Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

tamburino, l (2014) The application of individual-based models to the analysis of the structure, dynamics and resource optimization in forest ecosystems. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

16Mb

Abstract (inglese)

This work presents three models that have been developed using individual-based techniques, with the aim of investigating on different aspects of forest ecosystems.
The first one studies the relationships between the tree size and the resource use, with focus on the energetic equivalence rule (EER). The EER predicts that in ecological communities at a steady state abundance is counterbalanced by change in metabolic rate, so that energy use is invariant per size class. In forest communities, it is commonly thought that EER holds per unit of ground area. However, no explicit insights have been provided in order to assess the amount of ground area effectively used by any size class, which is crucial for understanding how tree size affects the total productivity of a given site. To address this issue, a simple model has been developed, parametrized on the basis of field data, where patches identical for ground area and resources were filled with different tree size distributions and trees were subject to two constraints: space and belowground resources. The model highlighted that the limiting resource for trees can change depending on size, implying that productivity per unit of ground area varies with it. In addition with experimental data, the model could provide reasons for a forest being stratified or sparse (as at the treeline), thus simply explaining the existence of different forest structures across the globe. Starting from it, a dynamic model has been developed, parametrized on the basis of empirical data, which combines individual-based techniques with a metabolic approach to simulate a forest evolving over time. Being dynamic, the tree distributions are not imposed in the patches, but emerge from the growing and the interactions among trees, resulting hence more similar to the tree distributions observed in real forests. The analysis of the simulation outcomes showed that the model is able for many aspects to reproduce the observed behaviour of real forests, like the self-thinning process, the curve of the aboveground biomass, the mosaic structure and the tree height distribution. A quantitative comparison with two real forest stands showed also a very good fitting with the number of the trees and the percentage of the covered ground area. This makes it especially suitable to highlight the relationship between structure and resource use within forest ecosystems. Moreover, it could be used as an exploration tool, to predict the forest response to different levels of disturbance and/or kinds of management. Finally, the third model has been developed to shed light on the mast seeding phenomenon, in forest ecosystems. Mast seeding is the synchronous production of large amounts of seeds at long intervals in plant populations. It is observed in several genera and its explanation remains controversial. To test one of the most popular hypotheses, predator satiation, I developed a virtual experiment based on an individual-based model reproducing the interaction between trees and seed predators in a simulated forest. This allowed a direct comparison between masting and no-masting cases, as would have been impossible in reality. The large differences observed between the two scenarios strongly supported the hypothesis. At the same time, a second mechanism similar to the classic paradox of enrichment seemed to play a crucial role, working in synergy with predator satiation to keep in check seed predator populations. More generally, I showed that the resource distribution over time can deeply affect population dynamics, even when the overall amount of the resource is kept constant.

Abstract (italiano)

