Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ferrari, Marco (2013) Design of light hybrid vehicles suited to urban and sub-urban mobility. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
23Mb

Abstract (inglese)

The problems of pollution, traffic jam and lack of energy sources are becoming more and more important and for these reasons there is a significant development of electric and hybrid vehicles. The introduction of an electric or hybrid propulsion system in a small vehicle is a challenge because some heavy and voluminous components have to be accommodated in a narrow room and because the dynamic behavior of a two- three-wheeled vehicle is strongly influenced by the added masses. This thesis deals with propulsion systems suited to light hybrid vehicles.
In the first part of the thesis an overview on different kind of hybrid configurations is given. Then a careful analysis on the dynamic behavior of light vehicles with particular emphasis on three-wheeled vehicles is presented. The second part of the thesis shows an analytical model of the reluctance machine aimed both to simplify the designing and to minimize the torque ripple. In the third part three cases study are presented: a range extender three-wheeled vehicle, a human-electric three-wheeled velomobile and a mild-hybrid motorcycle

Abstract (italiano)

Attualmente nei paesi sviluppati ed in via di sviluppo i problemi di inquinamento dovuti al traffico ed alla carenza di fonti energetiche stanno diventando sempre più importanti; per questo motivo vi è un notevole sviluppo di tecnologie elettriche ed ibride per il trasporto stradale. L’impiego di veicoli a due o tre ruote è particolarmente adatto a ridurre il traffico nelle aree urbane ed il consumo energetico relativo ai mezzi di trasporto. L’introduzione di un sistema di propulsione elettrica o ibrida in un veicolo leggero è una sfida
poiché alcuni componenti pesanti e voluminosi devono essere alloggiati in spazi limitati. Inoltre la dinamica dei veicoli a due e tre ruote è fortemente influenzata dalle masse aggiunte (la massa dei componenti elettrici è comparabile con quella del telaio). In questa tesi vengono presentati diversi sistemi di propulsione adatti a veicoli ibridi leggeri. Nella prima parte viene data una panoramica sui diversi tipi di configurazioni ibride. Poi viene presentata un’analisi sul comportamento dinamico dei veicoli leggeri con particolare enfasi sui veicoli a tre ruote. La seconda parte della tesi presenta un modello analitico della macchina a riluttanza finalizzato
a semplificare la progettazione stessa, con l’obiettivo di minimizzare il ripple di coppia. Nella terza parte vengono presentati tre casi studio: un veicolo a tre ruote con propulsione ibrida di tipo "range extender ", una velomobile a tre ruote con sistema di propulsione umano-elettrico ed una moto con propulsione ibrida di tipo "parallelo"

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bolognani, Silverio
Correlatore:Doria, Alberto
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > PROGETTAZIONE E DINAMICA DEI SISTEMI MECCANICI
Data di deposito della tesi:29 Gennaio 2014
Anno di Pubblicazione:29 Gennaio 2013
Parole chiave (italiano / inglese):Hybrid, light vehicles, power-train, electric machines, permanent magnets, motorcycles
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6527
Depositato il:13 Nov 2014 09:37
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] F. Allen E., Hybrid Vehicles and the Future of Personal Transportation, 2009. Cerca con Google

[2] J. Miller, “Hybrid electric vehicle propulsion system architectures of the e-cvt type,” Power Electronics, IEEE Transactions on, vol. 21, no. 3, pp. 756–767, 2006. Cerca con Google

[3] J. Miller, P. McCleer, and M. Everett, “Comparative assessment of ultra-capacitors and advanced battery energy storage systems in powersplit electronic-cvt vehicle powertrains,” in Electric Machines and Drives, 2005 IEEE International Conference on, 2005, pp. 1513–1520. Cerca con Google

[4] Q. Wang, Q. Wang, and X. Zeng, “Dynamic modelling and simulation of ths ii based on cruise software,” in Transportation, Mechanical, and Electrical Engineering (TMEE), 2011 International Conference on, 2011, pp. 1075–1079. Cerca con Google

[5] V. Cossalter, A. Doria, and M. Ferrari, “Potentialities of a light three-wheeled vehicle for sustainable mobility,” in Proceedings of the ASME Design Engineering Technical Conference, vol. 6, 2012, pp. 523–532. Cerca con Google

