Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pozza, Cristian (2014) Application of HPC in eddy current electromagnetic problem solution. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
5Mb

Abstract (english)

As engineering problems are becoming more and more advanced, the size of an average model solved by partial differential equations is rapidly growing and, in order to keep simulation times within reasonable bounds, both faster computers and more efficient software implementations are needed.
In the first part of this thesis, the full potential of simulation software has been exploited through high performance parallel computing techniques. In particular, the simulation of induction heating processes is accomplished within reasonable solution times, by implementing different parallel direct solvers for large sparse linear system, in the solution process of a commercial software. The performance of such library on shared memory systems has been remarkably improved by implementing a multithreaded version of MUMPS (MUltifrontal Massively Parallel Solver) library, which have been tested on benchmark matrices arising from typical induction heating process simulations.
A new multithreading approach and a low rank approximation technique have been implemented and developed by MUMPS team in Lyon and Toulouse. In the context of a collaboration between MUMPS team and DII-University of Padova, a preliminary version of such functionalities could be tested on induction heating benchmark problems, and a substantial reduction of the computational cost and memory requirements could be achieved.
In the second part of this thesis, some examples of design methodology by virtual prototyping have been described. Complex multiphysics simulations involving electromagnetic, circuital, thermal and mechanical problems have been performed by exploiting parallel solvers, as developed in the first part of this thesis. Finally, multiobjective stochastic optimization algorithms have been applied to multiphysics 3D model simulations in search of a set of improved induction heating device configurations.

Abstract (italian)

Nell’ultima decade, i problemi ingegneristici sono diventati sempre più complessi e le dimensioni dei relativi modelli numerici sono notevolmente aumentate. Al fine di mantenere i tempi di calcolo entro limiti ragionevoli è necessario utilizzare computer sempre più performanti ed implementare codici di calcolo più efficienti.
Nella prima parte di questo elaborato sono descritte ed ampiamente utilizzate le più recenti tecniche di programmazione per il calcolo parallelo ad alte prestazioni, permettendo di sfruttare pienamente le potenzialità dei moderni software di simulazione. In particolare, il tempo di calcolo necessario per la simulazione numerica dei processi di riscaldamento per induzione magnetica è stato considerevolmente ridotto attraverso l’implementazione di solutori diretti paralleli per matrici sparse nel processo di soluzione di un software commerciale. Successivamente, grazie alla collaborazione con gli sviluppatori del solutore diretto MUMPS (MUltifrontal Massively Parallel Solver), le prestazioni di tale libreria sono state ulteriormente migliorate grazie all’utilizzo di librerie BLAS parallele. Una serie di test sono stati condotti sulla soluzione di matrici ricavate dalle analisi agli elementi finiti di problemi tipici dell’elettromagnetismo e del riscaldamento per induzione.
Grazie all’introduzione di un nuovo approccio “multi-threading” e all’utilizzo di tecniche di compressione delle matrici (low-rank approximation), il team di MUMPS (Lione-Tolosa) ha sviluppato alcune funzionalità sperimentali. Nel contesto di una collaborazione tra il team di MUMPS ed il Dipartimento di Ingegneria Industriale, Università di Padova, l’utilizzo della libreria in versione sperimentale ha permesso una notevole riduzione del costo computazionale e della memoria necessaria per la fattorizzazione e la soluzione dei problemi analizzati.
Nella seconda parte di questo elaborato sono riportati alcuni esempi di prototipazione virtuale attraverso software agli elementi finiti. Lo studio di sistemi multiphysics molto complessi, che comprendono fenomeni elettromagnetici, circuitali, termici e meccanici, è stato effettuato su modelli di dimensioni notevoli ed in tempi ridotti, sfruttando le tecniche di calcolo parallelo sviluppate nella prima parte di questa tesi. Infine, grazie ai miglioramenti introdotti con il calcolo parallelo, l’ottimizzazione di dispositivi elettromagnetici attraverso algoritmi stocastici multiobiettivo è stata applicata ad un problema multiphysics su modelli tridimensionali.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Forzan, Michele
Ph.D. course:Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:29 January 2014
Anno di Pubblicazione:29 January 2014
Key Words:electromagnetism, eddy current, induction heating, finite element method, sparse matrix, parallel computing
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/31 Elettrotecnica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6553
Depositato il:24 Apr 2015 17:18
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Barney, B. Introduction to Parallel Computing, Tutorial from Lawrence Livermore National Laboratory, website: computing.llnl.gov/tutorials/parallel_comp, last visit on Dec. 2013. Cerca con Google

