Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bellacosa Marotti, Rosilari (2014) Perceptual binding of static and dynamic signals: a psychophysical and electrophysiological study on contour integration. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

The present work investigates the mechanisms underpinning the integration of local signals (either local orientations, positions or directions) into whole configurations. The investigation is composed of three studies that try to disentangle the issue using a contour integration paradigm. Each of them focuses on a specific aspect of the problem.
Study one compares two integration models: the first is the well known “association field model”, based on local lateral interactions between adjacent receptive fields tuned to similar orientation (in primary visual area V1). The second is a second-stage filter that follows rectification of first-order filters. Study two tests, instead, the idea that a local cooperative system is responsible for the integration of directional signals. In addition it investigates whether such a mechanism could explain the “motion facilitation effect” usually found with dynamic (compared to static contours). Finally, study three extends findings from study two recording Visual Evoked Potentials (VEPs) elicited by static and dynamic contours.
My findings provide support to the idea that a mechanism based on local lateral interactions in V1 could account for the integration of static contours, whereas a local cooperative mechanism could account for the integration of static contours. Moreover, these two mechanisms interact, in a way that the cooperative motion system facilitates or impairs the input feeding the static association field.

Abstract (italiano)

Questa tesi investiga i meccanismi responsabili dell’integrazione di segnali locali (siano essi orientazioni, posizioni o direzioni di elementi locali) in configurazioni globali. Il lavoro si compone di tre studi, che provano a dare una risposta alla domanda attraverso l’utilizzo di un paradigma di integrazione di contorni. Ciascuno studio approfondisce uno specifico aspetto del problema.
Il primo studio confronta due modelli di integrazione: il primo è il celebre “campo associativo”, basato su connessioni laterali (presenti nella corteccia visiva primaria) tra campi recettivi adiacenti e sensibili per orientazioni locali simili. Il secondo modello è un filtro di second’ordine che riceve come input il risultato di un processo di rettificazione dell’output filtri di primo ordine.
Il secondo studio verifica, invece, se un sistema cooperativo locale spiega in maniera esaustiva l’integrazione di segnali locali di direzione. Inoltre, questo studio investiga anche la possibilità che il suddetto meccanismo cooperativo possa spiegare la “facilitazione data dal movimento” che si trova, di solito, quando si confronta la abilità di rilevare un la presenza di un contorno dinamico rispetto ad uno statico. In ultimo, lo studio tre amplia i risultati del secondo studio, avvalendosi di una tecnica di registrazione di potenziali evocati elicitati da contorni statici e dinamici.
Nel complesso, i tre studi supportano l’idea che un sistema basato su connessioni laterali (presenti nella corteccia visiva primaria) possa determinare l’integrazione di contorni statici, mentre un sistema cooperativo spiega l’integrazione di segnali di movimento locali. In aggiunta, questi due sistemi interagiscono continuamente, con il sistema di movimento che determina la qualità dell’input che sarà utilizzato, successivamente, dal sistema associativo statico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Casco, Clara
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE PSICOLOGICHE
Data di deposito della tesi:29 Gennaio 2014
Anno di Pubblicazione:29 Gennaio 2014
Parole chiave (italiano / inglese):contour integration; spatial vision; motion perception; VEPs; lateral interactions; cooperative mechansism; snake; ladder.
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/01 Psicologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:6570
Depositato il:10 Nov 2014 16:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. J Opt Soc Am A, 2(2), 284-299. Cerca con Google

Adelson, E. H., & Movshon, J. A. (1982). Phenomenal coherence of moving visual patterns. Nature, 300(5892), 523-525. Cerca con Google

Allman, J., Miezin, F., & McGuinness, E. (1985). Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception, 14(2), 105-126. Cerca con Google

Amano, K., Edwards, M., Badcock, D. R., & Nishida, S. (2009). Adaptive pooling of visual motion signals by the human visual system revealed with a novel multi-element stimulus. J Vis, 9(3), 4 1-25. doi: 10.1167/9.3.4 Cerca con Google

Amano, K., Goda, N., Nishida, S., Ejima, Y., Takeda, T., & Ohtani, Y. (2006). Estimation of the timing of human visual perception from magnetoencephalography. J Neurosci, 26(15), 3981-3991. doi: 10.1523/JNEUROSCI.4343-05.2006 Cerca con Google

Amano, K., Kuriki, I., & Takeda, T. (2005). Direction-specific adaptation of magnetic responses to motion onset. Vision Res, 45(19), 2533-2548. doi: 10.1016/j.visres.2005.02.024 Cerca con Google

Anderson, S. J., & Burr, D. C. (1987). Receptive field size of human motion detection units. Vision Res, 27(4), 621-635. Cerca con Google

Anderson, S. J., Holliday, I. E., Singh, K. D., & Harding, G. F. (1996). Localization and functional analysis of human cortical area V5 using magneto-encephalography. Proc Biol Sci, 263(1369), 423-431. doi: 10.1098/rspb.1996.0064 Cerca con Google

Aspell, J. E., Tanskanen, T., & Hurlbert, A. C. (2005). Neuromagnetic correlates of visual motion coherence. Eur J Neurosci, 22(11), 2937-2945. doi: 10.1111/j.1460-9568.2005.04473.x Cerca con Google

Attneave, F. (1954). Some informational aspects of visual perception. Psychol Rev, 61(3), 183-193. Cerca con Google

Bach, M., & Meigen, T. (1992). Electrophysiological correlates of texture segregation in the human visual evoked potential. Vision Res, 32(3), 417-424. Cerca con Google

Bach, M., & Meigen, T. (1997). Similar electrophysiological correlates of texture segregation induced by luminance, orientation, motion and stereo. Vision Res, 37(11), 1409-1414. Cerca con Google

Bach, M., & Ullrich, D. (1997). Contrast dependency of motion-onset and pattern-reversal VEPs: interaction of stimulus type, recording site and response component. Vision Res, 37(13), 1845-1849. Cerca con Google

Banton, T., & Bertenthal, B. I. (1996). Infants' sensitivity to uniform motion. Vision Res, 36(11), 1633-1640. Cerca con Google

Bell, J., Gheorghiu, E., Hess, R. F., & Kingdom, F. A. (2011). Global shape processing involves a hierarchy of integration stages. Vision Res, 51(15), 1760-1766. doi: 10.1016/j.visres.2011.06.003 Cerca con Google

Berkson, J. (1953). A statistically precise and relatively simple method of estimating the bio-assay with quantal response, based on the logistic function. Journal of the American Statistical Association, 48(263), 565-599. Cerca con Google

Bex, P. J., & Dakin, S. C. (2002). Comparison of the spatial-frequency selectivity of local and global motion detectors. J Opt Soc Am A Opt Image Sci Vis, 19(4), 670-677. Cerca con Google

Bex, P. J., Simmers, A. J., & Dakin, S. C. (2001). Snakes and ladders: the role of temporal modulation in visual contour integration. Vision Res, 41(27), 3775-3782. Cerca con Google

Bex, P. J., Simmers, A. J., & Dakin, S. C. (2003). Grouping local directional signals into moving contours. Vision Res, 43(20), 2141-2153. Cerca con Google

Biederman, I. (1987). Recognition-by-components: a theory of human image understanding. Psychol Rev, 94(2), 115-147. Cerca con Google

Bonneh, Y., & Sagi, D. (1998). Effects of spatial configuration on contrast detection. Vision Res, 38(22), 3541-3553. Cerca con Google

Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annu Rev Neurosci, 28, 157-189. doi: 10.1146/annurev.neuro.26.041002.131052 Cerca con Google

Born, R. T., & Tootell, R. B. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature, 357(6378), 497-499. doi: 10.1038/357497a0 Cerca con Google

