Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Germano, Giuseppe (2008) Zebrafish model of MLL leukemogenesis; implication for fish favorable model of MLL-related leukemia development. [Tesi di dottorato]

Full text disponibile come:

Documento PDF
Documento PDF

Abstract (inglese)

During these years of experimental work, my research has been addressed to the investigation of the mixed lineage leukemia (MLL) gene functions in acute leukemias, and in particular, to explore the viability of the zebrafish (Danio rerio) as a model to use for understand the role of human MLL in normal and malignant hematopoiesis.
The MLL gene at human chromosome band 11q23 is an important oncogene that is frequently disrupted by chromosomal translocations with more than 50 partner genes in a variety of high-risk acute leukemias of either myeloid or lymphoid derivation, hence the name MLL. These rearrangements are present at significantly high incidence in infants and in the majority of patients with therapy-related leukemia induced by inhibitors of topoisomerase II.
MLL is a large multi-domain protein that has a global role in the regulation of transcription. In particular MLL is required for normal hematopoiesis and implicated in the maintenance of Hox genes expression.
In this PhD thesis the research aim to study three different aspects of MLL oncogene in acute leukemia. 1. The observation that MLL rearrangements and disease itself may initiate within an undifferentiated hematopoietic stem cell. 2. The assessment of MLL genomic breakpoints distribution within the breakpoint cluster region (bcr) in particular in secondary leukemias samples. 3. The versatile biology and genetic flexibility of zebrafish organism as a vertebrate model for studying human hematopoiesis.
1. The investigation of the cell origin of MLL translocations, was studied with a case of a patient diagnosed with pre-pre-B ALL/t (4;11) leukemia, which during the treatment and after matched bone marrow transplantation (BMT), underwent two consecutive switches from lymphoid to myeloid lineage and vice versa. The high expression of HOXA9 and FLT3 genes remaining genotypically stable in leukemia throughout phenotypic switches, suggests that this leukemia may have originated as a common B/myeloid progenitors. This part of the work has been performed by morphology and flow cytometry analyses combined with the microarray analysis, in order to evaluate gene expression during different phases of disease.
2. The work about the localization of MLL genomic breakpoint junction indicates that translocations in treatment related leukemias occur mainly near precise or precise interchromosomal DNA recombination at the sequence level, and confirms a translocation breakpoint hotspot at 3' region in the bcr intron 8. This part of work has been performed by panhandle PCR analysis, a technique that allows the amplification of the MLL genomic breakpoint junction from a stem-loop template using primers all from MLL. The panhandle PCR also identified a breakpoint junction of the uncovered ARMC3 from band 10p12 and MLL intron 9 in a case of treatment-related myeloid leukemia. ARMC3 protein contains Arm repeats similar to catenin proteins (eg. b-catenin), plakophilins and the tumor suppressor APC. ARMC3 is the first gene of this type disrupted by MLL translocation.
3. The overall high-grade conservation of the molecular pathways governing hematopoiesis between mammals and zebrafish, as well as the identification of several well conserved zebrafish transcription factors mammalian orthologs, permitted the identification and characterization of a 12657 bp cDNA sequence which represents a candidate zebrafish orthologue of the human MLL gene. The major advantages of this system include robust experimental techniques in both genetics and embryology, which have been utilized to model many aspects of human development and diseases. This part of the work has been performed by bioinformatics and classical molecular analyses. After sequencing, the zebrafish mll nucleotide sequence, exon-intron structure, amino acid sequence, and conserved domains were analyzed via the zebrafish databases. The temporal pattern of mll mRNA expression was examined using quantitative RT-PCR analysis and whole-mount in situ hybridization analysis. These findings indicate that there is a single mll gene with highly conserved functional similarity to human MLL. The temporal pattern of expression, including maternal supply of transcripts to the embryo, indicates that mll is important from early embryogenesis through the entire lifespan of the fish. The high evolutionary conservation of critical domains creates the starting point to use zebrafish for studying MLL in hematopoiesis and leukemia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Basso, Giuseppe
Data di deposito della tesi:28 Gennaio 2008
Anno di Pubblicazione:28 Gennaio 2008
Parole chiave (italiano / inglese):MLL, Panhandle PCR, zebrafish
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/38 Pediatria generale e specialistica
Struttura di riferimento:Dipartimenti > Dipartimento di Pediatria
Codice ID:657
Depositato il:08 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1 Rabbitts TH. Chromosomal translocations in human cancer. Nature 1994;372(6502):143-9.372. Cerca con Google

