Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bevilacqua, Moreno (2008) Composite likelihood inference for space-time covariance models. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Modelisation and prediction of environmental phenomena, which typically show dependence in space and time, has been one of the most important challenges over the last years.
The classical steps of the spatial modeling approach can be resumed as follows: (1) a model-oriented step, in which a random fields assumption is considered; (2) estimation of the objects defining homogeneity and variability of the random field (i.e the trend and the covariance structure); (3) prediction, which is classically implemented through universal or ordinary kriging procedures.
This thesis focuses on the first and second steps. Specifically, it consists of three major parts.
First part consists in spatio-temporal covariance modeling. In the geostatistical approach spatial and temporal structure are entangled in the covariance structures and it is not easy to model these two parts simultaneously. The classical kriging predictor, depends crucially on the chosen parametric covariance function. This fact motivates the request for more candidate models of co-variance functions that can be used for space-time data. In particular, the wide variety of practical situations that one may face in the space-time domain motivates the request for flexible models of space-time covariance functions, in order to cover several settings such as non-separability or asymmetry in time. We introduce a new class of stationary space-time covariance model which allows for zonal spatial anisotropies.
Second part consists in space and space time covariance models estimation. Maximum likelihood and related techniques are generally considered the best method for estimating the parameters of space-time covariance models. For a spatial Gaussian random field with a given parametric covariance function, exact computation of the likelihood requires calculation of the inverse and determinant of the covariance matrix, and this evaluation is slow when the number of observations is large. The problem increases dramatically in a space-time setting. This fact motivates the search for approximations to the likelihood function that require smaller computational burden and that perform better than classical least square estimation. We introduce a weighted composite likelihood estimation (WCL) for space and space time covariance model estimation. The method induces gains in statistical efficiency with respect to the least squares estimation and from the computational point of view with respect to maximum likelihood estimation.
Third part consists in a set of application of WCL. Specifically we apply the method in the estimation of particular spatial covariance functions which allow for negative values and in the estimation of covariance function describing residuals dependence in dynamic life tables. A simulation based test to verify separability of some parametric covariance models in a space time setting is proposed.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Gaetan, Carlo - Porcu, Emilio - Mateu, Jorge
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE STATISTICHE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):Space time covariance function, composite likelihood
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:659
Depositato il:06 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abromowitz, M., and Stegun, I. (1967), Handbook of Mathematical Functions, : U.S. Government Printing Office. Cerca con Google

2. Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974), The Design and Analysis of Computer Algorithms, Reading, Massachusset: Addison-Wesley. Cerca con Google

3. Akaike, H. (2003), “Block Toeplitz matrix inversion," SIAM Journal of Applied Mathematics, 14, 234-241. Cerca con Google

4. Banerjee, S. (2003), “On geodetic distance computations in spatial modelling," Biometrics, 61, 617- 625. Cerca con Google

5. Bellio, R., and Varin, C. (2005), “A pairwise likelihood approach to generalized linear models with crossed random effects," Statistical Modelling, 5, 217-227. Cerca con Google

6. Benjamin, B., and Pollard, J. (1991), The Analysis of Mortality and Other Actuarial Statistics, London: Butterworth-Heinemann. Cerca con Google

7. Berg, C., and Forst, G. (1975), Potential Theory on Locally Compact Abelian Groups, New York: Springer. Cerca con Google

8. Bogaert, P., and Christakos, G. (1997), “Stochastic analysis of spatio-temporal solute content measurements using a regression model.," Stoch. Hydrol. Hydraul., 11, 267-295. Cerca con Google

9. Booth, H. (2006), “Demographic forecasting: 1980 to 2005 in review.," International Journal of Forecasting, 22(3), 547-582. Cerca con Google

10. Booth, H., Maindonald, J., and Smith, L. (2002), “Applying Lee-Carter under conditions of variable mortality decline.," Population Studies, 56(3), 325-336. Cerca con Google

11. Brouhns, N., D. M., and Vermunt, J. (2002), “A Poisson log-bilinear regression approach to the construction of projected lifetables.," Insurance: Mathematics and Economics, 31(3), 373-393. Cerca con Google

12. Caragea, P., and Smith, R. (2006), Approximate likelihoods for spatial processes,, Technical report, Department of Statistics, Iowa State University. Cerca con Google

13. Carlstein, E. (1986), “The use of subseries values for estimating the variance of a general statistic from a stationary sequence," The Annals of Statistics, 14(3), 1171-1179. Cerca con Google