Bosking, W. H., Zhang, Y., Schofield, B., & Fitzpatrick, D. (1997). Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J Neurosci, 17(6), 2112-2127. Cerca con Google

Bowns, L., & Alais, D. (2006). Large shifts in perceived motion direction reveal multiple global motion solutions. Vision Res, 46(8-9), 1170-1177. doi: 10.1016/j.visres.2005.08.029 Cerca con Google

Bozzi, P. (1969). Direzionalità ed organizzazione interna della figura. [Directionality and internal organization of a figure]. Atti dell'Accademia patavina di Scienze, Lettere ed Arti, 81, 137-170. Cerca con Google

Bozzi, P. (1989). Fenomenologia sperimentale. Bologna: Il Mulino. Cerca con Google

Braddick, O. J., O'Brien, J. M., Wattam-Bell, J., Atkinson, J., & Turner, R. (2000). Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain. Curr Biol, 10(12), 731-734. Cerca con Google

Bradley, D. C., & Andersen, R. A. (1998). Center-surround antagonism based on disparity in primate area MT. J Neurosci, 18(18), 7552-7565. Cerca con Google

Brainard, D. H. (1997). The Psychophysics Toolbox. Spat Vis, 10(4), 433-436. Cerca con Google

Bruce, V. (2003). Visual perception: Physiology, psychology, and ecology. : Psychology Press. Cerca con Google

Bundo, M., Kaneoke, Y., Inao, S., Yoshida, J., Nakamura, A., & Kakigi, R. (2000). Human visual motion areas determined individually by magnetoencephalography and 3D magnetic resonance imaging. Hum Brain Mapp, 11(1), 33-45. Cerca con Google

Caputo, G., & Casco, C. (1999). A visual evoked potential correlate of global figure-ground segmentation. Vision Res, 39(9), 1597-1610. Cerca con Google

Casco, C., Campana, G., Grieco, A., & Fuggetta, G. (2004). Perceptual learning modulates electrophysiological and psychophysical response to visual texture segmentation in humans. Neurosci Lett, 371(1), 18-23. doi: 10.1016/j.neulet.2004.08.005 Cerca con Google

Casco, C., Campana, G., Han, S., & Guzzon, D. (2009). Psychophysical and electrophysiological evidence of independent facilitation by collinearity and similarity in texture grouping and segmentation. Vision Res, 49(6), 583-593. doi: 10.1016/j.visres.2009.02.004 Cerca con Google

Casco, C., Caputo, G., & Grieco, A. (2001). Discrimination of an orientation difference in dynamic textures. Vision Res, 41(3), 275-284. Cerca con Google

Casco, C., Grieco, A., Campana, G., Corvino, M. P., & Caputo, G. (2005). Attention modulates psychophysical and electrophysiological response to visual texture segmentation in humans. Vision Res, 45(18), 2384-2396. doi: 10.1016/j.visres.2005.02.022 Cerca con Google

Casco, C., Grieco, A., Giora, E., & Martinelli, M. (2006). Saliency from orthogonal velocity component in texture segregation. Vision Res, 46(6-7), 1091-1098. doi: 10.1016/j.visres.2005.09.032 Cerca con Google

Chakravarthi, R., & Pelli, D. G. (2011). The same binding in contour integration and crowding. J Vis, 11(8). doi: 10.1167/11.8.10 Cerca con Google

Champion, R. A., Hammett, S. T., & Thompson, P. G. (2007). Perceived direction of plaid motion is not predicted by component speeds. Vision Res, 47(3), 375-383. doi: 10.1016/j.visres.2006.10.017 Cerca con Google

Chang, J. J., & Julesz, B. (1984). Cooperative phenomena in apparent movement perception of random-dot cinematograms. Vision Res, 24(12), 1781-1788. Cerca con Google

Chatterjee, S., & Price, B. (1977). Regression analysis by example. New York: John Wiley. Cerca con Google

Chen, C. C., & Tyler, C. W. (1999). Spatial pattern summation is phase-insensitive in the fovea but not in the periphery. Spat Vis, 12(3), 267-285. Cerca con Google

Chicherov, V., Plomp, G., & Herzog, M. H. (2011). The time course of perceptual grouping: a high density ERP study. Paper presented at the European Conference of Visual Perception, Tolouse. Cerca con Google

Christman, S. D., & Niebauer, C. L. (1997). The relation between left-right and upper-lower visual field asymmetries: or: What goes up goes right, while what's left lays low. Advances in Psychology, 123, 263-296. Cerca con Google

Chung, S. T., Patel, S. S., Bedell, H. E., & Yilmaz, O. (2007). Spatial and temporal properties of the illusory motion-induced position shift for drifting stimuli. Vision Res, 47(2), 231-243. doi: 10.1016/j.visres.2006.10.008 Cerca con Google

Clark, V. P., Fan, S., & Hillyard, S. A. (1994). Identification of early visual evoked potential generators by retinotopic and topographic analyses. Human Brain Mapping, 2(3), 170-187. Cerca con Google

Culham, J., He, S., Dukelow, S., & Verstraten, F. A. (2001). Visual motion and the human brain: what has neuroimaging told us? Acta Psychol (Amst), 107(1-3), 69-94. Cerca con Google

Dakin, S. C., & Baruch, N. J. (2009). Context influences contour integration. J Vis, 9(2), 13 11-13. doi: 10.1167/9.2.13 Cerca con Google

Dakin, S. C., & Hess, R. F. (1998). Spatial-frequency tuning of visual contour integration. J Opt Soc Am A Opt Image Sci Vis, 15(6), 1486-1499. Cerca con Google

Dakin, S. C., & Hess, R. F. (1999). Contour integration and scale combination processes in visual edge detection. Spat Vis, 12(3), 309-327. Cerca con Google

Das, A., & Gilbert, C. D. (1999). Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399(6737), 655-661. doi: 10.1038/21371 Cerca con Google

De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Res, 31(9), 1619-1626. Cerca con Google

Delon-Martin, C., Gobbele, R., Buchner, H., Haug, B. A., Antal, A., Darvas, F., & Paulus, W. (2006). Temporal pattern of source activities evoked by different types of motion onset stimuli. Neuroimage, 31(4), 1567-1579. doi: 10.1016/j.neuroimage.2006.02.013 Cerca con Google

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods, 134(1), 9-21. doi: 10.1016/j.jneumeth.2003.10.009 Cerca con Google

Desimone, R., & Ungerleider, L. G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol, 248(2), 164-189. doi: 10.1002/cne.902480203 Cerca con Google

Di Russo, F., Martinez, A., & Hillyard, S. A. (2003). Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex, 13(5), 486-499. Cerca con Google

Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp, 15(2), 95-111. Cerca con Google

Dresp, B., & Grossberg, S. (1997). Contour integration across polarities and spatial gaps: from local contrast filtering to global grouping. Vision Res, 37(7), 913-924. Cerca con Google

Duffy, C. J., & Wurtz, R. H. (1991). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol, 65(6), 1346-1359. Cerca con Google

Dukelow, S. P., DeSouza, J. F., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol, 86(4), 1991-2000. Cerca con Google

Dupont, P., De Bruyn, B., Vandenberghe, R., Rosier, A. M., Michiels, J., Marchal, G., . . . Orban, G. A. (1997). The kinetic occipital region in human visual cortex. Cereb Cortex, 7(3), 283-292. Cerca con Google

Edwards, M. (2009). Common-fate motion processing: interaction of the On and Off pathways. Vision Res, 49(4), 429-438. doi: 10.1016/j.visres.2008.11.010 Cerca con Google

Edwards, M., & Badcock, D. R. (1994). Global motion perception: interaction of the ON and OFF pathways. Vision Res, 34(21), 2849-2858. Cerca con Google