Questo lavoro presenta tre modelli che sono stati sviluppati usando tecniche individual-based, con lo scopo di investigare su differenti aspetti di ecosistemi forestali. Il principio di equivalenza energetica (EER) predice che nelle comunità ecologiche in uno stato di equilibrio, l’abbondanza è controbilanciata da cambiamenti del tasso metabolico, cosicché l’uso dell’energia risulta invariante per classi dimensionali. Nelle comunità forestali, generalmente si ritiene che l’EER vale per unità di superficie. Tuttavia, non sono stati fornite indicazioni esplicite per valutare la quantità di superficie effettivamente occupata da una classe dimensionale, cosa cruciale per capire come la dimensione degli alberi influenza la produttività di un dato sito. Per dirimere la questione, è stato sviluppato un semplice modello, parametrizzato sulla base di dati empirici, in cui patch identiche fra loro per superficie e risorse sono state riempite con alberi di diversa dimensione e gli alberi erano soggetti a due vincoli: spazio e risorse ipogee. Il modello ha messo in luce che la risorsa limitante per gli alberi può variare in dipendenza della dimensione, da cui segue che anche la produttività per unità di superficie varia con essa. Combinato con dati sperimentali, il modello può fornire motivazioni sul perché una foresta si presenta stratificata o sparsa (come al limite superiore del bosco), spiegando quindi l’esistenza di diverse strutture forestali.
A partire da esso, è stato sviluppato un modello dinamico, parametrizzato sulla base di dati empirici, che combina tecniche individual-based con un approccio metabolico per simulare una foresta che evolve nel tempo. Essendo dinamico, le distribuzioni degli alberi non sono imposte nelle patch, ma sono il risultato della crescita e delle interazioni fra gli alberi, cosa che le rende più simili alle distribuzioni reali osservate in foresta. L’analisi dei risultati delle simulazioni hanno mostrato che il modello per molti aspetti riesce a riprodurre il comportamento osservato delle foreste reali, come il processo dell’autodiradamento, la curva della massa epigea, la struttura a mosaico e la distrubuzione delle altezze degli alberi. Un confronto quantitativo con due plot forestali ha mostrato anche un buon fitting del numero di alberi e della percentuale di superficie coperta. Questo lo rende particolarmente adatto a mettere in luce le relazioni fra struttura e uso delle risorse nell’ambito di ecosistemi forestali. Si presta inoltre ad essere usato come strumento per predire la risposta di una foresta a diversi livelli di disturbo e/o tipi di gestione.
Infine, il terzo modello è stato sviluppato per gettare luce sul fenomeno del mast seeding (pasciona) negli ecosistemi forestali. Il mast seeding è la produzione sincronizzata di una grande quantità di semi a lunghi intervalli di tempo in popolazioni di piante. Si osserva in svariati generi e la sua spiegazione rimane controversa. Per testare una delle più popolari ipotesi, la "predator satiation", ho sviluppato un esperimento virtuale basato su un modello individual-based che riproduce le interazioni fra alberi e consumatori di semi in una foresta. Questo ha permesso un confronto diretto—che sarebbe stato impossibile nella realtà—fra una foresta con masting e una senza. L’ampia differenza osservata fra i due scenari supporta fortemente l’ipotesi. Allo stesso tempo, un secondo meccanismo simile al classico "paradox of enrichment" sembra svolgere un ruolo cruciale, agendo in sinergia con il "predator satiation" per tenere sotto controllo la popolazione dei consumatori. Più in generale, ho mostrato che la distribuzione delle risorse nel tempo può fortemente influenzare le dinamiche di popolazione, anche quando la quantità complessiva della risorsa si mantiene costante.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:anfodillo, t
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:29 Gennaio 2014
Anno di Pubblicazione:29 Gennaio 2014
Parole chiave (italiano / inglese):Individual-based models, metabolic theory, energetic equivalence rule, allometric functions, mast-seeding
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:6594
Depositato il:04 Nov 2014 11:24
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

P.A. Abrams. When does greater mortality increase population size? the long hystory and diverse mechanisms underlying the hydra effect. Ecology Letters, 12:462–474, 2009. Cerca con Google

G. Abramson, L. Giuggioli, V.M. Kenre, J.W. Dragoo, R.R. Parmenter, and T.L. Yates. Diffusionand home range parameters for rodents: Peromyscus maniculatus in new mexico. Ecological Complexity, 3:64–70, 2006. Cerca con Google

T. Anfodillo, M. Carrer, F. Simini, I. Popa, J.R. Banavar, and A. Maritan. An allometric-based approach for understanding forest structure, predicting tree-size distribution and assessing the Cerca con Google

degree disturbanc. Proceedings of the Royal Society B: Biological Science, 280, 2013. Cerca con Google

F.T. Bonner, J.A. Vozzo, and La.) Southern Forest Experiment Station (New Orleans. Seed biology and technology of Quercus. Number v. 59-66 in General technical report SO. U.S. Dept of Agriculture, Forest Service, Southern Forest Experiment Station, 1987. URL Cerca con Google

http://books.google.it/books?id=ak5Kf1MHohcC. Vai! Cerca con Google

G. Bravo and L. Tamburino. Are two resources really better than one? some unexpected results of the availability of substitutes. Journal of Environmental Management, 92:2865–2874, 2011. Cerca con Google

J. Brown and B. G. West. Scaling in Biology. Oxford University Press, 2000. Cerca con Google

J. H. Brown, R. M. Sibly, and A. Kodric-Brown. Synthesis and prospect. In J. H. Brown R. M. Sibly and A. Kodric-Brown, editors, Metabolic Ecology: A Scaling Approach. John Wiley & Sons, Chichester, UK., 2012. Cerca con Google

F. S. Chapin, P. A. Matson, and H. A. Mooney. Principles of Tesrrestrial Ecosystem Ecology. Springer-Verlag, New York, 2002. Cerca con Google

S. Chatterjee and E. Venturino. The paradox of enrichment in ratio–dependent ecoepidemic models. In T. Simos, G. Psihoyias, and C. Tsitouras, editors, Numerical Analysis and Applied Mathematics, International Conference Proceedings, pages 974–977. American Institute of Physics, 2008. Cerca con Google

L. M. Curran and M. Leighton. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting dipterocarpaceae. Ecological Monographs, 70:101–128, 2000. Cerca con Google