2 Look AT. Oncogenic transcription factors in the human acute leukemias. Science 1997;278(5340):1059-64. Cerca con Google

3 Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology (Am Soc Hematol Educ Program) 2004:80-97. Cerca con Google

4 Rowley JD, Olney HJ. International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002;33(4):331-45. Cerca con Google

5 Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003;17(4):700-6. Cerca con Google

6 Bacher U, Kern W, Schnittger S, Hiddemann W, Haferlach T, Schoch C. Population-based age-specific incidences of cytogenetic subgroups of acute myeloid leukemia. Haematologica 2005;90(11):1502-10. Cerca con Google

7 Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 2005;105(9):3434-41. Cerca con Google

8 S.A Schichman, et al., Proc. Natl. Acad. Sci USA. 91, (1994), 6236. Cerca con Google

9 B. Poppe, et al., Blood. 103, (2004), 229. Cerca con Google

10 Borkhardt A, Wuchter C, Viehmann S, et al. Infant acute lymphoblastic leukemia - combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia 2002;16(9):1685-90. Cerca con Google

11 Pui CH, Kane JR, Crist WM. Biology and treatment of infant leukemias. Leukemia 1995;9(5):762-9. Cerca con Google

12 Ratain MJ, Kaminer LS, Bitran JD, et al. Acute nonlymphocytic leukemia following etoposide and cisplatin combination chemotherapy for advanced non-small-cell carcinoma of the lung. Blood 1987;70(5):1412-7. Cerca con Google

13 Pui CH, Kalwinsky DK, Schell MJ, Mason CA, Mirro J, Jr., Dahl GV. Acute nonlymphoblastic leukemia in infants: clinical presentation and outcome. J Clin Oncol 1988;6(6):1008-13. Cerca con Google

14 Smith MA, Rubenstein L, Ungerleider RS. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: estimating the risks. Med Pediatr Oncol 1994;23:86-98. Cerca con Google

15 Felix CA, Hosler MR, Winick NJ, Masterson M, Wilson AE, Lange BJ. ALL- 1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood 1995;85:3250-6. Cerca con Google

16 Winick N, McKenna RW, Shuster JJ, et al. Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J Clin Oncol 1993;11:209-17. Cerca con Google

17 Hunger SP, Sklar J, Link MP. Acute lymphoblastic leukemia occurring as a second malignant neoplasm in childhood: report of three cases and review of the literature. J Clin Oncol 1992;10:156-63. Cerca con Google

18 Sobulo OM, Borrow J, Tomek R, et al. MLL is fused to CBP, a histone acetyltransferase, in therapy related acute myeloid leukemia with a t(11;16)(q23;p13.3). Proc Natl Acad Sci, USA 1997;94:8732-7 Cerca con Google

19 Rowley JD, Reshmi S, Sobulo O, et al. All patients with t(11;16)(q23;p13.3) that involve MLL and CBP have treatment-related hematologic disorders. Blood 1997;90:535-41. Cerca con Google

20 Reaman G, Sposto R, Sensel M, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol 1999;17(2):445-55. Cerca con Google

21 Reaman G, Zeltzer P, Bleyer WA, et al. Acute lymphoblastic leukemia in infants less than one year of age: A cumulative experience of the Children's Cancer Study Group. J Clin Oncol 1985;3:1513-21. Cerca con Google

22 Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia-implications for treatment of infants. Leukemia 1998;12:1344-8. Cerca con Google

23 Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002;359(9321):1909-15. Cerca con Google