Ellison, A., & Cowey, A. (2006). TMS can reveal contrasting functions of the dorsal and ventral visual processing streams. Exp Brain Res, 175(4), 618-625. doi: 10.1007/s00221-006-0582-8 Cerca con Google

Ellison, A., & Cowey, A. (2007). Time course of the involvement of the ventral and dorsal visual processing streams in a visuospatial task. Neuropsychologia, 45(14), 3335-3339. doi: 10.1016/j.neuropsychologia.2007.06.014 Cerca con Google

Ellison, A., & Cowey, A. (2009). Differential and co-involvement of areas of the temporal and parietal streams in visual tasks. Neuropsychologia, 47(6), 1609-1614. doi: 10.1016/j.neuropsychologia.2008.12.013 Cerca con Google

Fahrenfort, J. J., Scholte, H. S., & Lamme, V. A. (2007). Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci, 19(9), 1488-1497. doi: 10.1162/jocn.2007.19.9.1488 Cerca con Google

Feldman, J., & Singh, M. (2005). Information along contours and object boundaries. Psychol Rev, 112(1), 243-252. doi: 10.1037/0033-295X.112.1.243 Cerca con Google

Felleman, D. J., & Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. J Neurophysiol, 57(4), 889-920. Cerca con Google

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex, 1(1), 1-47. Cerca con Google

ffytche, D. H., Guy, C. N., & Zeki, S. (1995). The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. Brain, 118 ( Pt 6), 1375-1394. Cerca con Google

Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: evidence for a local "association field". Vision Res, 33(2), 173-193. Cerca con Google

Field, D. J., Hayes, A., & Hess, R. F. (2000). The roles of polarity and symmetry in the perceptual grouping of contour fragments. Spat Vis, 13(1), 51-66. Cerca con Google

Fitzpatrick, D. (1996). The functional organization of local circuits in visual cortex: insights from the study of tree shrew striate cortex. Cereb Cortex, 6(3), 329-341. Cerca con Google

Fort, A., Besle, J., Giard, M. H., & Pernier, J. (2005). Task-dependent activation latency in human visual extrastriate cortex. Neurosci Lett, 379(2), 144-148. doi: 10.1016/j.neulet.2004.12.076 Cerca con Google

Foxe, J. J., Murray, M. M., & Javitt, D. C. (2005). Filling-in in schizophrenia: a high-density electrical mapping and source-analysis investigation of illusory contour processing. Cereb Cortex, 15(12), 1914-1927. doi: 10.1093/cercor/bhi069 Cerca con Google

Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. A framework for defining "early" visual processing. Exp Brain Res, 142(1), 139-150. doi: 10.1007/s00221-001-0906-7 Cerca con Google

Foxe, J. J., Strugstad, E. C., Sehatpour, P., Molholm, S., Pasieka, W., Schroeder, C. E., & McCourt, M. E. (2008). Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the "C1" component. Brain Topogr, 21(1), 11-21. doi: 10.1007/s10548-008-0063-4 Cerca con Google

Gegenfurtner, K. R., Kiper, D. C., & Fenstemaker, S. B. (1996). Processing of color, form, and motion in macaque area V2. Vis Neurosci, 13(1), 161-172. Cerca con Google

Gegenfurtner, K. R., Kiper, D. C., & Levitt, J. B. (1997). Functional properties of neurons in macaque area V3. J Neurophysiol, 77(4), 1906-1923. Cerca con Google

Geisler, W. S. (1999). Motion streaks provide a spatial code for motion direction. Nature, 400(6739), 65-69. doi: 10.1038/21886 Cerca con Google

Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Res, 41(6), 711-724. Cerca con Google

Gilad, A., Meirovithz, E., & Slovin, H. (2013). Population responses to contour integration: early encoding of discrete elements and late perceptual grouping. Neuron, 78(2), 389-402. doi: 10.1016/j.neuron.2013.02.013 Cerca con Google

Gilbert, C. D., & Wiesel, T. N. (1989). Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci, 9(7), 2432-2442. Cerca con Google

Gomez Gonzalez, C. M., Clark, V. P., Fan, S., Luck, S. J., & Hillyard, S. A. (1994). Sources of attention-sensitive visual event-related potentials. Brain Topogr, 7(1), 41-51. Cerca con Google

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci, 15(1), 20-25. Cerca con Google

Graham, N., Beck, J., & Sutter, A. (1992). Nonlinear processes in spatial-frequency channel models of perceived texture segregation: effects of sign and amount of contrast. Vision Res, 32(4), 719-743. Cerca con Google

Graham, N., & Sutter, A. (1998). Spatial summation in simple (Fourier) and complex (non-Fourier) texture channels. Vision Res, 38(2), 231-257. Cerca con Google

Graham, N., Sutter, A., Venkatesan, C., & Humaran, M. (1992). Non-linear processes in perceived region segregation: orientation selectivity of complex channels. Ophthalmic Physiol Opt, 12(2), 142-146. Cerca con Google

Graham, N., & Wolfson, S. S. (2004). Is there opponent-orientation coding in the second-order channels of pattern vision? Vision Res, 44(27), 3145-3175. doi: 10.1016/j.visres.2004.07.018 Cerca con Google

Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as linear filters (as classical V1 simple cells): useful additions of the last 25 years. Vision Res, 51(13), 1397-1430. doi: 10.1016/j.visres.2011.02.007 Cerca con Google

Graziano, M. S., Andersen, R. A., & Snowden, R. J. (1994). Tuning of MST neurons to spiral motions. J Neurosci, 14(1), 54-67. Cerca con Google

Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). Cue-invariant activation in object-related areas of the human occipital lobe. Neuron, 21(1), 191-202. Cerca con Google

Grzywacz, N. M., Watamaniuk, S. N., & McKee, S. P. (1995). Temporal coherence theory for the detection and measurement of visual motion. Vision Res, 35(22), 3183-3203. Cerca con Google

Halgren, E., Mendola, J., Chong, C. D., & Dale, A. M. (2003). Cortical activation to illusory shapes as measured with magnetoencephalography. Neuroimage, 18(4), 1001-1009. Cerca con Google

Hansen, B. C., & Hess, R. F. (2006). The role of spatial phase in texture segmentation and contour integration. J Vis, 6(5), 594-615. doi: 10.1167/6.5.5 Cerca con Google

Hayes, A. (2000). Apparent position governs contour-element binding by the visual system. Proc Biol Sci, 267(1450), 1341-1345. doi: 10.1098/rspb.2000.1148 Cerca con Google

He, S., Cavanagh, P., & Intriligator, J. (1996). Attentional resolution and the locus of visual awareness. Nature, 383(6598), 334-337. doi: 10.1038/383334a0 Cerca con Google

Heinrich, S. P. (2007). A primer on motion visual evoked potentials. Doc Ophthalmol, 114(2), 83-105. doi: 10.1007/s10633-006-9043-8 Cerca con Google

Heinrich, S. P., & Bach, M. (2003). Adaptation characteristics of steady-state motion visual evoked potentials. Clin Neurophysiol, 114(7), 1359-1366. Cerca con Google

Heinrich, S. P., van der Smagt, M. J., Bach, M., & Hoffmann, M. B. (2004). Electrophysiological evidence for independent speed channels in human motion processing. J Vis, 4(6), 469-475. doi: 10:1167/4.6.6 Cerca con Google

Henry, G. H., Bishop, P. O., & Dreher, B. (1974). Orientation, axis and direction as stimulus parameters for striate cells. Vision Res, 14(9), 767-777. Cerca con Google

Herrmann, C. S., & Bosch, V. (2001). Gestalt perception modulates early visual processing. Neuroreport, 12(5), 901-904. Cerca con Google

Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev, 25(6), 465-476. Cerca con Google