[6] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, “Design of synchronous reluctance motor for hybrid electric vehicles,” in IEEE International Electric Machines Drives Conference, IEMDC 2013, 2013, pp. 1058–1065. Cerca con Google

[7] M. Ferrari, N. Bianchi, and E. Fornasiero, “Rotor saturation impact in synchronous reluctance and pm assisted reluctance motors,” in IEEE Energy Conversion Congress and Exposition, ECCE 2013, 2013, pp. 1235–1242. Cerca con Google

[8] M. Bertoluzzo, G. Buja, V. Cossalter, and A. Doria, “Development of an easy-to-ride electric 3-wheel vehicle,” in FISITA World Automotive Congress 2008, Congress Proceedings - Vehicle Concepts, Body Design, Chassis Development, vol. 5, 2008, pp. 2–71. Cerca con Google

[9] V. Cossalter, Motorcycle dynamics, LULU, Ed., 2006. Cerca con Google

[10] A. Fratta, G. Toglia, A. Vagati, and F. Villata, “Ripple evaluation of high-performance synchronous reluctance machines,” IEEE, Industry Applications Magazine, vol. 1, no. 4, pp. 14 –22, jul/aug 1995. Cerca con Google

[11] A. Vagati, M. Pastorelli, G. Francheschini, and S. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 758 –765, jul/aug 1998. Cerca con Google

[12] A. Vagati, A. Canova, M. Chiampi, M. Pastorelli, and M. Repetto, “Improvement of synchronous reluctance motor design through finite-element analysis,” in IEEE Industry Applications Conference, 1999., vol. 2, 1999, pp. 862 –871 vol.2. Cerca con Google

[13] M. Barcaro and N. Bianchi, “Interior pm machines using ferrite to substitute rare-earth surface pm machines,” in International Conference on Electrical Machines (ICEM), 2012, sept. 2012, pp. 1339 –1345. Cerca con Google

[14] M. Barcaro, N. Bianchi, and F. Magnussen, “Rotor flux-barrier geometry design to reduce stator iron losses in synchronous ipm motors under fw operations,” IEEE Transactions on Industry Applications, vol. 46, no. 5, pp. 1950 –1958, sept.-oct. 2010. Cerca con Google

[15] S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” IEEE Transactions on Industry Applications, vol. 26, no. 5, pp. 866–871, Sep/Oct 1990. Cerca con Google

[16] D. A. Staton, T. J. E. Miller, and S. E. Wood, “Maximising the saliency ratio of the synchronous reluctance motor,” IEEE Transaction on Industry Applications, vol. 140, no. 4, July 1993. Cerca con Google

[17] N. Bianchi, S. Bolognani, D. Bon, and M. D. Pre’, “Rotor flux-barrier design for torque ripple reduction in synchronous reluctance and pm-assisted synchronous reluctance motors,” IEEE Transaction on Industry Applications, vol. 45, no. 3, May-June 2009. Cerca con Google

[18] R. R. Moghaddam, “Synchronous Reluctance Machine (SynRM) Design,” 2007, Royal Institute of Technology. Cerca con Google

[19] N. Bianchi and M. Barcaro, “Iron losses reduction in synchronous motors with anisotropic rotor,” in 34th Annual Conference of IEEE Industrial Electronics, IECON 2008., Nov., pp. 1258–1263. Cerca con Google

[20] P. Alotto, M. Barcaro, N. Bianchi, and M. Guarnieri, “Optimization of interior pm motors with machaon rotor flux barriers,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 958 –961, may 2011. Cerca con Google

[21] N. Bianchi, E. Fornasiero, and S. Bolognani, “Effect of stator and rotor saturation on sensorless rotor position detection,” in IEEE Energy Conversion Congress and Exposition (ECCE), sept. 2011, pp. 1528 –1535. Cerca con Google

[22] S. Morimoto, Y. Takeda, T. Hirasa, and K. Taniguchi, “Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity,” Industry Applications, IEEE Transactions on, vol. 26, no. 5, pp. 866–871, 1990. Cerca con Google

[23] W. Soong and T. Miller, “Field-weakening performance of brushless synchronous ac motor drives,” IEE Proceedings on Electric Power Applications, vol. 141, no. 6, pp. 331–340, 1994. Cerca con Google