24 Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 2006;108(2):441-51. Cerca con Google

25 Woods WG, Neudorf S, Gold S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001;97(1):56-62. Cerca con Google

26 Barnard DR, Lange B, Alonzo TA, et al. Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood 2002;100(2):427-34 Cerca con Google

27 S.A. Armstrong, T.R. Colub, S.J. Korsmeyer, Seminars in Hematology. 40, 28 G. Germano, M. Pigazzi, L. del Giudice, et al., Haematologica. 91, (2006), ECR09. Cerca con Google

29 Rasio D, Schichman SA, Negrini M, Canaani E, Croce CM. Complete exon structure of the ALL1 gene. Cancer Research 1996;56:1766-9. Cerca con Google

30 Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA. A Trithoraxlike gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nature Genetics 1992;2:113-8. Cerca con Google

31 Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila Trithorax, to the AF-4 gene. Cell 1992;71:701-8. Cerca con Google

32 Tkachuk DC, Kohler S, Cleary ML. Involvement of a homolog of Drosophila Trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992;71:691-700. Cerca con Google

33 Ma Q, Alder H, Nelson KK, et al. Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc Natl Acad Sci USA 1993;90:6350-4. Cerca con Google

34 Domer PH, Fakharzadeh SS, Chen C-S, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA 1993;90:7884-8. Cerca con Google

35 Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene 2001;20(40):5695-707. Cerca con Google

36 Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ. MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A 1998;95(18):10632-6. Cerca con Google

37 Mahmoudi T, Verrijzer CP. Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 2001;20(24):3055-66. Cerca con Google

38 Hanson RD, Hess JL, Yu BD, et al. Mammalian Trithorax and polycombgroup homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci U S A 1999;96(25):14372-7. Cerca con Google

39 Yu BD, Hess JL, Horning SE, Brown GAJ, Korsmeyer SJ. Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995;378:505- 8. Cerca con Google

40 Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 1997;90(5):1799-806. Cerca con Google

41 K. Nilson, et al., Br. J. Haematol. 93, (1996), 966. Cerca con Google

42 Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M. Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002;100(10):3710-8. Cerca con Google

43 Hsieh JJ, Cheng EH, Korsmeyer SJ. Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003;115(3):293-303. Cerca con Google

44 Caslini C, Shilatifard A, Yang L, Hess JL. The amino terminus of the mixed lineage leukemia protein (MLL) promotes cell cycle arrest and monocytic differentiation. PNAS 2000;97(6):2797-802. Cerca con Google

45 Lee JH, Voo KS, Skalnik DG. Identification and characterization of the DNA binding domain of CpG-binding protein. J Biol Chem 2001;276(48):44669- 76. Cerca con Google

46 Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ. MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci U S A 2003;100(14):8342-7. Cerca con Google

47 Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO. Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001;21(10):3589-97. Cerca con Google

48 Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol. 2001;21(7):2249-58. Cerca con Google

49 Rozenblatt-Rosen O, Rozovskaia T, Burakov D, et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proceedings of the National Academy of Sciences of the United States of America 1998;95(8):4152-7. Cerca con Google

50 Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell Cerca con Google

2002;10(5):1107-17. Cerca con Google

51 Nakamura T, Mori T, Tada S, Krajewski W, et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell. 2002;10(5):1119-28. Cerca con Google

52 Rowley JD. The critical role of chromosome translocations in human leukemias. Annu Rev Genet 1998;32:495-519. Cerca con Google

53 Felix CA. Acute Lymphoblastic Leukemia in Infants. In: Pediatric Acute Lymphoblastic Leukemia: Challenges and Controversies in 2000. Hematology 2000: Education Program of the American Society of Hematology 2000:294-8. Cerca con Google

54 Ayton PM, Cleary ML. MLL in Normal and Malignant Hematopoiesis. In: Ravid K, Licht JD, editors. Transcription Factors: Normal and Malignant Development of Blood Cells. New York: Wiley-Liss, Inc.; 2001. Cerca con Google