Hess, R., & Field, D. (1999). Integration of contours: new insights. Trends Cogn Sci, 3(12), 480-486. Cerca con Google

Hess, R. F., & Dakin, S. C. (1997). Absence of contour linking in peripheral vision. Nature, 390(6660), 602-604. doi: 10.1038/37593 Cerca con Google

Hess, R. F., & Dakin, S. C. (1999). Contour integration in the peripheral field. Vision Res, 39(5), 947-959. Cerca con Google

Hess, R. F., & Field, D. J. (1995). Contour integration across depth. Vision Res, 35(12), 1699-1711. Cerca con Google

Hess, R. F., Hayes, A., & Field, D. J. (2003). Contour integration and cortical processing. J Physiol Paris, 97(2-3), 105-119. doi: 10.1016/j.jphysparis.2003.09.013 Cerca con Google

Hess, R. F., Hayes, A., & Kingdom, F. A. (1997). Integrating contours within and through depth. Vision Res, 37(6), 691-696. Cerca con Google

Hess, R. F., & Ledgeway, T. (2003). The detection of direction-defined and speed-defined spatial contours: one mechanism or two? Vision Res, 43(5), 597-606. Cerca con Google

Hesselmann, G., & Malach, R. (2011). The link between fMRI-BOLD activation and perceptual awareness is "stream-invariant" in the human visual system. Cereb Cortex, 21(12), 2829-2837. doi: 10.1093/cercor/bhr085 Cerca con Google

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci U S A, 95(3), 781-787. Cerca con Google

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos Trans R Soc Lond B Biol Sci, 353(1373), 1257-1270. doi: 10.1098/rstb.1998.0281 Cerca con Google

Hoffmann, M. B., Unsold, A. S., & Bach, M. (2001). Directional tuning of human motion adaptation as reflected by the motion VEP. Vision Res, 41(17), 2187-2194. Cerca con Google

Holliday, I. E., & Meese, T. S. (2005). Neuromagnetic evoked responses to complex motions are greatest for expansion. Int J Psychophysiol, 55(2), 145-157. doi: 10.1016/j.ijpsycho.2004.07.009 Cerca con Google

Hopf, J. M., Boelmans, K., Schoenfeld, M. A., Luck, S. J., & Heinze, H. J. (2004). Attention to features precedes attention to locations in visual search: evidence from electromagnetic brain responses in humans. J Neurosci, 24(8), 1822-1832. doi: 10.1523/JNEUROSCI.3564-03.2004 Cerca con Google

Hopf, J. M., Vogel, E., Woodman, G., Heinze, H. J., & Luck, S. J. (2002). Localizing visual discrimination processes in time and space. J Neurophysiol, 88(4), 2088-2095. Cerca con Google

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol, 160, 106-154. Cerca con Google

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. J Physiol, 195(1), 215-243. Cerca con Google

Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc R Soc Lond B Biol Sci, 198(1130), 1-59. Cerca con Google

Huk, A. C., Dougherty, R. F., & Heeger, D. J. (2002). Retinotopy and functional subdivision of human areas MT and MST. J Neurosci, 22(16), 7195-7205. doi: 20026661 Cerca con Google

Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res, 16(1), 22-40. Cerca con Google

Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: a review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38(1), 93-110. Cerca con Google

Johannes, S., Munte, T. F., Heinze, H. J., & Mangun, G. R. (1995). Luminance and spatial attention effects on early visual processing. Brain Res Cogn Brain Res, 2(3), 189-205. Cerca con Google

Johnston, A., & Scarfe, P. (2013). The role of the harmonic vector average in motion integration. Front Comput Neurosci, 7, 146. doi: 10.3389/fncom.2013.00146 Cerca con Google

Kaneoke, Y., Watanabe, S., & Kakigi, R. (2005). Human visual processing as revealed by magnetoencephalography. Int Rev Neurobiol, 68, 197-222. doi: 10.1016/S0074-7742(05)68008-7 Cerca con Google

Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843-856. Cerca con Google

Kastner, S., Nothdurft, H. C., & Pigarev, I. N. (1999). Neuronal responses to orientation and motion contrast in cat striate cortex. Vis Neurosci, 16(3), 587-600. Cerca con Google

Kelly, S. P., Gomez-Ramirez, M., & Foxe, J. J. (2008). Spatial attention modulates initial afferent activity in human primary visual cortex. Cereb Cortex, 18(11), 2629-2636. doi: 10.1093/cercor/bhn022 Cerca con Google

Kennedy, J. M., & Domander, R. (1985). Shape and contour: the points of maximum change are least useful for recognition. Perception, 14(3), 367-370. Cerca con Google

Khoe, W., Freeman, E., Woldorff, M. G., & Mangun, G. R. (2004). Electrophysiological correlates of lateral interactions in human visual cortex. Vision Res, 44(14), 1659-1673. doi: 10.1016/j.visres.2004.02.011 Cerca con Google

Kim, J., & Wilson, H. R. (1993). Dependence of plaid motion coherence on component grating directions. Vision Res, 33(17), 2479-2489. Cerca con Google

Knebel, J. F., & Murray, M. M. (2012). Towards a resolution of conflicting models of illusory contour processing in humans. Neuroimage, 59(3), 2808-2817. doi: 10.1016/j.neuroimage.2011.09.031 Cerca con Google

Knierim, J. J., & van Essen, D. C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J Neurophysiol, 67(4), 961-980. Cerca con Google

Konen, C. S., & Kastner, S. (2008). Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci, 11(2), 224-231. doi: 10.1038/nn2036 Cerca con Google

Kovacs, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: effect of closure in figure-ground segmentation. Proc Natl Acad Sci U S A, 90(16), 7495-7497. Cerca con Google

Kovacs, I., Papathomas, T. V., Yang, M., & Feher, A. (1996). When the brain changes its mind: interocular grouping during binocular rivalry. Proc Natl Acad Sci U S A, 93(26), 15508-15511. Cerca con Google

Kremlacek, J., Kuba, M., Kubova, Z., & Chlubnova, J. (2004). Motion-onset VEPs to translating, radial, rotating and spiral stimuli. Doc Ophthalmol, 109(2), 169-175. Cerca con Google

Kuba, M., & Kubova, Z. (1992). Visual evoked potentials specific for motion onset. Doc Ophthalmol, 80(1), 83-89. Cerca con Google

Kubova, Z., & Kuba, M. (1995). Motion onset VEPs improve the diagnostics of multiple sclerosis and optic neuritis. Sb Ved Pr Lek Fak Karlovy Univerzity Hradci Kralove Suppl, 38(2), 89-93. Cerca con Google

Kubova, Z., Kuba, M., Hubacek, J., & Vit, F. (1990). Properties of visual evoked potentials to onset of movement on a television screen. Doc Ophthalmol, 75(1), 67-72. Cerca con Google

Kubova, Z., Kuba, M., Peregrin, J., & Novakova, V. (1996). Visual evoked potential evidence for magnocellular system deficit in dyslexia. Physiol Res, 45(1), 87-89. Cerca con Google

Kubova, Z., Kuba, M., Spekreijse, H., & Blakemore, C. (1995). Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vision Res, 35(2), 197-205. Cerca con Google

Lagae, L., Maes, H., Raiguel, S., Xiao, D. K., & Orban, G. A. (1994). Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol, 71(5), 1597-1626. Cerca con Google

Lagae, L., Raiguel, S., & Orban, G. A. (1993). Speed and direction selectivity of macaque middle temporal neurons. J Neurophysiol, 69(1), 19-39. Cerca con Google

Lamme, V. A., & Spekreijse, H. (2000). Modulations of primary visual cortex activity representing attentive and conscious scene perception. Front Biosci, 5, D232-243. Cerca con Google

