Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Spiezia, Luca (2008) Studio della sintesi del fattore V della coagulazione attraverso il modello sperimentale delle colture megacariocitarie ed il modello clinico delle famiglie con deficit ereditario di fattore V. [Ph.D. thesis]

Full text disponibile come:

Documento PDF
Documento PDF
Documento PDF

Abstract (english)

Background. In humans, approximately 80% of the coagulation factor V (FV) circulates in plasma and the remainder is contained within the a-granules of platelets (Plts), in a partially activated form. The role of Plts FV is not clear. Its release at the site of injury, when Plts are activated, probably increases the local concentration of FV. This mechanism facilitates site-specific haemostasis. Plasma-derived FV is synthesized in the liver; however, the origin of platelet FV is still a matter of debate. Platelet-derived FV might originate from plasma through endocytosis or be synthesized by the precursor of platelets, the megakaryocytes (MKs). Although studies on isolated and cultured human MKs have provided evidence for both endogenous FV synthesis and secondary endocytosis of plasma FV, it is not clear in what proportion these two processes contribute to the platelet FV pool and what the mechanisms that regulate these processes are. To clarify the origin of Plts FV in humans and to evaluate the interactions between plasma and Plts FV we have developed an "experimental model" of human MKs cultures obtained from normal subjects and from severe (homozygous) FV deficient individuals and we studied a "clinical model" based on family bearing FV defect.
Materials and Methods. After informed consent we drew, from an antecubital vein, 30 ml of blood from 5 healthy subjects and from 5 severe (homozygous) FV deficient individuals. We isolated, from peripheral blood, the haematopoietic progenitor circulating cells that have been grown in a serum-free medium and have been induced to differentiate into the megakaryocytic lineage in the presence of thrombopoietin (TPO) plus interleukin 3 (IL3). With immunohistochemic and immunofluorescence techniques the presence of FV has been detected inside the cytoplasm of MKs at basal conditions and after supplementation of the colture medium with purified FV. As for the "clinical model", after informed consent, we drew, from an antecubital vein, 20 ml of peripheral blood from 20 subjects with heterozygous FV defect, from 55 relatives and 5 subjects with homozygous FV defect. In the group enrolled we determined FV plasma and intra-Plts levels, we have also identify FV Leiden mutation and HR2 aplotipe of FV gene and we have studied the possible influence of these genetic factors on plasma and intra-Plts FV levels.
Results. At day +5, +8, +10 from the seed, we obtained, in vitro, cellular elements with morphology analogous to MKs. The positive immunofluorescence test for CD41 confirmed our hypothesis that these cells were MKs. In the 5 healthy individuals we have demonstrated the presence of FV in the cytoplasm of MKs, while in the homozygous FV deficient individuals we have noted the absence of FV. Adding a note concentration of purified FV to the colture medium of Mks derived from homozygous FV defect subjects we observed the positive immunofluorescence test for FV. As for the "clinical model" we observed that subjects with heterozygous FV defect had intra-Plts FV levels similar to that of relatives without defect. Moreover in the relatives without defect, FV plasma levels correlated with intra-Plts.
Discussion. These findings are in agreement with previous observations and confirm that MKs, in healthy individuals, can synthesize FV. We have clarified conclusively that homozygous FV deficient individuals do not synthesize FV. For the first time we have demonstrated the capacity of Mks to endocyte FV when FV was added to the colture medium. In the "clinical model" we identified a trend of association between plasma and intra-Plts FV levels. The mild number od subjects, identified among our study population, bearing FV Leiden mutation and/or HR2 aplotipe of FV gene did not made any conclusion about the possible role of these genetic factor upon the regulation of plasma and intra-Plts FV levels.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Pagnan, Antonio
Data di deposito della tesi:30 January 2008
Anno di Pubblicazione:30 January 2008
Key Words:fattore V della coagulazione, colture di megacariociti, deficit omozigote ed eterozigote di fattore V
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/09 Medicina interna
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Medico Diagnostiche e Terapie Speciali
Codice ID:653
Depositato il:09 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1) Mann KG, Nesheim ME, Hibbard LS, Tracy PB. The role of factor V in the assembly of the prothrombinase complex. Ann N Y Acad Sci. 1981; 370:378-388. Cerca con Google

2) Dahlback B. Blood coagulation. Lancet. 2000; 355:1627-1632. Cerca con Google

3) Kane WH, Davie EW. Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood. 1988; 71:539-555. Cerca con Google

4) Cripe LD, Moore KD, Kane WH. Structure of the gene for human coagulation factor V. Biochemistry. 1992; 31:3777-3785. Cerca con Google

