(5):605–612, 2007. Cerca con Google

[29] Yao-Yang Tsai and Takahisa Masuzawa. An index to evaluate the wear resistance of the electrode in micro-EDM. Journal of Materials Processing Technology, 149(1-3):304–309, June 2004. Cerca con Google

[30] Eckart Uhlmann and Markus Roehner. Investigations on reduction of tool electrode wear in micro-EDM using novel electrode materials. CIRP Journal of Manufacturing Science and Technology, 1(2):92–96, January 2008. Cerca con Google

[31] P. Bleys, J.-P. Kruth, and B. Lauwers. Sensing and compensation of tool wear in milling EDM. Journal of Materials Processing Technology, 149(1-3):139–146, June 2004. Cerca con Google

[32] E. Aligiri, S.H. Yeo, and P.C. Tan. A new tool wear compensation method based on real-time estimation of material removal volume in micro-EDM. Journal of Materials Processing Technology, 210(15):2292–2303, November 2010. Cerca con Google

[33] G. Bissacco, H.N. Hansen, G. Tristo, and J. Valentincic. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population haracterization. CIRP Annals - Manufacturing Technology, 60(1):231–234, January 2011. Cerca con Google

[34] Jian-Zhong Li, Lu Xiao, Hui Wang, Hui-Lan Yu, and Zu-Yuan Yu. Tool wear compensation in 3D micro EDM based on the scanned area. Precision Engineering, 37(3):753–757, July 2013. Cerca con Google

[35] Jayakumar Narasimhan, Zuyuan Yu, and Kamlakar P. Rajurkar. Tool Wear Compensation and Path Generation in Micro and Macro EDM. Journal of Manufacturing Processes, 7(1):75–82, January 2005. Cerca con Google

[36] K P Rajurkar and Z Y Yu. 3d micro-edm using cad/cam. CIRP Annals - Manufacturing Technology, 49(1):127–130, 2000. Cerca con Google

[37] P. Bleys, J.-P. Kruth, B. Lauwers, a. Zryd, R. Delpretti, and C. Tricarico. Real-time Tool Wear Compensation in Milling EDM. CIRP Annals - Manufacturing Technology, 51(1):157–160, January 2002. Cerca con Google

[38] JAE WON JUNG, YOUNG HUN JEONG, Byung-Kwon MIN, and SANG JO LEE. Model-Based Pulse Frequency Control for Micro-EDM Milling Using Real-Time Discharge Pulse Monitoring. Journal of manufacturing science and engineering, 130(3). Cerca con Google

[39] J Valentincic, I Sabotin, G Tristo, G Bissaco, and S Bigot. Tooling and microinjection moulding of bottom grooved micromixers. In Proceedings of the 10th International Conference on Multi-Material Micro Manufacture, pages 2–5, San Sebastian, Spain, 2013. Cerca con Google

[40] Izidor Sabotin, Gianluca Tristo, Mihael Junkar, and Josko Valentincic. Two-step design protocol for patterned groove micromixers. Chemical Engineering Research and Design, 91(5):778–788, May 2013. Cerca con Google

[41] T Masuzawa, M Fujino, K Kobayashi, T Suzuki, and N Kinoshita. Wire Electro-Discharge Grinding for Micro-Machining. CIRP Annals - Manufacturing Technology, 34(1):431–434, 1985. Cerca con Google

[42] V. Schulze, P. Weber, and C. Ruhs. Increase of process reliability in the micro-machining processes EDM-milling and laser ablation using on-machine sensors. Journal of Materials Processing Technology, 212(3):625–632, March 2012. Cerca con Google

[43] Dong-Yea Sheu. Study on an evaluation method of micro CMM spherical stylus tips by -EDM on-machine measurement. Journal of Micromechanics and Microengineering, 20(7):075003, July 2010. Cerca con Google

[44] Giuliano Bissacco, Gianluca Tristo, and Josko Valentincic. Assessment of Electrode Wear Measurement in Micro EDM Milling. In Proceedings of the 7th International Conference on Multi-Material Micro Manufacture, pages 155–158, Singapore, 2010. Cerca con Google

[45] S. Carmignato and E. Savio. Traceable volume measurements using coordinate measuring systems. CIRP Annals - Manufacturing Technology, 60(1):519–522, January 2011. Cerca con Google