Lamme, V. A., van Dijk, B. W., & Spekreijse, H. (1993). Contour from motion processing occurs in primary visual cortex. Nature, 363(6429), 541-543. doi: 10.1038/363541a0 Cerca con Google

Lamme, V. A., Van Dijk, B. W., & Spekreijse, H. (1994). Organization of contour from motion processing in primate visual cortex. Vision Res, 34(6), 721-735. Cerca con Google

Lamme, V. A., Zipser, K., & Spekreijse, H. (2002). Masking interrupts figure-ground signals in V1. J Cogn Neurosci, 14(7), 1044-1053. doi: 10.1162/089892902320474490 Cerca con Google

Ledgeway, T., & Hess, R. F. (2002). Rules for combining the outputs of local motion detectors to define simple contours. Vision Res, 42(5), 653-659. Cerca con Google

Ledgeway, T., & Hess, R. F. (2006). The spatial frequency and orientation selectivity of the mechanisms that extract motion-defined contours. Vision Res, 46(4), 568-578. doi: 10.1016/j.visres.2005.08.010 Cerca con Google

Ledgeway, T., Hess, R. F., & Geisler, W. S. (2005). Grouping local orientation and direction signals to extract spatial contours: empirical tests of "association field" models of contour integration. Vision Res, 45(19), 2511-2522. doi: 10.1016/j.visres.2005.04.002 Cerca con Google

Levi, D. M. (2008). Crowding--an essential bottleneck for object recognition: a mini-review. Vision Res, 48(5), 635-654. doi: 10.1016/j.visres.2007.12.009 Cerca con Google

Levi, D. M., & Waugh, S. J. (1996). Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity? Vision Res, 36(4), 573-588. Cerca con Google

Levine, M. W., & McAnany, J. J. (2005). The relative capabilities of the upper and lower visual hemifields. Vision Res, 45(21), 2820-2830. doi: 10.1016/j.visres.2005.04.001 Cerca con Google

Li, W., & Gilbert, C. D. (2002). Global contour saliency and local colinear interactions. J Neurophysiol, 88(5), 2846-2856. doi: 10.1152/jn.00289.2002 Cerca con Google

Li, W., Piech, V., & Gilbert, C. D. (2006). Contour saliency in primary visual cortex. Neuron, 50(6), 951-962. doi: 10.1016/j.neuron.2006.04.035 Cerca con Google

Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural Comput, 10(4), 903-940. Cerca con Google

Li, Z. (2000). Pre-attentive segmentation in the primary visual cortex. Spat Vis, 13(1), 25-50. Cerca con Google

Lin, L. M., & Wilson, H. R. (1996). Fourier and non-Fourier pattern discrimination compared. Vision Res, 36(13), 1907-1918. Cerca con Google

Loffler, G. (2008). Perception of contours and shapes: low and intermediate stage mechanisms. Vision Res, 48(20), 2106-2127. doi: 10.1016/j.visres.2008.03.006 Cerca con Google

Lopez-Calderon, J., & Luck, S. (2010). ERPLAB. Plug-in for EEGLAB.: In development at the Center for Mind and Brain, University of California at Davis. Cerca con Google

Lorenceau, J., Giersch, A., & Series, P. (2005). Dynamic competition between contour integration and contour segmentation probed with moving stimuli. Vision Res, 45(1), 103-116. doi: 10.1016/j.visres.2004.07.033 Cerca con Google

Luck, S. J. (2005). An introduction to the event-related potential technique (cognitive neuroscience). Cambridge, MA: MIT Press. Cerca con Google

Luck, S. J., Heinze, H. J., Mangun, G. R., & Hillyard, S. A. (1990). Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol, 75(6), 528-542. Cerca con Google

Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308. Cerca con Google

Machilsen, B., Novitskiy, N., Vancleef, K., & Wagemans, J. (2011). Context modulates the ERP signature of contour integration. PLoS One, 6(9), e25151. doi: 10.1371/journal.pone.0025151 Cerca con Google

Maffei, L., & Campbell, F. W. (1970). Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science, 167(3917), 386-387. Cerca con Google

Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proc Natl Acad Sci U S A, 90(22), 10469-10473. Cerca con Google

Malania, M., Herzog, M. H., & Westheimer, G. (2007). Grouping of contextual elements that affect vernier thresholds. J Vis, 7(2), 1 1-7. doi: 10.1167/7.2.1 Cerca con Google

Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4-18. Cerca con Google

Mather, G., Pavan, A., Bellacosa Marotti, R., Campana, G., & Casco, C. (2013). Interactions between motion and form processing in the human visual system. Front Comput Neurosci, 7, 65. doi: 10.3389/fncom.2013.00065 Cerca con Google

Mather, G., Pavan, A., Bellacosa, R. M., & Casco, C. (2012). Psychophysical evidence for interactions between visual motion and form processing at the level of motion integrating receptive fields. Neuropsychologia, 50(1), 153-159. doi: 10.1016/j.neuropsychologia.2011.11.013 Cerca con Google

Mathes, B., Trenner, D., & Fahle, M. (2006). The electrophysiological correlate of contour integration is modulated by task demands. Brain Res, 1114(1), 98-112. doi: 10.1016/j.brainres.2006.07.068 Cerca con Google

Maunsell, J. H., Nealey, T. A., & DePriest, D. D. (1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. J Neurosci, 10(10), 3323-3334. Cerca con Google

Maunsell, J. H., & Newsome, W. T. (1987). Visual processing in monkey extrastriate cortex. Annu Rev Neurosci, 10, 363-401. doi: 10.1146/annurev.ne.10.030187.002051 Cerca con Google

Maurer, J. P., Heinrich, T. S., & Bach, M. (2004). Direction tuning of human motion detection determined from a population model. Eur J Neurosci, 19(12), 3359-3364. doi: 10.1111/j.0953-816X.2004.03419.x Cerca con Google

May, K. A., & Hess, R. F. (2007a). Dynamics of snakes and ladders. J Vis, 7(12), 13 11-19. doi: 10.1167/7.12.13 Cerca con Google

May, K. A., & Hess, R. F. (2007b). Ladder contours are undetectable in the periphery: a crowding effect? J Vis, 7(13), 9 1-15. doi: 10.1167/7.13.9 Cerca con Google

May, K. A., & Hess, R. F. (2008). Effects of element separation and carrier wavelength on detection of snakes and ladders: implications for models of contour integration. J Vis, 8(13), 4 1-23. doi: 10.1167/8.13.4 Cerca con Google

McAnany, J. J., & Levine, M. W. (2007). Magnocellular and parvocellular visual pathway contributions to visual field anisotropies. Vision Res, 47(17), 2327-2336. doi: 10.1016/j.visres.2007.05.013 Cerca con Google

McGuire, B. A., Gilbert, C. D., Rivlin, P. K., & Wiesel, T. N. (1991). Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol, 305(3), 370-392. doi: 10.1002/cne.903050303 Cerca con Google

McLean, J., & Palmer, L. A. (1989). Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat. Vision Res, 29(6), 675-679. Cerca con Google

Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res, 6(1), 57-77. Cerca con Google

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends In Neuroscience, 6, 414-417. Cerca con Google

Mitchison, G., & Crick, F. (1982). Long axons within the striate cortex: their distribution, orientation, and patterns of connection. Proc Natl Acad Sci U S A, 79(11), 3661-3665. Cerca con Google

Molholm, S., Ritter, W., Murray, M. M., Javitt, D. C., Schroeder, C. E., & Foxe, J. J. (2002). Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study. Brain Res Cogn Brain Res, 14(1), 115-128. Cerca con Google

Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nat Neurosci, 3(12), 1322-1328. doi: 10.1038/81860 Cerca con Google

Motoyoshi, I., & Kingdom, F. A. (2007). Differential roles of contrast polarity reveal two streams of second-order visual processing. Vision Res, 47(15), 2047-2054. doi: 10.1016/j.visres.2007.03.015 Cerca con Google