5) Duga S, Asselta R, Tenchini ML. Coagulation factor V. IJBCB 2004; 36:1393-1399. Cerca con Google

6) Mann KG, Kalafatis M. Factor V: a combination of Dr Jekyll and Mr Hyde. Blood. 2003; 101:20-30. Cerca con Google

7) Rosing J, Bakker HM, Christella ML, Thomassen MC, Hemker HC, Tans G. Characterization of Two Forms of Human Factor Va with Different Cofactor Activities. J Biol Chem 1993; 268:21130-6. Cerca con Google

8) Kim SW, Ortel TL, Quinn-Allen MA, Yoo L, Worfolk L, Zhai X, Lentz BR, Kane WH. Partial Glycosylation at Asparagine-2181 of the Second C-Type Domain of Human Factor V Modulates Assembly of the Prothrombinase Complex. Biochemistry 1999; 38:11448-54 Cerca con Google

9) Dahlback B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci U S A. 1993; 90:1004-1008. Cerca con Google

10) Bertina RM, Koeleman BP, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, van der Velden PA, Reitsma PH. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994; 369:64-67. Cerca con Google

11) Bernardi F, Faioni EM, Castoldi E, Lunghi B, Castaman G, Sacchi E, Mannucci PM. A factor V genetic component differing from factor V R506Q contributes to the activated protein C resistance phenotype. Blood. 1997; 90:1552-1557. Cerca con Google

12) Faioni EM, Castaman G, Asti D, Lussana F, Rodighiero F. Association of factor V deficiency with factor V HR2. Haematologica. 2004; 89:195-200. Cerca con Google

13) Castaman G, Faioni EM, Tosetto A, Bernardi F. The factor V HR2 haplotype and the risk of venous thrombosis: a meta-analysis. Haematologica. 2003;88:1182-9. Cerca con Google

14) Asselta R, Tenchini ML, Guga S. Inherited defects of coagulation factor V: the hemorrhagic side. J Thromb Haemost. 2006; 4:26-34. Cerca con Google

15) Segers K, Dahlback B, Nicolaes GAF. Coagulation factor V and thrombophilia: Background and mechanisms. Thromb Haemost. 2007; 98:530-542. Cerca con Google

16) Kalafatis M. Coagulation factor V: a plethora of anticoagulant molecules. Curr Opin Hematol. 2005; 12:141-8. Cerca con Google

17) Tracy PB, Eide LL, Bowie EJW, Mann KG: Radioimmunoassay of FV in human plasma and platelets. Blood. 1982; 60:59-63. Cerca con Google

18) Tracy PB, Giles AR, Mann KG, Eide LL, Hoogendoorn H, Rivard GE. Factor V (Quebec): a bleeding diathesis associated with a qualitative platelet Factor V deficiency. J Clin Invest. 1984; 74:1221-1228 Cerca con Google

19) Nesheim ME, Nichols WL, Cole TL, Houston JG, Schenk RB, Mann KB, Bowie EJW. Isolation and study of an acquired inhibitor of human coagulation factor V. J Clin Invest. 1986; 77:405-415. Cerca con Google

20) Mazzorana M, Baffet G, Kneip B, Launois B, Guillouzo-Guguen C. Expression of coagulation factor V gene by normal adult Human hepatocytes in primary culture. Br J Haematol. 1991; 78:229-235. Cerca con Google

21) Louache F, Debili N, Cramer E, Breton-Gorius J, Vainchenker W. Fibrinogen is not synthesized by human megakaryocytes. Blood 1991; 77:311-16. Cerca con Google

22) Handagama PJ, Shuman MA, Bainton DF. Incorporation of intravenously injected albumun, immunoglobulin G, and fibrinogen in guinea pig megakaryocyte granules. J Clin Invest 1989; 84:73-82. Cerca con Google

23) George JN, Nurden AT, Phillips DR. Molecular defects in interactions of platelets with the vessel wall. N Engl J Med. 1984;311:1084-98. Cerca con Google

24) Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes J Clin Invest 1985; 76:1102-06. Cerca con Google

25) Konkle BA, Schick PK, He X, Liu RJ, Mazur EM. Plasminogen activator inhibitor-1 mRNA is expressed in platelets and megakaryocytes and the megakaryoblastic cell line CHRF-288. Arterioscler Thromb. 1993; 13:669-74. Cerca con Google

26) Gewirtz AM, Keefer M, Doshi K, Annamalai AE, Chiu HC, Colman RW. Biology of human megakaryocyte factor V. Blood 1986; 67:1639-48. Cerca con Google