14. Carroll, S., and Cressie, N. (2002), “Spatial modeling of snow water equivalent using covariances estimated from spatial and geomorphic attributes.," Journal of Hydrology, 190, 42-59. Cerca con Google

15. Christakos, G. (2000), Modern Spatiotemporal Geostatistics, Oxford: Oxford University Press. Cerca con Google

16. Cox, D., and Isham, V. (1988), “A simple spatial-temporal model of rainfall," Proceedings of the Royal Society of London, Ser. A, 415, 317-328. Cerca con Google

17. Cressie, N. (1985), “Fitting variogram models by weighted least squares," Mathematical Geology, 17, 239-252. Cerca con Google

18. Cressie, N. (1993), Statistics for Spatial Data, revised edn, New York: Wiley. Cerca con Google

19. Cressie, N., and Hawkins, D. (1980), “Robust estimation of the variogram I," Mathematical Geology, 12, 115-125. Cerca con Google

20. Cressie, N., and Huang, H. (1999), “Classes of nonseparable, spatiotemporal stationary covariance functions," Econometric Theory, 2, 305-330. Cerca con Google

21. Cressie, N., and Lahiri, S. (1996), “Asymptotics for REML estimation of spatial covariance parameters," Journal of Statistical Planning and Inference, 50, 327-341. Cerca con Google

22. Cressie, N., and Lahiri, S. (2002), “On asymptotic distribution and asymptotic e±ciency of least squares estimators of spatial variogram parameters," J. Statist. Plann. Inference, 21, 65-85. Cerca con Google

23. Curriero, F., and Lele, S. (1999), “A composite likelihood approach to semivariogram estimation," Journal of Agricultural, Biological and Environmental Statistics, 4, 9-28. Cerca con Google

24. De Cesare, L., Myers, D., and Posa, D. (2001a), “Product-sum covariance for space-time modeling: an environmental application," Environmetrics, 12, 11-23. Cerca con Google

25. De Cesare, L., Myers, D., and Posa, D. (2001b), “Product-sum covariance for space-time modeling: an environmental application," Environmetrics, 12, 11-23. Cerca con Google

26. De Cesare, L., Myers, D., and Posa, D. (2002), “Nonseparable space-time covariance models: some parametric families," Mathematical Geology,, 34, 23-42. Cerca con Google

27. De Luna, X., and Genton, M. (2005), “Predictive spatio-temporal models for spatially sparse environmental data," Statistica Sinica, 15(547-568). Cerca con Google

28. Debón, A., Martínez-Ruiz, F., and Montes, F. (2004), “Dynamic life tables: a geostatistical approach.," International Congress on Insurance: Mathematics and Economics,Rome, Italy, . Cerca con Google

29. Debón, A., Montes, F., and Puig, F. (2006), “Modelling and forecasting mortality in Spain.," European Journal of Operation Research, . Cerca con Google

30. Debón, A., Montes, F., and Sala, R. (2005), “A comparison of parametric models for mortality graduation. application to mortality data of the Valencia region (Spain).," Statistics and Operations Research Transactions, 29(2), 269-287. Cerca con Google

31. Debón, A., Montes, F., and Sala, R. (2006a), “A comparison of models for dinamical life tables. application to mortality data of the Valencia region (Spain).," Lifetime Data Analysis, 12(2), 223-244. Cerca con Google

32. Debón, A., Montes, F., and Sala, R. (2006b), “A comparison of nonparametric methods in the graduation of mortality: application to data from the Valencia region (Spain).," International Statistical Review, 74(2), 215-233. Cerca con Google

33. Diggle, P. J., Moyeed, R. A., and Tawn, J. A. (1998), “Model-based geostatistics," Applied Statistics, 47(299- 350). Cerca con Google

34. Dimitrakopoulos, R., and Lou, X. (1994), Spatiotemporal Modeling: covariances and ordinary kriging system, Geostatistics for the Next Century, : Kluwer Academic. Cerca con Google

35. Felipe, A., M., G., and Pérez-Martín, A. (2002), “Recent mortality trends in the Spanish population.," British Actuarial Journal, 8(4), 757-786. Cerca con Google

36. Fernádez-Casal, R. (2003), “Geostadistica Espacio-Temporal. Modelos Flexibles de Variogramas Anisotropicos no Separables.," Unpublished PhD. Thesis, University of Santiago de Compostela. In spanish., . Cerca con Google

37. Forfar, D., McCutcheon, J., and Wilkie, A. (2002), “On graduation by mathematical formula.," Journal of the Institute of Actuaries, 459, 1-149. Cerca con Google