Moulden, B. (1994). Collator units: second-stage orientational filters. Higher-order processing in the visual system. (Vol. 184, pp. 170-192): Ciba Foundation Symposium. Cerca con Google

Movshon, J., Adelson, E., Gizzi, M., & Newsome, W. (1985). The analysis of moving visual patterns. In C. Chagas, R. Gattass & C. Gross (Eds.), Pattern Recognition Mechanisms (pp. 117– 151). Rome: Vatican. Cerca con Google

Muller, R., & Gopfert, E. (1988). The influence of grating contrast on the human cortical potential visually evoked by motion. Acta Neurobiol Exp (Wars), 48(5), 239-249. Cerca con Google

Muller, R., Gopfert, E., Leineweber, M., & Greenlee, M. W. (2004). Effect of adaptation direction on the motion VEP and perceived speed of drifting gratings. Vision Res, 44(20), 2381-2392. doi: 10.1016/j.visres.2004.05.005 Cerca con Google

Nakamura, H., Kashii, S., Nagamine, T., Matsui, Y., Hashimoto, T., Honda, Y., & Shibasaki, H. (2003). Human V5 demonstrated by magnetoencephalography using random dot kinematograms of different coherence levels. Neurosci Res, 46(4), 423-433. Cerca con Google

Nakayama, K., Silverman, G. H., MacLeod, D. I., & Mulligan, J. (1985). Sensitivity to shearing and compressive motion in random dots. Perception, 14(2), 225-238. Cerca con Google

Nikolaev, A. R., & van Leeuwen, C. (2004). Flexibility in spatial and non-spatial feature grouping: an event-related potentials study. Brain Res Cogn Brain Res, 22(1), 13-25. doi: 10.1016/j.cogbrainres.2004.07.004 Cerca con Google

Norcia, A. M., Garcia, H., Humphry, R., Holmes, A., Hamer, R. D., & Orel-Bixler, D. (1991). Anomalous motion VEPs in infants and in infantile esotropia. Invest Ophthalmol Vis Sci, 32(2), 436-439. Cerca con Google

Nugent, A. K., Keswani, R. N., Woods, R. L., & Peli, E. (2003). Contour integration in peripheral vision reduces gradually with eccentricity. Vision Res, 43(23), 2427-2437. Cerca con Google

Nygard, G. E., Looy, T. V., & Wagemans, J. (2009). The influence of orientation jitter and motion on contour saliency and object identification. Vision Res, 49(20), 2475-2484. doi: 10.1016/j.visres.2009.08.002 Cerca con Google

Orban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., & Mortelmans, L. (1995). A motion area in human visual cortex. Proc Natl Acad Sci U S A, 92(4), 993-997. Cerca con Google

Pack, C. C., Hunter, J. N., & Born, R. T. (2005). Contrast dependence of suppressive influences in cortical area MT of alert macaque. J Neurophysiol, 93(3), 1809-1815. doi: 10.1152/jn.00629.2004 Cerca con Google

Panis, S., De Winter, J., Vandekerckhove, J., & Wagemans, J. (2008). Identification of everyday objects on the basis of fragmented outline versions. Perception, 37(2), 271-289. Cerca con Google

Panis, S., & Wagemans, J. (2009). Time-course contingencies in perceptual organization and identification of fragmented object outlines. J Exp Psychol Hum Percept Perform, 35(3), 661-687. doi: 10.1037/a0013547 Cerca con Google

Pasupathy, A., & Connor, C. E. (1999). Responses to contour features in macaque area V4. J Neurophysiol, 82(5), 2490-2502. Cerca con Google

Pavan, A., Casco, C., Mather, G., Bellacosa, R. M., Cuturi, L. F., & Campana, G. (2011). The effect of spatial orientation on detecting motion trajectories in noise. Vision Res, 51(18), 2077-2084. doi: 10.1016/j.visres.2011.08.001 Cerca con Google

Pavan, A., Marotti, R. B., & Mather, G. (2013). Motion-form interactions beyond the motion integration level: evidence for interactions between orientation and optic flow signals. J Vis, 13(6), 16. doi: 10.1167/13.6.16 Cerca con Google

Pazo-Alvarez, P., Amenedo, E., & Cadaveira, F. (2004). Automatic detection of motion direction changes in the human brain. Eur J Neurosci, 19(7), 1978-1986. doi: 10.1111/j.1460-9568.2004.03273.x Cerca con Google

Pei, F., Pettet, M. W., Vildavski, V. Y., & Norcia, A. M. (2005). Event-related potentials show configural specificity of global form processing. Neuroreport, 16(13), 1427-1430. Cerca con Google

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis, 10(4), 437-442. Cerca con Google

Pelli, D. G., Palomares, M., & Majaj, N. J. (2004). Crowding is unlike ordinary masking: distinguishing feature integration from detection. J Vis, 4(12), 1136-1169. doi: 10:1167/4.12.12 Cerca con Google

Phillips, F., & Todd, J. T. (2010). Texture discrimination based on global feature alignments. J Vis, 10(6), 6. doi: 10.1167/10.6.6 Cerca con Google

Pitts, M. A., Martinez, A., Brewer, J. B., & Hillyard, S. A. (2011). Early stages of figure-ground segregation during perception of the face-vase. J Cogn Neurosci, 23(4), 880-895. doi: 10.1162/jocn.2010.21438 Cerca con Google

Pitzalis, S., Sdoia, S., Bultrini, A., Committeri, G., Di Russo, F., Fattori, P., . . . Galati, G. (2013). Selectivity to translational egomotion in human brain motion areas. PLoS One, 8(4), e60241. doi: 10.1371/journal.pone.0060241 Cerca con Google

Polat, U. (1999). Functional architecture of long-range perceptual interactions. Spat Vis, 12(2), 143-162. Cerca con Google

Polat, U., & Bonneh, Y. (2000). Collinear interactions and contour integration. Spat Vis, 13(4), 393-401. Cerca con Google

Polat, U., & Sagi, D. (1994). The architecture of perceptual spatial interactions. Vision Res, 34(1), 73-78. Cerca con Google

Prins, N., Kingdom, F. A., & Hayes, A. (2007). Detecting low shape-frequencies in smooth and jagged contours. Vision Res, 47(18), 2390-2402. doi: 10.1016/j.visres.2007.06.006 Cerca con Google

Probst, T., Plendl, H., Paulus, W., Wist, E. R., & Scherg, M. (1993). Identification of the visual motion area (area V5) in the human brain by dipole source analysis. Exp Brain Res, 93(2), 345-351. Cerca con Google

Rademacher, J., Caviness, V. S., Jr., Steinmetz, H., & Galaburda, A. M. (1993). Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb Cortex, 3(4), 313-329. Cerca con Google

Raiguel, S., Van Hulle, M. M., Xiao, D. K., Marcar, V. L., & Orban, G. A. (1995). Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque. Eur J Neurosci, 7(10), 2064-2082. Cerca con Google

Rainville, S. J., & Wilson, H. R. (2005). Global shape coding for motion-defined radial-frequency contours. Vision Res, 45(25-26), 3189-3201. doi: 10.1016/j.visres.2005.06.033 Cerca con Google

Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Hum Brain Mapp, 30(5), 1723-1733. doi: 10.1002/hbm.20636 Cerca con Google

Reid, R. C., Soodak, R. E., & Shapley, R. M. (1987). Linear mechanisms of directional selectivity in simple cells of cat striate cortex. Proc Natl Acad Sci U S A, 84(23), 8740-8744. Cerca con Google

Ritter, W., Simson, R., Vaughan, H. G., Jr., & Friedman, D. (1979). A brain event related to the making of a sensory discrimination. Science, 203(4387), 1358-1361. Cerca con Google