Report from Grand Challenges Task Force, website: www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf, last visit on Dec. 2013. Vai! Cerca con Google

Access Grid, website: www.accessgrid.org, last visit on Dec. 2013. Vai! Cerca con Google

Amazon Web Services, website: aws.amazon.com, last visit on Dec. 2013. Cerca con Google

Sørensen N. (2011). Industry Benchmarks Performance, Cisco Systems. Cerca con Google

TOP 500, website: www.top500.org, last visit on Dec. 2013. Vai! Cerca con Google

Hill, M.D.; Marty, M.R., Amdahl's Law in the Multicore Era, Computer , vol.41, no.7, pp.33,38, July 2008, doi: 10.1109/MC.2008.209 . Cerca con Google

Vajda, A. (2011). Programming Many-Core Chips. Springer. Cerca con Google

Hermanns, M. (2002). Tutorial: Parallel Programming in Fortran 95 using OpenMP. Cerca con Google

Gerber, R. (2012). Tutorial: Getting Started with OpenMP, website: software.intel.com/en-us/articles/getting-started-with-openmp , last visit on Dec.2013. Cerca con Google

Lawson, C.L., Hanson, R. J., Kincaid, D., and Krogh, F. T. (1979) Basic Linear Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft., 5, pp. 308-323. Cerca con Google

Dongarra, J.J., Du Croz, J., Hammarling, S., and Hanson, R. J. (1988). An extended set of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft., 14, pp. 1-17. Cerca con Google

Intel MKL Math Kernel Library, website: software.intel.com/en-us/intel-mkl last visit on Dec. 2013. Cerca con Google

Report from MPI Forum, website: www.mpi-forum.org last visit on Dec. 2013. Vai! Cerca con Google

MPICH User’s Guide, website: www.mpich.org last visit on Dec. 2013. Vai! Cerca con Google

Krishna, J., (2010). Implementing MPI on Windows: Comparison with Common Approaches on Unix, in book “Recent Advances in the Message Passing Interface”,Lecture Notes in Computer Science Volume 6305, pp 160-169, Argonne National Laboratory. Cerca con Google

Torp, A. (2009). Sparse linear algebra on a GPU with Applications to flow in porous Media. Thesis at Norwegian University of Science and Technology. Cerca con Google

Hennessy, J., and Patterson, D. (2003). Computer architecture: a quantitative approach. Morgan Kaufmann. Cerca con Google

Bell, N. and Garland, M. (2008). Efficient Sparse Matrix-Vector Multiplication on CUDA, NVIDIA Technical Report NVR-2008-004. Cerca con Google

NVIDIA Tesla GPU Technical Specifications, website: www.nvidia.com/object/tesla_tech_specs.html last visit on Dec. 2013. Vai! Cerca con Google

Intel Product Information, website: ark.intel.com last visit on Dec. 2013. Cerca con Google

Altera Corporation, From Multicore to Many-Core: Architectures and Lessons, website: www.altera.com/technology/system-design/articles/2012/multicore-many-core.html last visit on Dec. 2013. Vai! Cerca con Google

Falsafi, B. (2009). Energy-Centric Computing & Computer Architecture. Proceedings of the 2009 Workshop on New Directions in Computer Architecture, New York ,USA. Cerca con Google

Chua, L. O., (1971). Memristor-the Missing Circuit Element. IEEE Transactions on Circuit Theory 18(5), pp. 507-519. Cerca con Google

Kurian, G., Miller, J. E., Psota, J., Eastep, J., Liu, J., Michel, J., Kimerling, L. C., Agarwal, A. (2010). ATAC: a 1000-core Cache Coherent Processor with On-Chip Optical Network. Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques, pp. 477-488. Cerca con Google

Zimmerman, W. B., (2004). Process Modelling and Simulation with Finite Element Methods, World Scientific Publishing. Cerca con Google

Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. (2005). The Finite Element Method: Its Basis and Fundamentals (Sixth ed.). Butterworth-Heinemann. Cerca con Google

Strang, G. (2008). Algebra lineare, pp.359-380, Apogeo. Cerca con Google

Muhlbauer A. (2008). History of Induction Heating and Melting, pp.374-375, Vulkan-Verlag Cerca con Google