[24] T. Jahns, “Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive,” IEEE Transactions on Industry Applications, vol. IA-23, no. 4, pp. 681–689, 1987. Cerca con Google

[25] M. O. Kaya, “Free vibration analysis of a rotating timoshenko beam by differential transform method,” Aircraft Engineering and Aerospace Technology, vol. 78, no. 3, pp. 194 – 203, 2006. Cerca con Google

[26] J.-H. Park, H.-Y. Park, S.-Y. Jeong, S.-I. Lee, Y.-H. Shin, and J.-P. Park, “Linear vibration analysis of rotating wind-turbine blade,” Current Applied Physics, vol. 10, no. 2 SUPPL., pp. S332 – S334, 2010. Cerca con Google

[27] H. Yoo and S. Shin, “Vibration analysis of rotating cantilever beams,” Journal of Sound and Vibration, vol. 212, no. 5, pp. 807 – 808, 1998. Cerca con Google

[28] B. Drew, M. Barker, J. Darling, K. Edge, and H. Johannsen, “Review of tilting threewheeled vehicle chassis,” FISITA, no. F2004F382, 2004. Cerca con Google

[29] T. Gillespie, Fundamentals of Vehicle Dynamics. SAE,Warrendale, 1992. Cerca con Google

[30] M. Barker, B. Drew, J. Darling, K. Edge, and G. Owen, “Steady-state steering of a tilting three-wheeled vehicle,” Vehicle System Dynamics, vol. 48, no. 7, pp. 815–830, July 2010. Cerca con Google

[31] V.Cossalter, N.Ruffo, F.Biral, R.Berritta, and G.Cocco, “Development of a Novel Three-Wheeled Vehicle,” 2000, 3rd IfZ International Motorcycle Conference. Cerca con Google

[32] M. Bertoluzzo, G. Buja, V. Cossalter, A. Doria, and D. Mazzaro, “Getting around in electric vehicles,” IEEE Industrial Electronics Magazine, no. F2008-07-022, pp. 10–18, September 2008. Cerca con Google

[33] F. Van De Walle, in The Velomobile as a Vehicle for more Sustainable Transportation, 1988, pp. 1651–0194. Cerca con Google

[34] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to ev and hev: Design and control issues,” Industry Applications, IEEE Trans, vol. 36, no. 1, Jan/Feb 2000. Cerca con Google

[35] M. Ferrari, N. Bianchi, A. Doria, E. Giolo, E. Fornasiero, C. Martignoni, and F. Bovi, “Development of a hybrid human-electric propulsion system for a velomobile,” in 8th International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013, pp. 1–8. Cerca con Google

[36] M. Bertoluzzo, G. Buja, V. Cossalter, A. Doria, and D. Mazzaro, “Getting around in electric vehicles,” IEEE Industrial Electronics Magazine, vol. 2, no. 3, pp. 10–18, 2008. Cerca con Google

[37] A. Doria, M. Tognazzo, G. Cusimano, V. Bulsink, A. Cooke, and B. Koopman, “Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics,” Vehicle System Dynamics, vol. 51, no. 3, pp. 405–420, 2013. Cerca con Google

[38] F. Rowland Whitt and D. Gordon Wilson, “Bicycle science,” vol. 2, 1995. Cerca con Google

[39] V. Cossalter, “Patent: Meccanismo per la realizzazione di un veicolo a tre ruote con parte anteriore rollante,” no. IT1998PD00042 19980302, 1999. Cerca con Google

[40] P. Alotto, M. Barcaro, N. Bianchi, and M. Guarnieri, “Optimization of interior pm motors with machaon rotor flux barriers,” IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 958 –961, may 2011. Cerca con Google

[41] A. Doria and R. Lot, “The generalized torque approach for analyzing the results of pedaling tests,” Journal of Biomechanical Engineering, vol. 123, no. 1, pp. 33–39, 2001, cited By (since 1996):1. [Online]. Available: www.scopus.com Vai! Cerca con Google

[42] G. J. Van Ingen Schenau, W. W. L. M. Van Woensel, P. J. M. Boots, R. W. Snackers, and G. De Groot, “Determination and interpretation of mechanical power in human movement: Application to ergometer cycling,” European journal of applied physiology Cerca con Google

and occupational physiology, vol. 61, no. 1-2, pp. 11–19, 1990, cited By (since 1996):30. [Online]. Available: www.scopus.com Vai! Cerca con Google