55 Huret JL. 11q23 rearrangements in leukaemia. In: Atlas Genet Cytogenet Oncol Haematol; 2001. Cerca con Google

56 Harrison CJ, Cuneo A, Clark R, et al. Ten novel 11q23 chromosomal partner sites. Leukemia 1998;12:811-22. Cerca con Google

57 Morrissey J, Tkachuk DC, Milatovich A, Francke U, Link M, Cleary ML. A serine/proline-rich protein is fused to HRX in t(4;11) acute leukemias. Blood 1993;81:1124-31. Cerca con Google

58 Taki T, Hayashi Y, Taniwaki M, et al. Fusion of the MLL gene with two different genes, AF-6 and AF-5alpha, by a complex translocation involving chromosomes 5, 6, 8 and 11 in infant leukemia. Oncogene 1996;13(10):2121-30. Cerca con Google

59 Taki T, Kano H, Taniwaki M, Sako M, Yanagisawa M, Hayashi Y. AF5q31, a newly identified AF4-related gene, is fused to MLL in infant acute lymphoblastic leukemia with ins(5;11)(q31;q13q23). Proc Natl Acad Sci U S A 1999;96:14535-40. Cerca con Google

60 Hillion J, Le Coniat M, Jonveaux P, Berger R, Bernard OA. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a Forkhead transcriptional factor subfamily. Blood 1997;9:3714-9. Cerca con Google

61 Chaplin T, Bernard O, Beverloo HB, et al. The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. Blood 1995;86:2073-6. Cerca con Google

62 Schichman SA, Caligiuri MA, Gu Y, et al. ALL-1 partial duplication in acute leukemia. Proc Natl Acad Sci 1994;91:6236-9. Cerca con Google

63 Prasad R, Leshkowitz D, Gu Y, et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemia. Proc Natl Acad Sci 1994;91:8107-11. Cerca con Google

64 Nakamura T, Alder H, Gu Y, et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA 1993;90:4631-5. Cerca con Google

65 Borkhardt A, Repp R, Haas O, et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X;11)(q13;q23). Oncogene 1997;14:195-202. Cerca con Google

66 Taki T, Sako M, Tsuchida M, Hayashi Y. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood 1997;89:3945-50. Cerca con Google

67 Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci 1994;91:12110-4. Cerca con Google

68 Ida K, Kitabayashi I, Taki T, et al. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood 1997;90:4699-704. Cerca con Google

69 Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 2002;62(14):4075-80. Cerca con Google

70 Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 2003;17(3):637-41. Cerca con Google

71 Hayette S, Tigaud I, Vanier A, et al. AF15q14, a novel partner gene fused to the MLL gene in an acute myeloid leukaemia with a t(11;15)(q23;q14). Oncogene 2000;19(38):4446-50. Cerca con Google

72 Bernard O, Mauchauffe M, Mecucci C, Van Den Berghe H, Berger R. A novel gene, AF-1p, fused to HRX in t(1;11)(p32;q23), is not related to AF-4, AF-9 nor ENL. Oncogene 1994;9:1039-45. Cerca con Google

73 Tse W, Zhu W, Chen HS, Cohen A. A novel gene, AF1q, fused to MLL in t(1;11) (q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood 1995;85(3):650-6. Cerca con Google

74 Sano K, Hayakawa A, Piao J-H, Kosaka Y, Nakamura H. Novel SH3 protein encoded by the AF3p21 gene is fused to the mixed lineage leukemia protein in a therapy-related leukemia with t(3;11)(p21;q23). Blood 2000;95:1066-8. Cerca con Google

75 Pegram LD, Megonigal MD, Lange BJ, et al. t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5' MONOPHOSPHATE SYNTHETASE) gene. Blood 2000;96(13):4360-2. Cerca con Google

76 Daheron L, Veinstein A, Brizard F, et al. Human LLP gene is fused to MLL in a secondary acute leukemia with a t(3;11)(q28;q23). Genes Chromosomes & Cancer 2001;31:382-9. Cerca con Google