Silvester, P., and Haslam, C.R.S., (1972). Magnetotelluric: modelling by the finite element method, Geophys. Prospecting, Vol 20, No 4, pp. 872-891. Cerca con Google

Chari, M.V.K., (1973). Finite element solution of the eddy current problem in magnetic structures, IEEE Trans Power App. & Syst., Vol. PAS-92. Cerca con Google

Foggia, A., Sabonnadiere, J. C., Silvester, P., (1975). Finite element solution of saturated travelling magnetic field problems, Power Apparatus and Systems, IEEE Transactions on, vol.94, no.3, pp.866-871 doi: 10.1109/T-PAS.1975.31917 . Cerca con Google

McDonald, B. H, and Wexler, A. (1972). Finite-element solution for unbounded field problems, IEEE Trans. Microwave Theory Tech., Vol. 20, No.12, pp. 841-847. Cerca con Google

Sundberg, Y., (1979). Electric furnaces and induction stirrers, ASEA, Metallurgical Industries Division, Internal Report. Cerca con Google

Lavers, J.D., (1983). Numerical solution methods for electroheat problems, Magnetics, IEEE Transactions on, Vol. 19 , Issue 6, pp. 2566-2572. Cerca con Google

Lavers, J.D., (1989). Computational methods for the analysis of molten metal electromagnetic confinement, ISIJ Int., Vol. 29. Cerca con Google

Massé, P., Morel, B., Breville, T., (1985). A finite element prediction correction scheme for magneto-thermal coupled problems during Curie transition, IEEE Trans. Magnetics, Vol. 21. Cerca con Google

Maten, E.J.W. ter, Melissen, J.M.B., (1992). Simulation of inductive heating, IEEE Trans. Magnetics, Vol. 28. Cerca con Google

Cedrat Flux, website: www.cedrat.com, last visit on Dec. 2013. Vai! Cerca con Google

Ansys Maxwell, website: www.ansys.com, last visit on Dec. 2013. Vai! Cerca con Google

Vector Fields Simulation Software, website: operafea.com last visit on Dec.2013. Cerca con Google

Quick Field, website: www.quickfield.com last visit on Dec. 2013. Vai! Cerca con Google

Comsol Multiphysics, website: www.comsol.com last visit on Dec. 2013. Vai! Cerca con Google

Carpenter, C.J., (1977). Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-current problems at power frequencies, Proc. IEEE 124( 11 ), pp. 1026-1034. Cerca con Google

Rodger, D. and Eastham, J.F., (1983). A formulation for low frequency eddy current solutions, IEEE Trans. on Magnetics, 19, pp. 2443-2446. Cerca con Google

Emson, C.R.I, and Simkin, J., (1983). An optimal method for 3-D eddy currents, IEEE Trans. on Magnetics, 19,pp. 2450-2452. Cerca con Google

Leonard, P.J., and Rodger, D. (1988). Finite element scheme for transient 3D eddy currents, IEEE Trans. on Magnetics, 24 , pp. 90-93. Cerca con Google

Nakata, T., Takahashi, N., Fujiwara, K., and Okada, Y. (1988). Improvements of the T - Ω method for 3-D eddy current analysis, IEEE Trans. on Magnetics, 24, pp. 94-97. Cerca con Google

Birò, O. and Preis, K., (1989). On the use of the magnetic vector potential in the finite element analysis of 3-D eddy currents. IEEE Trans. Magnetics, 25, pp. 3145-3159. Cerca con Google

Birò, O. and Preis, K. (1990). Finite element analysis of 3-D eddy currents, IEEE Trans. Magnetics, 26 pp. 418-423. Cerca con Google

Preis, K., Bardi, I., Birò, O., Magele, C., Renhart, W., Richter, K.R., and Vrisk, G. (1991). Numerical analysis of 3D magnetostatic fields, IEEE Trans. Magnetics, 27 pp. 3798-3803. Cerca con Google

Birò, O. (1993). Solution of TEAM benchmark problem #10 (Steel plates around a coil), ACES J. 8(2) pp. 203-215. Cerca con Google

Birò, O. (1997). Edge element formulations of eddy current problems, Elsevier. Cerca con Google

Kameari, A. (1990). Calculation of transient 3D eddy current using edge elements, IEEE Trans. Magnetics 26, pp. 466-469. Cerca con Google

Bossavit, A. (1990). Solving Maxwell equations in a closed cavity and the question of 'spurious modes', IEEE Trans. Magnetics 26, pp. 702-705. Cerca con Google