J. Damuth. Population-density and body size in mammals. Nature, 290:699–700, 1981. Cerca con Google

J. Deng, W. Zuo, Z. Wang, Z. Fan, M. Ji, G. Wang, J. Ran, C. Zhao, J. Liu, K.J. Niklas, S.T. Hammond, and J.H. Brown. Insights into plant size-density relationships from models and agricultural crops. PNAS, 109:8600–8605, 2012. Cerca con Google

A.A. Downs and W.E. McQuilkin. Seed production of southern appalachian oaks. Journal of Forestry, 42:913–920, 1944. Cerca con Google

B. J. Enquist, A. J. Kerkhoff, S. C. Stark, N. G. Swenson, M. C. McCarthy, and C. A. Price. A general integrative model for scaling plant growth, carbon flux, and functional trait spectra. Cerca con Google

Nature, 449:218–222, 2007. Cerca con Google

J. B. Enquist and J. K. Niklas. Invariant scaling relations across tree-dominated communities. Nature, 410, 2001. Cerca con Google

J. B. Enquist and B. G. West. Allometric scaling of plant energetics and population density. Nature, 395, 1998. Cerca con Google

FAO. Human energy requirements: Report of a joint fao/who/unu expert consultation. Food and Nutrition Technical Report Series. Rome, 17–24 October., 2001. URL Cerca con Google

http://www.fao.org/docrep/007/y5686e/y5686e00.htm. Vai! Cerca con Google

S. T. Gower, R. E. McMurtrie, and D. Murty. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology and Evolution, 11:378–382, 1996. Cerca con Google

V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J.U. Jepsen, G Jørgensen, W.M Mooij, B. Müller, G Pe’er, Cerca con Google

C. Piou, S.F. Railsback, A. M. Robbins, M.M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. Souissi, R.A. Stillman, R. Vabø, U. Visser, and D. L. DeAngelis. A standard proto- Cerca con Google

col for describing individual-based and agent-based models. Ecological Modelling, 198 104(1–2):115–126, 2006. ISSN 0304-3800. doi: 10.1016/j.ecolmodel.2006.04.023. URL Cerca con Google

http://www.sciencedirect.com/science/article/pii/S0304380006002043. Vai! Cerca con Google

V. Grimm, U. Berger, D.L. DeAngelis, J.G. Polhill, J. Giske, and S.F. Railsback. The odd protocol: A review and first update. Ecological Modelling, 221:2760–2768, 2010. Cerca con Google

P. Groffman, J. Baron, T. Blett, A. Gold, I. Goodman, L. Gunderson, B. Levinson, M. Palmer, H. Paerl, G. Peterson, N. Poff, D. Rejeski, J. Reynolds, M. Turner, K. Weathers, and J. Wiens. Ecological thresholds: The key to successful environmental management or an important concept with no practical application? Ecosystems, 9:1–13, 2006. ISSN 1432-9840. URL Cerca con Google

http://dx.doi.org/10.1007/s10021-003-0142-z. 10.1007/s10021-003-0142-z. Vai! Cerca con Google

L. Hansson. Mammal movements and foraging at remnant woodlands inside coniferous forest landscapes. Forest Ecology and Management, 160:109–114, 2002. Cerca con Google

P. Harcombe. Tree life tables. Bioscience, 37:557–568, 1987. Cerca con Google

J. Hau and S.J. Shapiro. Handbook of Laboratory Animal Science. CRC Press, Boca Raton, Fl, 2002. Cerca con Google

W. Healy. Variation of red oak acorn production. Forest Ecology and Management, 116:1–11, 1999. Cerca con Google

K. Heliövaara, R. Väisänen, and C. Simon. Evolutionary ecology of periodical insects. Trends in Ecology and Evolution, 9:475–480, 1994. Cerca con Google

C. M. Herrera, P. Jordano, J. Guitián, and Traveset. Annual variability in seed production by woody plants and the masting concept: reassessment of principles and relationship to pollination and seed dispersal. The American naturalist, 152:576–594, 1998. Cerca con Google

C.B. Huffaker, K.P. Shea, and S.G. Herman. Experimental studies on predation. complex dispersion and levels of food in acarine predatore-prey interaction. Hilgardia, 34:305–330, 1963. Cerca con Google

R.A. Ims. The ecology and evolution of reproductive synchrony. Trends in Ecology & Evolution, 5:135–140, 1990. Cerca con Google

O. Arino J. Chattopadhyay. A predator-prey model with disease in the prey. Nonlinear Analysis, 36:747–766, 1999. Cerca con Google

D. H. Janzen. Why bamboos wait so long to flower. Annual Review of Ecology and Systematics, 7: 347–391, 1976. Cerca con Google