Robol, V., Casco, C., & Dakin, S. C. (2012). The role of crowding in contextual influences on contour integration. J Vis, 12(7), 3. doi: 10.1167/12.7.3 Cerca con Google

Robol, V., Grassi, M., & Casco, C. (2013). Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region. Vision Res, 88, 1-8. doi: 10.1016/j.visres.2013.05.010 Cerca con Google

Rockland, K. S., & Lund, J. S. (1982). Widespread periodic intrinsic connections in the tree shrew visual cortex. Science, 215(4539), 1532-1534. Cerca con Google

Rockland, K. S., & Lund, J. S. (1983). Intrinsic laminar lattice connections in primate visual cortex. J Comp Neurol, 216(3), 303-318. doi: 10.1002/cne.902160307 Cerca con Google

Rockland, K. S., Lund, J. S., & Humphrey, A. L. (1982). Anatomical binding of intrinsic connections in striate cortex of tree shrews (Tupaia glis). J Comp Neurol, 209(1), 41-58. doi: 10.1002/cne.902090105 Cerca con Google

Roelfsema, P. R., Lamme, V. A., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395(6700), 376-381. doi: 10.1038/26475 Cerca con Google

Roncato, S., & Casco, C. (2006). Illusory boundary interpolation from local association field. Spat Vis, 19(6), 581-603. Cerca con Google

Roncato, S., & Casco, C. (2009). A new "tilt" illusion reveals the relation between border ownership and border binding. J Vis, 9(6), 14 11-10. doi: 10.1167/9.6.14 Cerca con Google

Rossi, V., & Pourtois, G. (2012). State-dependent attention modulation of human primary visual cortex: a high density ERP study. Neuroimage, 60(4), 2365-2378. doi: 10.1016/j.neuroimage.2012.02.007 Cerca con Google

Rossion, B., Delvenne, J. F., Debatisse, D., Goffaux, V., Bruyer, R., Crommelinck, M., & Guerit, J. M. (1999). Spatio-temporal localization of the face inversion effect: an event-related potentials study. Biol Psychol, 50(3), 173-189. Cerca con Google

Rossion, B., & Gauthier, I. (2002). How does the brain process upright and inverted faces? Behav Cogn Neurosci Rev, 1(1), 63-75. Cerca con Google

Rossion, B., Gauthier, I., Goffaux, V., Tarr, M. J., & Crommelinck, M. (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci, 13(3), 250-257. Cerca con Google

Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2004). How parallel is visual processing in the ventral pathway? Trends Cogn Sci, 8(8), 363-370. doi: 10.1016/j.tics.2004.06.003 Cerca con Google

Samonds, J. M., Zhou, Z., Bernard, M. R., & Bonds, A. B. (2006). Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J Neurophysiol, 95(4), 2602-2616. doi: 10.1152/jn.01070.2005 Cerca con Google

Sarti, A., Citti, G., & Petitot, J. (2009). Functional geometry of the horizontal connectivity in the primary visual cortex. J Physiol Paris, 103(1-2), 37-45. doi: 10.1016/j.jphysparis.2009.05.004 Cerca con Google

Schellart, N. A., Trindade, M. J., Reits, D., Verbunt, J. P., & Spekreijse, H. (2004). Temporal and spatial congruence of components of motion-onset evoked responses investigated by whole-head magneto-electroencephalography. Vision Res, 44(2), 119-134. Cerca con Google

Schendan, H. E., Ganis, G., & Kutas, M. (1998). Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology, 35(3), 240-251. Cerca con Google

Schiller, P. H., Finlay, B. L., & Volman, S. F. (1976). Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J Neurophysiol, 39(6), 1288-1319. Cerca con Google

Schmidt, K. E., Goebel, R., Lowel, S., & Singer, W. (1997). The perceptual grouping criterion of colinearity is reflected by anisotropies of connections in the primary visual cortex. Eur J Neurosci, 9(5), 1083-1089. Cerca con Google

Schoenfeld, M. A., Woldorff, M., Duzel, E., Scheich, H., Heinze, H. J., & Mangun, G. R. (2003). Form-from-motion: MEG evidence for time course and processing sequence. J Cogn Neurosci, 15(2), 157-172. doi: 10.1162/089892903321208105 Cerca con Google

Scholte, H. S., Jolij, J., Fahrenfort, J. J., & Lamme, V. A. (2008). Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging. J Cogn Neurosci, 20(11), 2097-2109. doi: 10.1162/jocn.2008.20142 Cerca con Google

Schumacher, J. F., Quinn, C. F., & Olman, C. A. (2011). An exploration of the spatial scale over which orientation-dependent surround effects affect contour detection. J Vis, 11(8), 12. doi: 10.1167/11.8.12 Cerca con Google

Senkowski, D., Rottger, S., Grimm, S., Foxe, J. J., & Herrmann, C. S. (2005). Kanizsa subjective figures capture visual spatial attention: evidence from electrophysiological and behavioral data. Neuropsychologia, 43(6), 872-886. doi: 10.1016/j.neuropsychologia.2004.09.010 Cerca con Google

Shpaner, M., Molholm, S., Forde, E., & Foxe, J. J. (2013). Disambiguating the roles of area V1 and the lateral occipital complex (LOC) in contour integration. Neuroimage, 69, 146-156. doi: 10.1016/j.neuroimage.2012.11.023 Cerca con Google

Sigman, M., Cecchi, G. A., Gilbert, C. D., & Magnasco, M. O. (2001). On a common circle: natural scenes and Gestalt rules. Proc Natl Acad Sci U S A, 98(4), 1935-1940. doi: 10.1073/pnas.031571498 Cerca con Google

Skrandies, W. (1987). The upper and lower visual field of man: Electrophysiological and functional differences. Berlin Heidelberg: Springer. Cerca con Google

Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci, 18(10), 3816-3830. Cerca con Google

Snowden, R. J., & Braddick, O. J. (1989). The combination of motion signals over time. Vision Res, 29(11), 1621-1630. Cerca con Google

Snowden, R. J., Treue, S., Erickson, R. G., & Andersen, R. A. (1991). The response of area MT and V1 neurons to transparent motion. J Neurosci, 11(9), 2768-2785. Cerca con Google

Spillmann, L., & Werner, J. S. (1996). Long-range interactions in visual perception. Trends Neurosci, 19(10), 428-434. Cerca con Google

Stettler, D. D., Das, A., Bennett, J., & Gilbert, C. D. (2002). Lateral connectivity and contextual interactions in macaque primary visual cortex. Neuron, 36(4), 739-750. Cerca con Google

Straube, S., & Fahle, M. (2010). The electrophysiological correlate of saliency: evidence from a figure-detection task. Brain Res, 1307, 89-102. doi: 10.1016/j.brainres.2009.10.043 Cerca con Google

Straube, S., Grimsen, C., & Fahle, M. (2010). Electrophysiological correlates of figure-ground segregation directly reflect perceptual saliency. Vision Res, 50(5), 509-521. doi: 10.1016/j.visres.2009.12.013 Cerca con Google

Tanaka, K., Fukada, Y., & Saito, H. A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol, 62(3), 642-656. Cerca con Google

Tanaka, K., & Saito, H. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol, 62(3), 626-641. Cerca con Google

Tanskanen, T., Saarinen, J., Parkkonen, L., & Hari, R. (2008). From local to global: Cortical dynamics of contour integration. J Vis, 8(7), 15 11-12. doi: 10.1167/8.7.15 Cerca con Google

Thiele, A., Dobkins, K. R., & Albright, T. D. (2001). Neural correlates of chromatic motion perception. Neuron, 32(2), 351-358. Cerca con Google