Cendes, Z.J. (1990). Vector finite elements for electromagnetic field computation, IEEE Trans. Magnetics 27, pp. 3958-3966. Cerca con Google

Albanese, R., and Rubinacci, G. (1990). Magnetostatic field computations in terms of two-component vector potentials, Int. J. Numer. Methods 29, pp. 515-532. Cerca con Google

Kolbe, E., Reiss, W., (1963). Eine Methode zur numerischen Bestimmung der Stromdichteverteilung, Wiss.Z. Hochsch. Elektrot., Ilmenau, Bd. 9, no. 3. Cerca con Google

Kogan, M.G., (1966). Calculation of inductors for heating rotational bodies, Moscow, VNIIEM. Cerca con Google

Tozoni, O.V., (1967). Calculation of the electromagnetic fields using computers, Kiev, Ukraine. Cerca con Google

Silvester, P., (1967). AC resistance and reactance of isolated rectangular conductors, IEEE Trans. Power App. & Sys., Vol. PAS-86. Cerca con Google

Mayergoyz, I. D., Bedrosian, G., (1995). On Calculation of 3-D Eddy Currents in Conducting and Magnetic Shells, IEEE Trans. on Magnetics, Vol. 31 No. 3, pp. 1319-1324. Cerca con Google

Mayergoyz, I.D., (1972). Integral equations for the three-dimensional time variable magnetic fields, Izvestia VUZ of USSR, No. 7. Cerca con Google

Tozoni, O.V., Mayergoyz, I.D., (1974). Calculation of 3D electromagnetic fields, Kiev, Technika. Cerca con Google

Tozoni, O.V., (1975). The method of secondary sources in electrical engineering, Energia, Moscow. Cerca con Google

Nemkov, V., Demidovich, V., (1988). Theory and calculation of induction heating devices, Leningrad, Energoatomizdat. Cerca con Google

Fawzi, T.H., Burke, P.E., (1974). Use of surface integral equations for the analysis of TM-induction problems, Proc. IEE, Vol. 121. Cerca con Google

Hodgkins, W.R., Waddington, J.P., (1982). The solution of 3D induction heating problems using an integral equation method, IEEE Trans. Mag. MAG-18(2). Cerca con Google

Lean, M.H., Bloomberg, D.S., (1984). Nonlinear Boundary Element Method for two-dimensional fields, J. of Applied Physics, Vol. 55, no. 6. Cerca con Google

Yildir, Y.B., (1991). Three dimensional analysis of magnetic fields using the Boundary Element Method, EEIC/ICWA Conference, Boston, USA. Cerca con Google

Ruehli, E., Antonini, G., Esch, J., Ekman, J., Mayo, A., Orlandi, A. (2003). Non-Orthogonal PEEC Formulation for Time and Frequency Domain EM and Circuit Modeling. IEEE Trans.on Electromagnetic Compatibility , 45(2), pp.167–176. Cerca con Google

Saad, Y., (2003). Iterative Methods for Sparse Linear Systems 2nd edition, SIAM. Cerca con Google

Matrix Market Format, website: math.nist.gov/MatrixMarket, last visit on Dec. 2013. Cerca con Google

Gould, N., Hu, Y., Scott, J., (2005). A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations, CCLRC report, RAL-TR-2005-005. Cerca con Google

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., and Vorst, H.A. van der, (2001). Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, website: www.netlib.org, last visit on Dec. 2013. Vai! Cerca con Google

Irons, B. M., (1970). A frontal solution scheme for finite element analysis. Int. J. Numer. Methods Eng. 2, pp. 5-32. Cerca con Google

Duff, I. S., Erisman, A. M., Reis, J. K. (1989). Direct Methods for Sparse Matrices. Oxford Science Publications. Cerca con Google

El Boukili, A., Madrane, A., Vaillancourt, R., (2004) Multifrontal solution of sparse unsymmetric matrices arising from semiconductor equations, CRM-3125. Cerca con Google

Duff, I. S., Reid, J. K., (1983). The Multifrontal Solution of Indefinite Sparse Symmetric Linear, ACM Trans. on Mathematical Software (TOMS), v.9 n.3, pp.302-325. Cerca con Google

Amestoy, P. R., Buttari, A., Duff, I. S., Guermouche, A., L'Excellent, J.-Y., Uçar, B., (2011). The Multifrontal Method, Encyclopedia of Parallel Computing, pp. 1209-1216. Springer. Cerca con Google