P.S. Johnson. The silviculture of northern red oak. In Biology and silviculture of northern red oak in the north central region: a synopsis, pages 33–68. U.S. Department of Agriculture, Forest Cerca con Google

Service, North Central Forest Experiment Station, St. Paul, MN, 1994. Cerca con Google

D.H Jurney and D.W. Stahle. Old-growth wooded pasture in the ozarks. In Upland Oak Ecology Symposium: History, Current Conditions, and Sustainability, 2002. Cerca con Google

D. Kelly. The evolutionary ecology of mast seeding. Trends in Ecology and Evolution, 9:465–470, 1994. Cerca con Google

D. Kelly and V.L. Sork. Mast seeding in perennial plants: Why, how, where? Annual Review of Ecology and Systematics, 33:427–447, 2002. Cerca con Google

D. Kelly, M.J. McKone, K.J. Batchelor, and J.R. Spence. Mast seeding of chionochloa (poaceae) and pre-dispersal seed predation by a specialist fly (diplotoxa, diptera: Chloropidae). N. Z. J. Bot., 30:125..133, 1992. Cerca con Google

A.J. Kerkhoff and J. E. Brian. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9:419–427, 2006. Cerca con Google

J.J. Landsberg and S.T. Gower. Applications of Physiological Ecology to Forest Management. Academic Press, San Diego, CA, 1997. Cerca con Google

H. Li and Z. Zhang. Effects of mast seeding and rodent abundance on seed predation and dispersal by rodents in prunus armeniaca (rosaceae). Forest Ecology and Management, 242:511–517, 2007. Cerca con Google

A.J. Lotka. Fluctuations in the abundance of species considered mathematically (with comment by V. Volterra). Nature, 119:12–13, 1926. Cerca con Google

L. S. Luckinbill. The effects of space and enrichment on a predator-prey system. Ecology, 55(5):pp. 1142–1147, 1974. ISSN 00129658. URL http://www.jstor.org/stable/1940365. Vai! Cerca con Google

S. Luyssaert, E.D. Schulze, A. Börner, A. Knohl, D. Hessenmöller, B.E. Law, P. Ciais, and J. Grace. Old-growth forests as global carbon sinks. Nature, 455:213–215, 2008. doi: 10.1038/nature07276. Cerca con Google

J.J. Midgley. Do mixed-species mixed-size indigenous forests also follow the self-thinning line? Trends in Ecology and Evolution, 16:661–662, 2001. Cerca con Google

R.A. Monserud and H. Sterba. Modeling individual tree mortality for austrian forest species. Forest Ecology and Management, 113(2–3):109–123, 1999. ISSN 0378-1127. doi: 10.1016/S0378-1127(98)00419-8. Cerca con Google

M. E. Moses, C. Hou, W.H. Woodruff, G.B. West, J.C. Nekola, W. Zuo, and J.H. Brown. Revisiting a model of ontogenetic growth: Estimating model parameters from theory and data. the american naturalist, 171:632–645, 2008. Cerca con Google

H. C. Muller-Landau, R. S.t Condi, K. E. Harms, C. O. Marks, S. C. Thomas, S. Bunyavejchewin, G. Chuyong, L. Co, S. Davies, R. Foster, S. Gunatilleke, N. Gunatilleke, T. Hart, S. P. Hubbell, Cerca con Google

A. Itoh, A.R. Kassim, D. Kenfack, J. V. LaFrankie, D. Lagunzad, H. S. Lee, E. Losos, J- R. Makana, T. Ohkubo, C. Samper, R. Sukumar, I. Sun, M. N. Supardi, S. Tan, D. Thomas, Cerca con Google

J. Thompson, R. Valencia, M. I. Vallejo, G.V. Muñoz, T. Yamakura, J. K. Zimmerman, S. H. Dattaraja, S. Esufali, P. Hall, F. He, C. Hernandez, S. Kiratiprayoon, H.S. Suresh, C. Wills, and Cerca con Google

P. Ashton. Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecology Letters, 9(5):589–602, May 2006. Cerca con Google

J. D. Murray. Mathematical Biology. Springer Verlag, 1989. Cerca con Google

J. K. Niklas and B. Enquist. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. The American Naturalist, 159:482–497, 2002a. Cerca con Google

J. K. Niklas and J. Enquist. Canonical rules for plant organ biomass partitioning and growth allocation. American Journal of Botany, 89:812–819, 2002b. Cerca con Google

K.J. Niklas and B.J. Enquist. Invariant scaling relationships for interspecific plant biomass production rates and body size. PNAS, 98:2922 – 2927, 2001a. Cerca con Google