77 Borkhardt A, Bojesen S, Haas OA, et al. The human GRAF gene is fused to MLL in a unique t(5;11)(q31;q23) and both alleles are disrupted in three cases of myelodysplastic syndrome/acute myeloid leukemia with a deletion 5q. Proc Natl Acad Sci USA 2000;97(16):9168-73. Cerca con Google

78 Raffini LJ, Slater DJ, Rappaport EF, et al. Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci USA 2002;99(7):4568-73. Cerca con Google

79 Fuchs U, Rehkamp G, Haas OA, et al. The human formin-binding protein 17 (FBP17) interacts with sorting nexin, SNX2, and is an MLL-fusion partner in acute myelogeneous leukemia. Proc Natl Acad Sci U S A 2001;98(15):8756- 61. Cerca con Google

80 Taki T, Shibuya N, Taniwaki M, et al. ABI-1, a human homolog to mouse Abl-1 interactor 1, fuses the MLL gene in acute myeloid leukemia with t(10;11)(p11.2;q23). Blood 1998;92:1125-30. Cerca con Google

81 Fu J, Hsu J, Tang T, Shih L. Identification of CBL,a Proto-oncogene at 11q23.3, as a Novel MLL Fusion Partner in a Patient With de Novo Acute Myeloid Leukemia. Genes, Chromosomes & Cancer 2003;37:214-19. Cerca con Google

82 Chinwalla V, Chien A, Odero M, Neilly MB, Zeleznik-Le NJ, Rowley JD. A t(11;15) fuses MLL to two different genes, AF15q14 and a novel gene MPFYVE on chromosome 15. Oncogene 2003;22(9):1400-10. Cerca con Google

83 Megonigal MD, Cheung NK, Rappaport EF, et al. Detection of leukemiaassociated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc Natl Acad Sci U S A 2000;97(6):2814-9. Cerca con Google

84 Strehl S, Borkhardt A, Slany R, Fuchs UE, Konig M, Haas OA. The human LASP1 gene is fused to MLL in an acute myeloid leukemia with t(11;17)(q23;q21). Oncogene 2003;22(1):157-60. Cerca con Google

85 So C, Caldas C, Liu M-M, et al. EEN encodes for a member of a new family of proteins containing a Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. Proc Natl Acad Sci USA 1997;99:2563-8. Cerca con Google

86 Megonigal MD, Rappaport EF, Jones DH, et al. t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A 1998;95(11):6413-8. Cerca con Google

87 Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci USA 1999;96:6428-33. Cerca con Google

88 Taki T, Ohnishi H, Shinohara K, et al. AF17q25, a putative septin family gene, fuses the MLL gene in acute myeloid leukemia with t(11;17)(q23;q25). Cancer Res 1999;59(17):4261-5. Cerca con Google

89 Borkhardt A, Teigler-Schlegel A, Fuchs U, et al. An ins(X;11)(q24;q23) fuses the MLL and the Septin 6/KIAA0128 gene an infant with AML-M2. Genes Chromosomes & Cancer 2001;32:82-8. Cerca con Google

90 Ono R, Taki T, Taketani T, et al. SEPTIN6, a human homologue to mouse Septin6, is fused to MLL in infant acute myeloid leukemia with complex chromosomal abnormalities involving 11q23 and Xq24. Cancer Res 2002;62:333-7. Cerca con Google

91 Slater DJ, Hilgenfeld E, Rappaport EF, et al. MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene 2002;21(30):4706-14. Cerca con Google

92 Eguchi M, Eguchi-Ishimae M, Seto M, et al. GPHN, a novel partner gene fused to MLL in a leukemia with t(11;14)(q23;q24). Genes Chromosomes Cancer 2001;32(3):212-21. Cerca con Google

93 Wechsler DS, Engstrom LD, Alexander BM, Motto DG, Roulston D. A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein. Genes, Chromosomes & Cancer 2003;36(1):26-36. Cerca con Google