38. Fuentes, M. (2002), “Spectral methods for nonstationary spatial processes," Biometrika, 89(197- 210). Cerca con Google

39. Fuentes, M. (2005), “Testing separability of spatio-temporal covariance functions," Journal of Statistical Planning and Inference, 136(447-466). Cerca con Google

40. Fuentes, M. (2007), “Approximate likelihood for large irregularly spaced spatial data," Journal of the American Statistical Association, 102(321-331). Cerca con Google

41. Furrer, R., Genton, M., and Nychka, D. (2007), “Covariance tapering for interpolation of large spatial datasets," J. Comput. Graph. Statist., 15(502-523). Cerca con Google

42. Gavin, J., Haberman, S., and Verrall, R. (1993), “Moving weighted average graduation using kernel estimation.," Insurance: Mathematics & Economics, 12(2), 113-126. Cerca con Google

43. Gavin, J., Haberman, S., and Verrall, R. (1994), “On the choice of bandwidth for kernel graduation.," Journal of the Institute of Actuaries, 121, 119-134. Cerca con Google

44. Gavin, J., Haberman, S., and Verrall, R. (1995), “Graduation by kernel and adaptive kernel methods with a boundary correction.," Transactions. Society of Actuaries, XLVII, 173-209. Cerca con Google

45. Genest, C. (1987), “Frank's family of bivariate distributions," Biometrika, 74, 549-555. Cerca con Google

46. Genton, M. (1998), “Variogram fitting by generalized least squares using an explicit formula for the covariance structure," Mathematical Geology, 30, 323-345. Cerca con Google

47. Gneiting, T. (2002), “Stationary covariance functions for space-time data," Journal of the American Statistical Association, 97, 590-600. Cerca con Google

48. Gneiting, T., Genton, M. G., and Guttorp, P. (2007), “Geostatistical space-time models, stationarity, separability and full symmetry," in Statistical Methods for Spatio-Temporal Systems, eds. B. Finkenstadt, L. Held, and V. Isham, Boca Raton: Chapman and Hall/CRC, pp. 151-175. Cerca con Google

49. Gneiting, T., and Schlather, M. (2004), “Stochastic models that separate fractal dimension and the Hurst effect," SIAM Review, 46, 69-282. Cerca con Google

50. Godambe, V. (1991), Estimating Functions, New York: Oxford University Press. Cerca con Google

51. Gregori, P., Porcu, E. Mateu, J., and Sasvári, Z. (2007), “On potentially negative space time covariances obtained as sum of products of marginal ones," Annals of the Institute of Statistical Mathematics, to appear. Cerca con Google

52. Guillen, M., and Vidiella, A. (2005), “Forecasting Spanish natural life expectancy.," Risk Analysis, 101, 1161-1170. Cerca con Google

53. Guyon, X. (1995), Random fields on a network. Modeling, statistics and applications, New York: Springer. Cerca con Google

54. Handcock, M. S., and Wallis, J. R. (1994), “An approach to statistical spatial-temporal modeling of metereological fields," Journal of the American Statistical Association, 89, 368-378. Cerca con Google

55. Haslett, J., and Raftery, A. (1989), “Space-time modelling with long-memory dependence: assessing Ireland's wind power resource," Applied Statistics, 38, 1-50. Cerca con Google

56. Heagerty, P., and Lele, S. (1998), “A composite likelihood approach to binary spatial data," Journal of the American Statistical Association, 93, 1099-1111. Cerca con Google

57. Heagerty, P., and Lumley, T. (2000), “Window subsampling of estimating functions with application to regression models," Journal of the American Statistical Association, 95, 197-211. Cerca con Google

58. Heyde, C. (1997), Quasi-Likelihood and Its Application: A General Approach to Optimal Parameter Estimation, New York: Springer. Cerca con Google

59. Higdon, D. (1998), “A process-convolution approach to modeling temperatures in the North Atlantic Ocean," Journal of Environmental and Ecological Statistics, 5, 173-190. Cerca con Google

60. Hoeting, A., Davis, A., Merton, A., and Thompson, S. (2006), “Model selection for geostatistical models," Ecological Applications, 16, 87-98. Cerca con Google

61. Huang, H.-C., and Cressie, N. (1996), “Spatio-temporal prediction of the snow water equivalent using the Kalman filter.," Computational Statistics and Data Analysis, 22, 159-175. Cerca con Google