27) Camire RM, Pollak ES, Kaushansky K, Tracy PB. Secretable human platelet-derived factor V originates from the plasma pool. Blood. 1998; 92:3035-3041. Cerca con Google

28) Chiu HC, Schick PK, Colman RW. Biosynthesis of factor V in isolated guinea pig megakaryocytes. J Clin Invest. 1985; 75:339-346. Cerca con Google

29) Gewirtz AM, Shapiro C, Shen YM, Boyd R, Colman RW. Cellular and molecular regulation of factor V expression in human megakaryocytes. J Cell Physiol. 1992; 153:277-287. Cerca con Google

30) Christella M, Thomassen LG, Castoldi E, Tans G, Magdeleyns EJ, Delaunoit C, Debusscher L, Van Assche KJ, Rosing J. Endogenous factor V synthesis in megakaryocytes contributes negligibly to the platelet factor V pool. Haematologica. 2003; 88:1150-1156. Cerca con Google

31) Gould WR, Simioni P, Silveira JR, Tormene D, Kalafatis M, Tracy PB. Megakaryocytes endocytose and subsequently modify human factor V in vivo to form the entire pool of a unique platelet-derived cofactor. J Thromb Haemost. 2005; 3:450-456. Cerca con Google

32) Bouchard BA, Williams JL, Meisler NT, Long MW, Tracy PB. Endocytosis of plasma-derived factor V by megakaryocytes occurs via a clathrin-dependent, specific membrane binding event. J Thromb Haemost. 2005; 3:541-551. Cerca con Google

33) Lee GR, Bithell TC, Foerester J, Athens JW, Lukens JN (eds). Wintrobe's Clinical Hematology. Philadelphia, PA, Lea & Febiger, 1993. Cerca con Google

34) De Sauvage FJ, Hass PE, Spencre SD, Malloy BE, Gurney AL et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369:533-8. Cerca con Google

35) Wendling F, Maraskovsky E, Debili N, Florindo C, Teepe M, Titeux M, Methia N et al. cMpl ligand is a humoral regulator of megakaryocytopoiesis. Nature 1994; 369:571-4. Cerca con Google

36) Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994; 369:568-71. Cerca con Google

37) Williams JL, Pipia GG, Datta NS, Long MW. Thrombopoietin requires additional megakaryocyte-active cytokines for optimal ex vivo expansion of megakaryocyte precursor cells. Blood. 1998 Jun 1;91(11):4118-26. Cerca con Google

38) Majka M, Baj-Krzyworzeka M, Kijowski J, Reca R, Ratajczak J, Ratajczak MZ. In vitro expansion of human megakaryocytes as a tool for studying megakaryocytic development and function. Platelets. 2001; 12:325-32. Cerca con Google

39) Suehiro Y, Veljkovic DK, Fuller N, Motomura Y, Masse JM, Cramer EM, Hayward. Endocytosis and storage of plasma factor V by human megakaryocytes. Thromb Haemost. 2005; 94:585-592. Cerca con Google

40) Owren PA. Parahemophilia, hemorrhagic diathesis due to the absence of a previously recognized clotting factor. Lancet. 1977; 1:446-448. Cerca con Google

41) Peyvandi F, Mannucci PM. Rare coagulation disorders. Thromb Haemost. 1999; 82:1207-1214. Cerca con Google

42) Murray JM, Rand MD, Egan JO, Murphy S, Kim HC, Mann KG. Factor V New Brunswick: Ala221-to-Val substitution results in reduced cofactor activity. Blood. 1995; 86:1820-1827. Cerca con Google

43) Vos HL. An online database of mutations and polymorphisms in and around the coagulation factor V gene. J Thromb Haemost. 2007;5:185-8. Cerca con Google

44) Tracy PB, Mann KG. Abnormal formation of the prothrombinase complex: Factor V deficiency and related disorders. Hum Pathol. 1987; 18:162-169. Cerca con Google

45) Guerriero R, Testa U, Gabbianelli M, et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood. 1995; 86:3725-3736. Cerca con Google

46) Ivanovic Z, Duchez P, Dazey B, Hermitte F, Lamrissi-Garcia I, Mazurier F, et al. A clinical-scale expansion of mobilized CD34+ hematopoietic stem and progenitor cells by use of a new serum-free medium. Transfusion. 2006; 46:126-131. Cerca con Google

47) Viskup RW, Tracy PB, Mann KG. The isolation of human platelet factor V. Blood. 1987; 69:1188-95. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record