[46] ISO 15530-3:2011, Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards. Cerca con Google

[47] P. Bleys. Electrical Discharge Milling. Technology and tool wear compensation. PhD thesis, Katholieke Universiteit Leuven, 2004. Cerca con Google

[48] G Bissacco, G Tristo, H.N. Hansen, and J. Valentincic. Reliability of electrode wear compensation based on material removal per discharge in micro EDM milling. CIRP Annals - Manufacturing Technology, 62(1):179–182, January 2013. Cerca con Google

[49] G. Bissacco, J. Valentincic, H. N. Hansen, and B. D. Wiwe. Towards the effective tool wear control in micro-EDM milling. The International Journal of Advanced Manufacturing Technology, 47(1-4):3–9, May 2009. Cerca con Google

[50] J Valentincic, G Bissacco, and G Tristo. On machine measurements of electrode wear in micro EDM milling. Cerca con Google

[51] E. Weing¨artner, F. Kuster, and K. Wegener. Modeling and simulation of electrical discharge machining. Procedia CIRP, 2:74–78, January 2012. Cerca con Google

[52] Nizar Ben Salah, Farhat Ghanem, and Ka¨ıs Ben Atig. Numerical study of thermal aspects of electric discharge machining process. International Journal of Machine Tools and Manufacture, 46(7-8):908–911, June 2006. Cerca con Google

[53] Z Katz and CJ Tibbles. Analysis of micro-scale EDM process. The International Journal of Advanced Manufacturing Technology, 25(9-10):923–928, September 2004. Cerca con Google

[54] Ajit Singh and Amitabha Ghosh. A thermo-electric model of material removal during electric discharge machining. International Journal of Machine Tools and Manufacture, 39(4):669–682, April 1999. Cerca con Google

[55] H.K. Kansal, Sehijpal Singh, and Pradeep Kumar. Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Mathematical and Computer Modelling, 47(11-12):1217–1237, June 2008. Cerca con Google

[56] Pei-Jen Wang and Kuo-Ming Tsai. Semi-empirical model on work removal and tool wear in electrical discharge machining. Journal of Materials Processing Technology, 114(1):1–17, July 2001. Cerca con Google

[57] Kuo-Ming Tsai and Pei-Jen Wang. Semi-empirical model of surface finish on electrical discharge machining. International Journal of Machine Tools and Manufacture, 41(10):1455–1477, August 2001. Cerca con Google

[58] C Tricarico, R Delpretti, and DF Dauw. Geometrical simulation of the EDM die-sinking process. CIRP Annals-Manufacturing Technology, 1988. Cerca con Google

[59] Xiaodong Yang, Jianwen Guo, Xiaofei Chen, and Masanori Kunieda. Molecular dynamics simulation of the material removal mechanism in micro-EDM. Precision Engineering, 35(1):51–57, January 2011. Cerca con Google

[60] Yongshun Zhao, Xingquan Zhang, and Kazuo Yamazaki. Molecular Dynamics simulation for EDM Die-Sinking. 1(c):1–5, 1980. Cerca con Google

[61] Yongshun Zhao, Xingquan Zhang, Xianbing Liu, and Kazuo Yamazaki. Geometric modeling of the linear motor driven electrical discharge ma-BIBLIOGRAPHY 111 Cerca con Google

chining (EDM) die-sinking process. International Journal of Machine Tools and Manufacture, 44(1):1–9, January 2004. Cerca con Google

[62] M Yang and Eungki Lee. NC verification for wire-EDM using an R-map. Computer-Aided Design, 26(9):733–740, 1996. Cerca con Google

[63] Kenji Morimoto and Masanori Kunieda. Sinking EDM simulation by determining discharge locations based on discharge delay time. CIRP Cerca con Google

Annals - Manufacturing Technology, 58(1):221–224, January 2009. Cerca con Google

[64] Young Hun Jeong and Byung-Kwon Min. Geometry prediction of EDM-drilled holes and tool electrode shapes of micro-EDM process using simulation. International Journal of Machine Tools and Manufacture, 47(12-13):1817–1826, October 2007. Cerca con Google