62. Huang, H., Martinez, F., Mateu, J., and Montes, F. (2007), “Model comparison and selection for stationary space-time models," Computational Statistics and Data Analysis, to appear. Cerca con Google

63. Joe, H. (1997), Multivariate Models and Dependence Concept, : Chapman & Hall. Cerca con Google

64. Jones, R., and Zhang, Y. (1997), “Models for continuous stationary space-time processes," in Modelling Longitudinal and Spatially Correlated Data, eds. T. Gregoire, D. Brillinger, P. Diggle, E. Russek-Cohen, W. Warren, and R. Wol¯nger, New York: Springer Verlag, pp. 289-298. Cerca con Google

65. Journel, A. G., and Huijbregts, C. J. (1978), Mining geostatistics, revised edn, London: Academic Press. Cerca con Google

66. Kaufmann, C., Schervish, M., and Nychka, D. (2007), Covariance tapering for likelihood-based estimation in large spatial datasets,, Technical report, Statistical and Applied Mathematical Sciences Institute,Research Triangle Park, North Carolina. Cerca con Google

67. Koissi, M., Shapiro, A., and Högnäs, G. (2006), “Evaluating and extending the Lee-Carter model for mortality forecasting confidence interval.," Insurance: Mathematics and Economics, 38(1), 1- 1. Cerca con Google

68. Kyriakidis, P., and Journel, A. (1999), “Geostatistical Space-Time Models: A Review," Mathematical Geology, 31, 651-684. Cerca con Google

69. Lee, R. (2000), “The Lee-Carter method for forecasting mortality, with various extensions and applications.," North American Actuarial Journal, 4(1), 80-91. Cerca con Google

70. Lee, R., and Carter, L. (1992), “Modelling and forecasting U. S. mortality.," Journal of the American Statistical Association, 87(419), 659-671. Cerca con Google

71. Li, B., G., G., and Sherman, M. (2007), “A nonparametric assessment of properties of space-time covariance functions," Journal of the American Statistical Association, 102, 736-744. Cerca con Google

72. Lindsay, B. (1988), “Composite likelihood methods," Contemporary Mathematics, 80, 221-239. Cerca con Google

73. Ma, C. (2002), “Spatio-temporal covariance functions generated by mixtures," Mathematical Geology, 34, 965-974. Cerca con Google

74. Ma, C. (2005), “Spatio-temporal variograms and covariance models," Advances in Applied Probability, 37, 706-725. Cerca con Google

75. Mardia, K., and Marshall, R. (1984), “Maximum likelihood estimation of models for residual covariance in spatial regression," Biometrika, 71, 135-146. Cerca con Google

76. Matheron, G. (1965), Les variables régionalisées et leur estimation, Paris: Masson. Cerca con Google

77. Mitchell, M., Genton, M., and Gumpertz, M. (2005), “Testing for separability of space-time co-variances," Environmetrics, 16, 819-831. Cerca con Google

78. Muller, W. (1999), “Least-squares fitting from the variogram cloud," Statistics and Probability Letters, 43, 93-98. Cerca con Google

79. Paciorek, C. J., and Schervish, M. J. (2006), “Spatial modelling using a new class of nonstationary covariance functions," Environmetics, 17, 483-506. Cerca con Google

80. Pedroza, C. (2006), “A bayesian forecasting model: predicting U.S. male mortality.," Biostatistics, 7(4), 530-550. Cerca con Google

81. Perrin, O., and Senoussi, R. (1999), “Reducing non-stationary random fields to stationarity and isotropy using a space deformation.," Statistics and Probability Letters, 48(1), 23-32. Cerca con Google

82. Pitacco, E. (2004), “Survival models in dynamic context: a survey.," Insurance: Mathematics & Economics, 35(2), 279-298. Cerca con Google

83. Porcu, E., Gregori, P., and Mateu, J. (2007), “La descente et la montée étendues: the spatially d-anisotropic and the spatio-temporal case," Stochastic Environmental Research and Risk Assessment, 21, 683-693. Cerca con Google

84. Porcu, E., Mateu, J., and Christakos, G. (2007), Quasi-arithmetic means of covariance functions with potential applications to space-time data,, Technical report, Dept Maths, Universitat Jaume I. Cerca con Google

85. Porcu, E., Saura, F., and Mateu, J. (2005), “New classes of covariance and spectral density functions for spatio-temporal modelling," Stochastic Environmental Research and Risk Assessment, To appear. Cerca con Google