94 Kourlas PJ, Strout MP, Becknell B, et al. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci USA 2000;97(5):2145-50. Cerca con Google

95 Prasad R, Gu Y, Alder H, et al. Cloning of the ALL-1 fusion partner, the AF- 6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 1993;53:5624-8. Cerca con Google

96 LoNigro L, Slater DJ, Rappaport EF, et al. Two new partner genes of MLL and additional heterogeneity in t(11;19)(q23;p13) translocations. Blood 2002;100 (Suppl 1):531a. Cerca con Google

97 Caligiuri MA, Strout MP, Schichman SA, et al. Partial tandem duplication of ALL1 as a recurrent molecular defect in acute myeloid leukemia with trisomy 11. Cancer Res 1996;56:1418-25. Cerca con Google

98 Megonigal MD, Rappaport EF, Jones DH, et al. Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias. Proc Natl Acad Sci USA 1997;94(21):11583-8. Cerca con Google

99 Nilson I, Reichel M, Ennas MG, et al. Exon/intron structure of the AF-4 gene, a member of the AF-4/LAF-4/FMR-2 gene family coding for a nuclear protein with structural alterations in acute leukaemia. Br J Haematol 1997;98:157-69. Cerca con Google

100 Tatsumi K, Taki T, Taniwaki M, et al. The CDCREL1 gene is fused to MLL in de novo acute myeloid leukemia with t(11;22)(q23;q11.2) and its frequent expression in myeloid leukemia cell lines. Genes Chromosomes & Cancer Cerca con Google

2001;30:230-5. Cerca con Google

101 So CW, Cleary ML. MLL-AFX requires the transcriptional effector domains of AFX to transform myeloid progenitors and transdominantly interfere with forkhead protein function. Mol Cell Biol 2002;22(18):6542-52. Cerca con Google

102 So CW, Cleary ML. Common mechanism for oncogenic activation of MLL by forkhead family proteins. Blood 2003;101(2):633-9. Cerca con Google

103 Secker-Walker LM. General Report on the European Union Concerted Action Workshop on 11q23, London, UK, May 1997. Leukemia 1998;12(5):776-8. Cerca con Google

104 Erfurth F, Hemenway CS, de Erkenez AC, Domer PH. MLL fusion partners AF4 and AF9 interact at subnuclear foci. Leukemia 2004;18:92-102. Cerca con Google

105 Corral J, Lavenir I, Impey H, et al. An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85:853-61. Cerca con Google

106 Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. Embo J 1997;16(14):4226-37. Cerca con Google

107 Lavau C, Luo RT, Du C, Thirman MJ. Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice [In Process Citation]. Proc Natl Acad Sci U S A Cerca con Google

2000;97(20):10984-9. Cerca con Google

108 Lavau C, Du C, Thirman M, Zeleznik-Le N. Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. Embo J 2000;19(17):4655-64. Cerca con Google

109 So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML. MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003;3(2):161-71. Cerca con Google

110 Liedman D, Zeleznik-Le N. Retroviral transduction model of mixed lineage leukemia fused to CREB binding protein. Curr Opin Hematol 2001;8(4):218-23. Cerca con Google

111 Zeisig BB, Schreiner S, Garcia-Cuellar MP, Slany RK. Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia 2003;17(2):359-65. Cerca con Google

112 So CW, Lin M, Ayton PM, Chen EH, Cleary ML. Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 2003;4(2):99-110. Cerca con Google

113 Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003;17(18):2298-307. Cerca con Google

114 Kumar AR, Hudson WA, Chen W, Nishiuchi R, Yao Q, Kersey JH. Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. Blood 2004;103(5):1823-8. Cerca con Google

115 So CW, Karsunky H, Wong P, Weissman IL, Cleary ML. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004;103(8):3192-9. Cerca con Google

116 Gale K, Ford A, Repp R, et al. Backtracking leukemia to birth: Identification of clonotypic gene fusion sequences in neonatal bloodspots. Proc Natl Acad Sci USA 1997;94:13950-4. Cerca con Google

117 Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363:358-60. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record