[65] Segon Heo, Young Hun Jeong, Byung-Kwon Min, and Sang Jo Lee. Virtual EDM simulator: Three-dimensional geometric simulation of micro-EDM milling processes. International Journal of Machine Tools and Manufacture, 49(12-13):1029–1034, October 2009. Cerca con Google

[66] Fuzhu Han, Masanori Kunieda, Tomoko Sendai, and Yoshihito Imai. Cerca con Google

High Precision Simulation of WEDM Using Parametric Programming. Cerca con Google

CIRP Annals - Manufacturing Technology, 51(1):165–168, January 2002. Cerca con Google

[67] Masanori Kunieda, Wataru Kowaguchi, and Takashi Takita. Reverse Simulation of Die-Sinking EDM. CIRP Annals - Manufacturing Technology, 48(1):115–118, January 1999. Cerca con Google

[68] Paul Anastas and Nicolas Eghbali. Green chemistry: principles and practice. Chemical Society Reviews, 39(1):301–312, 2010. Cerca con Google

[69] Angappa Gunasekaran and Alain Spalanzani. Sustainability of manufacturing and services: Investigations for research and applications. Cerca con Google

International Journal of Production Economics, 140(1):35–47, November 2012. Cerca con Google

[70] Eoin ODriscoll and Garret E. ODonnell. Industrial power and energy metering A state of the art review. Journal of Cleaner Production, October 2012. Cerca con Google

[71] D.J. Start. A review of the new CENELEC standard EN 50160. In IEE Colloquium on Issues in Power Quality, volume 1995, pages 4–4, Coventry, 1995. IEE. Cerca con Google

[72] Andrej Lebar, Luka Selak, Rok Vrabiˇc, Peter Butala, and Others. On-line Monitoring, Analysis, and Remote Recording of Welding Parameters to the Welding Diary. Strojni{ˇs}ki vestnik-Journal of Mechanical Engineering, 58(7-8):444–452, 2012. Cerca con Google

[73] Shaohua Hu, Fei Liu, Yan He, and Tong Hu. An on-line approach for energy efficiency monitoring of machine tools. Journal of Cleaner Production, 27:133–140, May 2012. Cerca con Google

[74] Thomas Behrendt, Andr´e Zein, and Sangkee Min. Development of an energy consumption monitoring procedure for machine tools. CIRP Annals - Manufacturing Technology, 61(1):43–46, January 2012. Cerca con Google

[75] a. Vijayaraghavan and D. Dornfeld. Automated energy monitoring of machine tools. CIRP Annals - Manufacturing Technology, 59(1):21–24, January 2010. Cerca con Google

[76] Joost R. Duflou, John W. Sutherland, David Dornfeld, Christoph Herrmann, Jack Jeswiet, Sami Kara, Michael Hauschild, and Karel Kellens. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Annals - Manufacturing Technology, 61(2):587–609, January 2012. Cerca con Google

[77] Nancy Diaz, Elena Redelsheimer, and David Dornfeld. Energy Consumption Characterization and Reduction Strategies for Milling Machine Tool Use. In J¨urgen Hesselbach and Christoph Herrmann, editors, Glocalized Solutions for Sustainability in Manufacturing, pages 263–267. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. Cerca con Google

[78] S. Kara and W. Li. Unit process energy consumption models for material removal processes. CIRP Annals - Manufacturing Technology, 60(1):37–40, January 2011. Cerca con Google

[79] C. Herrmann, S. Thiede, S. Kara, and J. Hesselbach. Energy oriented simulation of manufacturing systems Concept and application. CIRP Annals - Manufacturing Technology, 60(1):45–48, January 2011. Cerca con Google

[80] Y. Seow and S. Rahimifard. A framework for modelling energy consumption within manufacturing systems. CIRP Journal of Manufacturing Science and Technology, 4(3):258–264, January 2011. Cerca con Google

[81] F Draganescu, M Gheorghe, and C V Doicin. Models of machine tool efficiency and specific consumed energy. Journal of Materials Processing Technology, 141(September 2002):9–15, 2003. Cerca con Google

[82] J.L. Liow. Mechanical micromachining: a sustainable micro-devicemanufacturing approach? Journal of Cleaner Production, 17(7):662–667, May 2009. Cerca con Google

[83] Jonathan Oxer and Hugh Blemings. Practical Arduino: Cool Projects for Open Source Hardware. Apress, 2009. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record