[43] M. Ceraolo, A. Caleo, P. Capozzella, M. Marcacci, L. Carmignani, and A. Pallottini, “A parallel-hybrid drive-train for propulsion of a small scooter,” Power Electronics, IEEE Trans, vol. 21, no. 3, pp. 768 –778, May 2006. Cerca con Google

[44] N. Bianchi, S. Bolognani, and M. Zigliotto, “High-performance pm synchronous motor drive for an electrical scooter,” Industry Applications, IEEE Trans, vol. 37, no. 5, pp. 1348 –1355, Sep./Oct. 2001. Cerca con Google

[45] A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: State of the art,” Vehicular Technology, IEEE Trans, vol. 59, no. 6, pp. 2806 –2814, July 2010. Cerca con Google

[46] M. Ayad, M. Becherif, S. AitCheikh, and M.Wack, “The use of supercapacitors in electrical vehicle: Modeling, sizing and control,” in Vehicle Power and Propulsion Conference, IEEE, Sept. 2010, pp. 1 –6. Cerca con Google

[47] T. Nobuaki, S. Imai, Y. Horii, and H. Yoshida, “Development of high-performance lithium-ion batteries for hybrid electric vehicles,” Tech. Rev., New Technol., 2003. Cerca con Google

[48] D. Reisner and M. Klein, “Bipolar nickel-metal hydride battery for hybrid vehicles,” Aerospace and Electronic Systems Magazine, IEEE, vol. 9, no. 5, pp. 24 –28, May 1994. Cerca con Google

[49] D. Edwards and C. Kinney, “Advanced lead acid battery designs for hybrid electric vehicles,” in Applications and Advances, 2001. The Sixteenth Annual Battery Conference on, 2001, pp. 207 –212. Cerca con Google

[50] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy storage devices for future hybrid electric vehicles,” J. Power Sources, vol. 168, no. 1, pp. 2–11, May 2007. Cerca con Google

[51] M. Ferrari, M. Morandin, and S. Bolognani, “Mild hybrid motorcycles: Choice of the energy storage system,” in IEEE International Energy Conference and Exhibition (ENERGYCON), sept. 2012, pp. 997 –1002. Cerca con Google

[52] M. Morandin, M. Ferrari, and S. Bolognani, “Design and performance of a power train for mild-hybrid motorcycle prototype,” in IEEE International Electric Machines Drives Conference (IEMDC), 2013, pp. 1–8. Cerca con Google

[53] L. Alberti, M. Barcaro, M. Prè and, A. Faggion, L. Sgarbossa, N. Bianchi, and S. Bolognani, “Ipm machine drive design and tests for an integrated starter alternator application,” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 993 –1001, may-june 2010. Cerca con Google

[54] I. Ilina, “Experimental determination of moment to inertia and mechanical losses vs. speed, in electrical machines,” in Advanced Topics in Electrical Engineering (ATEE), 2011 7th International Symposium on, May 2011, pp. 1–4. Cerca con Google

[55] FSBB30CH60C Smart Power Module, Fairchild Semiconductor, www.fairchildsemi.com/pf/FS/FSBB30CH60C, February 2008. Vai! Cerca con Google

[56] N. Mohan, T. Undeland, andW. P. Robbins, Power Electronics: Converters, Applications, and Design, W. John and Sons, Eds., 2003. Cerca con Google

[57] D. V. Ragone, in Mid-Year Meeting of the Society of Automotive Engineers. Cerca con Google

[58] J. Martinez, “Modeling and characterization of energy storage devices,” in Power and Energy Society General Meeting, 2011 IEEE, july 2011, pp. 1 –6. Cerca con Google

[59] S. Lukic, J. Cao, R. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” Industrial Electronics, IEEE Transactions on, vol. 55, no. 6, pp. 2258 –2267, june 2008. Cerca con Google

[60] “Battery performance models in advisor,” Journal of Power Sources, vol. 110, no. 2, pp. 321 – 329, 2002. Cerca con Google

[61] KAN AA(50)1800, Kan battery co., www.kanbattery.com, 2004. Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record