Amestoy, P., Factorisation de grandes matrices creuses non symétriques basée sur une méthode multifrontale dans un environnement multiprocesseur, Doctoral dissertation, Université de Toulouse, 1990. Cerca con Google

Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.-Y., Weisbecker, C., (2013). Improving multifrontal methods by means of block low-rank representations, SIAM. Cerca con Google

Weisbecker, C., Amestoy, P., Buttari, A., (2013). An efficient solution of large sparse linear systems through low-rank matrix approximations. PhD thesis at INPT-ENSEEIHT-IRIT, Toulouse, France. Cerca con Google

Weisbecker, C., (2013). Block Low-Rank (BLR) approximations to improve multifrontal sparse solvers. Presentation, Sparse Days 2013, CERFACS, Toulouse, France. Cerca con Google

Guermouche, A., L’Excellent, J.-Y., Utard, G., (2003). Impact of reordering on the memory of a multifrontal solver, Parallel Computing 29, pp. 1191–1218. Cerca con Google

Boman, E. G., and Wolf, M. M., (2007). A nested dissection approach to sparse matrix partitioning for parallel computations, Proc. in Applied Mathematics and Mechanics. Cerca con Google

MUMPS 4.10.0 User’s Guide, website: mumps.enseeiht.fr, last visit on Dec. 2013. Cerca con Google

Amestoy, P. R., Duff, I. S., Koster, J., L'Excellent, J.-Y. (2001). A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling. SIMAX, 23(1), pp.15-41. Cerca con Google

Amestoy, P.R. and Guermouche, A., L'Excellent, J.-Y., Pralet, S. (2006). Hybrid scheduling for the parallel solution of linear systems. Parallel Computing, 32(2), pp. 136-156. Cerca con Google

Amestoy, P. R., Buttari, A., Duff, I. S., Guermouche, A.,L'Excellent, J.-Y., Uçar, B., (2011). MUMPS, Encyclopedia of Parallel Computing, pp. 1232-1238. Springer. Cerca con Google

Amestoy, P., (2011). MUMPS: a parallel sparse direct solver in Flux. Presentation, 2011 Cedrat Flux Conference, Marseille. Cerca con Google

Schulze, J., (2001). Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods, BIT 41 (4), pp. 800–841. Cerca con Google

Karypis, G., Kumar, V., (1998). METIS-a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices-Version 4.0, University of Minnesota. Cerca con Google

Pellegrini, F., (2001). SCOTCH 3.4 User’s Guide, Technical Report RR 1264-01, LaBRI, Universitee Bordeaux I. Cerca con Google

Cedrat Flux User’s Guide, website: www.cedrat.com, last visit on Dec. 2013. Vai! Cerca con Google

L’Excellent, J.-Y., Sid-Lakhdar, M., (2013). Introduction of shared-memory parallelism in a distributed-memory multifrontal solver, Research Report n.8227, Project-Team ROMA. Cerca con Google

Sid-Lakhdar, M.W., L'Excellent, J.-Y., Vivien, F. (2013). Exploitation of multicore architectures in the resolution of sparse linear systems by multofrontal methods. PhD thesis at ENS-Lyon, France. Cerca con Google

Tim Davis Matrix collection, website: www.cise.ufl.edu/research/sparse/matrices, last visit on Dec. 2013. Vai! Cerca con Google

Grid-TLSE Matrix collection, website: gridtlse.enseeiht.fr:8080/websolve/index.jsp, last visit on Dec. 2013. Cerca con Google

Operto, S., Virieux, J., Amestoy, P., L'Excellent, J.-Y., Giraud, L. and Ben Hadj Ali, H. (2007). 3D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics, 72(5), pp. 195-211. Cerca con Google

Sourbier, F., Operto, S., Virieux, J., Amestoy, P., and L'Excellent, J.-Y. (2009). FWT2D: a massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data - part 2: numerical examples and scalability analysis. Computer and Geosciences, 35(3), pp. 496-514. Cerca con Google

Geist A. and Ng E. G. (1989). Task scheduling for parallel sparse Cholesky factorization. Int. J.Parallel Programming, 18 pp. 291-314. Cerca con Google

PlaFRIM platform, Hiepacs project, Inria Bordeaux - Sud-Ouest, website: https://plafrim.bordeaux.inria.fr/doku.php, last visit on Dec. 2013. Vai! Cerca con Google