86. Renshaw, A. (1991), “Actuarial graduation practice and generalised linear models.," Journal of the Institute of Actuaries, 118, 295-312. Cerca con Google

87. Renshaw, A., and Haberman, S. (2003a), “Actuarial Research paper No. 153," City University, London, . Cerca con Google

88. Renshaw, A., and Haberman, S. (2003b), “Lee-Carter mortality forecasting: a parallel generalized linear modelling aproach for England and Wales mortality projections.," Journal of the Royal Statistical Society C, 52(1), 119-137. Cerca con Google

89. Renshaw, A., and Haberman, S. (2003c), “Lee-Carter mortality forecasting with age specific enhancement.," Mathematics and Economics, 255-272. Cerca con Google

90. Rouhani, S., and Hall, T. (1989), “Space-time Kriging of Groundwater Data," Geostatistics, Armstrong, M. (Ed.), Kluwer Acaemic Publishers, 2. Cerca con Google

91. Rouhani, S., and Wackernagel, H. (1990), “Multivariate geostatistical approach to space-time data analysis," Water Resour. Res., 26. Cerca con Google

92. Scaccia, L., and Martin, R. (2005), “Testing axial symmetry and separability of lattice processes," Journal of Statistical Planning and Inference, 131. Cerca con Google

93. Schoenberg, I. (1938), “Metric spaces and completely monotone functions," Annals of Mathematics, 39. Cerca con Google

94. Shapiro, A., and Botha, J. (1991), “Variogram fitting with a conditional class of conditionally nonnegative definite functions," Computational Statistics and Data Analysis, 11. Cerca con Google

95. Shumway, R., and Sto®er, D. (2006), “Time Series Analysis and its Applications with R Examples," Springer, New York, . Cerca con Google

96. Smith, R. (2001), Environmental Statistics, Under revision. Vai! Cerca con Google

97. Stein, M. (1999), Interpolation of Spatial Data. Some Theory of Kriging, New York: Springer- Verlag. Cerca con Google

98. Stein, M. (2005a), “Space-time covariance functions," Journal of the American Statistical Association, 100, 310-321. Cerca con Google

99. Stein, M. (2005b), “Statistical methods for regular monitoring data," Journal of the Royal Statistical Society B, 67, 667-687. Cerca con Google

100. Stein, M., Chi, Z., and Welty, L. (2004), “Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society B, 66, 275-296. Cerca con Google

101. Tabeau, E., v. d. B. J. A. (2001), A Review of Demographic Forecasting Models for Mortality.Forecasting in Developed Countries: From description to explanation, : Kluwer Academic. Cerca con Google

102. Thanassoulas, C., and Tsokas, G. (1990), “A geothermal field model based on geophysical and thermal prospectings in Nea Kessani (NE Greece)," Geothermics, 19, 77-85. Cerca con Google

103. Varin, C., and Vidoni, P. (2005), “A note on composite likelihood inference and model selection," Biometrika, 52, 519-528. Cerca con Google

104. Vecchia, A. (1988), “Estimation and model identification for continuous spatial processes," Journal of the Royal Statistical Society B, 50, 297-312. Cerca con Google

105. W., F. (1966), An intruduction to Probability Theory and Its Applications. Vol II, New York: WIley. Cerca con Google

106. Whittle, P. (1954), “On stationary processes in the plane.," Biometrika, 49, 305-314. Cerca con Google

107. Wilmoth, J. (1993), “Computational methods for fitting and extrapolating the Lee-Carter model of mortality change.," Technical report, Departament of Demography, University of California, Berkeley, . Cerca con Google

108. Wong-Fupuy, C., and Haberman, S. (2004), “Projecting mortality trens: Recent developents in the United Kingdom and the United States," North American Actuarial Journal, 8(2), 56-83. Cerca con Google

109. Yaglom, A. (1987), Correlation Theory of Stationary and Related Random Functions, New York: Springer. Cerca con Google

110. Ying, Z. (1993), “Maximum likelihood estimation of parameters under a spatial sampling scheme," Annals of Statistics, 21, 1567-1590. Cerca con Google

111. Zhang, H. (2004), “Inconsistent estimation and asymptotically equivalent interpolations in model-based geostatistics," Journal of the American Statistical Association, 99, 250-261. Cerca con Google

112. Zhang, H., and Zimmerman, D. (2005), “Towards reconciling two asymptotic frameworks in spatial statistics," Biometrika, 92, 921-936. Cerca con Google

113. Zimmerman, D. (1989), “Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models," Journal of Statistical Computation and Simulation, 32, 1-15. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record