Thomas, N. A., & Elias, L. J. (2011). Upper and lower visual field differences in perceptual asymmetries. Brain Res, 1387, 108-115. doi: 10.1016/j.brainres.2011.02.063 Cerca con Google

Todd, J. T., & Norman, J. F. (1995). The effects of spatiotemporal integration on maximum displacement thresholds for the detection of coherent motion. Vision Res, 35(16), 2287-2302. Cerca con Google

Tootell, R. B., Mendola, J. D., Hadjikhani, N. K., Ledden, P. J., Liu, A. K., Reppas, J. B., . . . Dale, A. M. (1997). Functional analysis of V3A and related areas in human visual cortex. J Neurosci, 17(18), 7060-7078. Cerca con Google

Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., . . . Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci, 15(4), 3215-3230. Cerca con Google

Torriente, I., Valdes-Sosa, M., Ramirez, D., & Bobes, M. A. (1999). Visual evoked potentials related to motion-onset are modulated by attention. Vision Res, 39(24), 4122-4139. Cerca con Google

Ts'o, D. Y., & Gilbert, C. D. (1988). The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci, 8(5), 1712-1727. Cerca con Google

Ts'o, D. Y., Gilbert, C. D., & Wiesel, T. N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci, 6(4), 1160-1170. Cerca con Google

Ungerleider, L. G., & Pasternak, T. (2004). Ventral and dorsal cortical processing streams. In W. J. S. Chalupa L. M. (Ed.), The Visual Neurosciences. Cambridge, MA: MIT Press. Cerca con Google

Ursino, M., & La Cara, G. E. (2004). Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Res, 44(14), 1641-1658. doi: 10.1016/j.visres.2004.02.005 Cerca con Google

Usher, M., Bonneh, Y., Sagi, D., & Herrmann, M. (1999). Mechanisms for spatial integration in visual detection: a model based on lateral interactions. Spat Vis, 12(2), 187-209. Cerca con Google

Uttal, W. R., Spillmann, L., Sturzel, F., & Sekuler, A. B. (2000). Motion and shape in common fate. Vision Res, 40(3), 301-310. Cerca con Google

Van Essen, D. C., & Maunsell, J. H. (1983). Hierarchical organization and functional streams in the visual cortex. Trends In Neuroscience, 6, 370-375. Cerca con Google

Van Oostende, S., Sunaert, S., Van Hecke, P., Marchal, G., & Orban, G. A. (1997). The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex, 7(7), 690-701. Cerca con Google

Vancleef, K., Wagemans, J., & Humphreys, G. W. (2013). Impaired texture segregation but spared contour integration following damage to right posterior parietal cortex. Exp Brain Res, 230(1), 41-57. doi: 10.1007/s00221-013-3629-7 Cerca con Google

Verghese, P., McKee, S. P., & Grzywacz, N. M. (2000). Stimulus configuration determines the detectability of motion signals in noise. J Opt Soc Am A Opt Image Sci Vis, 17(9), 1525-1534. Cerca con Google

Verstraten, F. A., Fredericksen, R. E., & van de Grind, W. A. (1994). Movement aftereffect of bi-vectorial transparent motion. Vision Res, 34(3), 349-358. Cerca con Google

Vogel, E. K., & Luck, S. J. (2000). The visual N1 component as an index of a discrimination process. Psychophysiology, 37(2), 190-203. Cerca con Google

Vreven, D., & Verghese, P. (2002). Integration of speed signals in the direction of motion. Percept Psychophys, 64(6), 996-1007. Cerca con Google

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). Perceptual grouping and figure–ground organization. In J. Wagemans (Ed.), A century of Gestalt psychology in visual perception: I. Cerca con Google

Wallach, H. (1935). Uber visuell wahrgenommene Bewegungsrichtung. Psychologische Forschung, 20, 325-380. Cerca con Google

Watt, R., Ledgeway, T., & Dakin, S. C. (2008). Families of models for gabor paths demonstrate the importance of spatial adjacency. J Vis, 8(7), 23 21-19. doi: 10.1167/8.7.23 Cerca con Google

Watt, R. J., & Andrews, D. P. (1982). Contour curvature analysis: hyperacuities in the discrimination of detailed shape. Vision Res, 22(4), 449-460. Cerca con Google

Wattam-Bell, J. (1994). Coherence thresholds for discrimination of motion direction in infants. Vision Res, 34(7), 877-883. Cerca con Google

Wehrhahn, C., & Dresp, B. (1998). Detection facilitation by collinear stimuli in humans: dependence on strength and sign of contrast. Vision Res, 38(3), 423-428. Cerca con Google

Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as optimal percepts. Nat Neurosci, 5(6), 598-604. doi: 10.1038/nn858 Cerca con Google

Weisstein, N., Maguire, W., & Berbaum, K. (1977). A phantom-motion aftereffect. Science, 198(4320), 955-958. Cerca con Google

Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt, II. Psychologische Forschung. (W. D. Ellis, Trans.) A source book of Gestalt psychology. London: Routledge & Kegan Paul Ltd. Cerca con Google

Wertheimer, M. (1938). Über Gestalttheorie (W. D. Ellis, Trans.) A source book of Gestalt psychology. (pp. 1-11). London: U. K.: Routledge & Kegan Paul Ltd. Cerca con Google

Whitney, D. (2002). The influence of visual motion on perceived position. Trends Cogn Sci, 6(5), 211-216. Cerca con Google

Williams, C. B., & Hess, R. F. (1998). Relationship between facilitation at threshold and suprathreshold contour integration. J Opt Soc Am A Opt Image Sci Vis, 15(8), 2046-2051. Cerca con Google

Williams, D., Phillips, G., & Sekuler, R. (1986). Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature, 324(6094), 253-255. doi: 10.1038/324253a0 Cerca con Google

Wilson, H. R., Ferrera, V. P., & Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Vis Neurosci, 9(1), 79-97. Cerca con Google

Wilson, H. R., & Kim, J. (1994). Perceived motion in the vector sum direction. Vision Res, 34(14), 1835-1842. Cerca con Google

Wist, E. R., Gross, J. D., & Niedeggen, M. (1994). Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures. Perception, 23(10), 1155-1162. Cerca con Google

Wokke, M. E., Scholte, H. S., & Lamme, V. A. (2014). Opposing Dorsal/Ventral Stream Dynamics during Figure-ground Segregation. J Cogn Neurosci, 26(2), 365-379. doi: 10.1162/jocn_a_00497 Cerca con Google

Wokke, M. E., Sligte, I. G., Steven Scholte, H., & Lamme, V. A. (2012). Two critical periods in early visual cortex during figure-ground segregation. Brain Behav, 2(6), 763-777. doi: 10.1002/brb3.91 Cerca con Google

Yang, Y., & Blake, R. (1994). Broad tuning for spatial frequency of neural mechanisms underlying visual perception of coherent motion. Nature, 371(6500), 793-796. doi: 10.1038/371793a0 Cerca con Google

Yen, S. C., & Finkel, L. H. (1998). Extraction of perceptually salient contours by striate cortical networks. Vision Res, 38(5), 719-741. Cerca con Google

Yu, C., & Levi, D. M. (1997). Spatial facilitation predicted with end-stopped spatial filters. Vision Res, 37(22), 3117-3127. Cerca con Google

Yuille, A. L., & Grzywacz, N. M. (1988). A computational theory for the perception of coherent visual motion. Nature, 333(6168), 71-74. doi: 10.1038/333071a0 Cerca con Google

Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. J Neurosci, 11(3), 641-649. Cerca con Google

Zhaoping, L., & May, K. A. (2007). Psychophysical tests of the hypothesis of a bottom-up saliency map in primary visual cortex. PLoS Comput Biol, 3(4), e62. doi: 10.1371/journal.pcbi.0030062 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record