Amestoy, P., Buttari, A., Joslin, G., L'Excellent, J.-Y., Sid-Lakhdar, M.W., Weisbecker, C., Forzan, M., Pozza, C., Perrin, R., and Pellissier, V. (2013). Shared memory parallelism and low-rank approximation techniques applied to direct solvers in FEM simulation, IEEE Trans. on Magnetics, Volume 50 , Issue 2, doi: 10.1109/TMAG.2013.2284024. Cerca con Google

Dughiero, F., Forzan, M., Ciscato, D. and Giusto, F., (2011). Multi-crystalline silicon ingots growth with an innovative induction heating directional solidification furnace, Photovoltaic Specialists Conference (PVSC), 37th IEEE. Cerca con Google

Lupi, S., Dughiero, F., and Forzan, M., (2006). Modelling single- and double-frequency induction hardening of gear-wheels, Proc. of the 5th Int. Symposium on Electromagnetic Processing of Materials, Sendai, Japan, pp. 473-8. Cerca con Google

Dughiero, F., Forzan, M., Pozza, C., and Sieni, E. (2012). A translational coupled electromagnetic and thermal innovative model for induction welding of tubes, Magnetics, IEEE Trans. on, vol. 48, n.2. Cerca con Google

Mifune, T., Iwashita, T., and Shimasaki, M. (2002). A fast solver for FEM analyses using the parallelized algebraic multigrid method. Magnetics, IEEE Transactions on, 38(2), pp. 369-372. Cerca con Google

Bebendorf, M., (2008). Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems, (Lecture Notes in Computational Science and Engineering), Springer, 1 ed., 2008. Cerca con Google

Borm, S., (2010). Efficient Numerical Methods for Non-local Operators. European Mathematical Society. Cerca con Google

Chandrasekaran, S., Dewilde, P., Gu, M., and Somasunderam, N. (2010). On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM, Journal on Matrix Analysis and Applications, 31(5), pp. 2261–2290. Cerca con Google

Bertazzo, M., Bullo, M., Dughiero, F., Forzan, M., Zerbetto, M. (2013). Experimental results of a 55 kW permanent magnet heater prototype, HES-13 Heating by Electromagnetic Sources, pp. 377-384. Cerca con Google

Di Barba, P., Forzan, M., Pozza, C., Sieni, E., (2012). Optimal design of a pancake inductor for induction heating: a multiphysics and multiobjective approach, Proc. CEFC-12, Oita, JP. Cerca con Google

Di Barba, P., Dughiero, F., Lupi, S., Savini, A., (2003). Optimal shape design of devices and systems for induction heating: methodologies and applications, COMPEL, vol. 22, no. 1, pp. 111-122. Cerca con Google

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. on Evolutionary Computation, vol. 6(2), pp. 182–197. Cerca con Google

Dughiero, F., Forzan, M., Pozza, C., Pastore, C., Zerbetto, M., and Barbati, M. (2013). Coupled multiphysics circuital modelling of Quasi Resonant induction cooktops, HES-13 Heating by Electromagnetic Sources, pp. 253-260. Cerca con Google

Crisafulli, V., Pastore, C., (2012). New control method to increase power regulation in a AC/AC quasi resonant converter for high efficiency induction cooker, Proc. 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems - PEDG 2012, Aalborg, Denmark. Cerca con Google

Schenk, O., Gartner, K., Fichtner, W., (2000). Efficient Sparse LU Factorization with Left-right Looking Strategy on Shared Memory Multiprocessors. BIT, 40(1), pp.158-176, 2000. Cerca con Google

Schenk, O., Gartner, K., (2002). Two-level scheduling in PARDISO: Improved Scalability on Shared Memory Multiprocessing Systems. Parallel Computing, 28, pp.187-197, 2002. Cerca con Google

Duff, I. S., and Koster, J., (1999). The Design and Use of Algorithms for Permuting Large Entries to the Diagonal of Sparse Matrices. SIAM J. Matrix Analysis and Applications, 20(4), pp.889-901, 1999. Cerca con Google

Li, X.S., Demmel, J.W., (1999). A Scalable Sparse Direct Solver Using Static Pivoting. In Proceeding of the 9th SIAM conference on Parallel Processing for Scientific Computing, Texas, March 22-34,1999. Cerca con Google

Sonneveld, P., (1989). CGS, a Fast Lanczos-Type Solver for Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 10, pp.36-52, 1989. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record