K.J. Niklas and B.J. Enquist. Invariant scaling relations across tree-dominated communities. Nature, 410:655–660, 2001b. Cerca con Google

K.J. Niklas, J.J. Midgley, and B.J. Enquist. A general model for mass-growth-density relations across tree-dominated communities. Evol Ecol Res, 5:459—-468, 2003. Cerca con Google

S.G. Nilsson and U. Wästljung. Seed predation and cross-pollination in mast-seeding beech (fagus sylvatica) patches. Ecology, 68:260–265, 1987. Cerca con Google

D. Normile. Holding back a torrent of rats. Science, 327 (5967):806–807, 2010. doi: 10.1126/science.327.5967.806. URL Cerca con Google

http://www.sciencemag.org/content/327/5967/806.short. Vai! Cerca con Google

R.S. Ostfeld, C.G. Jones, and J.O. Wolff. Of mice and mast. BioScience, 46:323–330, 1996. Cerca con Google

B.S. Pedersen and B. McCune. A non-invasive method for reconstructing the relative mortality rates of trees in mixed-age, mixed-species forests. Forest Ecology and Management, 155(1–3):303–314, 2002. ISSN 0378-1127. doi: 10.1016/S0378-1127(01)00567-9. <ce:title>Forest Ecology Cerca con Google

in the next Millennium : Putting the long view into Practice</ce:title>. Cerca con Google

R.H. Peters. The Ecological Implications of Body Size. Cambridge Univ Press, 1983. Cerca con Google

G. Petit, T. Anfodillo, V. Carraro, F. Grani, and M. Carrer. Hydraulic constraints limit height growth in trees at high altitude. New Phytologist, 189:241–252, 2011. Cerca con Google

G. Piovesan and J. M. Adams. The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecological Research, 20:739–743, 2005. Cerca con Google

C. A. Price, J. S. Weitz, V. M. Savage, J. Stegen, A. Clarke, D. A. Coomes, P. S. Dodds, E. S. Rampal, A. J. Kerkhoff, K. McCulloh, K. J. Niklas, H. Olff, and N. G. Swenson. Testing the metabolic theory of ecology. Ecology Letters, 15(12): 1465–1474, 2012. ISSN 1461-0248. doi: 10.1111/j.1461-0248.2012.01860.x. URL Cerca con Google

http://dx.doi.org/10.1111/j.1461-0248.2012.01860.x. Vai! Cerca con Google

S.F. Railsback and V. Grimm. Individual-based Modeling and Ecology. Princeton University Press, Princeton, 2005. Cerca con Google

V.H. Reid and P.D. Goodrum. Factors influencing the yield and wildlife use of acorns. In Proceedings 6th Annual Forestry Symposium, 1957. Cerca con Google

M.L. Rosenzweig. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science, 171:385–387, 1971. Cerca con Google

N. Ruger and R. Condit. Testing metabolic theory with models of tree growth that include light competition. Functional Ecology, 26:759–765, 2012. Cerca con Google

M.G. Ryan, S. Linder, J.M. Vose, and R. M. Hubbard. Respration of pine forests. Ecological Bulletin, 43:50–63, 1994. Cerca con Google

C. S. Schopmeyer. Agriculture Handbook, volume 450, chapter Seeds of woody plants in the United States, page 883. U.S. Department of Agriculture, Washington, DC., 1974. Cerca con Google

M.D. Schug, S.H. Vessey, and A.I. Korytko. Longevity and survival in a population of white-footed mice (peromyscus leucopus). Journal of Mammalogy, 72:360–366, 1991. Cerca con Google

O.A. Semikhatova. Ecological physiology of plant dark respiration: Its past, present and future. Botanshcheskii Zhurnal, 85:15–32, 2000. Cerca con Google

M. Sieber and F.M. Hilker. The hydra effect in predator–prey models. Journal of Mathematical Biology, 64:341–360, 2012. Cerca con Google

S. C. Sillett, R. Van Pelt, G. W. Koch, A. R. Ambrose, A.L. Carroll, M. A. Antoine, and B.M. Mifsud. Increasing wood production through old age in tall trees. Forest Ecology and Management, 259:976—-994, 2010. Cerca con Google

J. Silvertown. The evolutionary ecology of mast seeding in trees. Biological Journal of the Linnean Society, 14:235–250, 1980. Cerca con Google

F. Simini, T. Anfodillo, M. Carrer, J. R. Banavarc, and A. Maritan. Self-similarity and scaling in forest communities. PNAS, 107:7658–7662, 2010. Cerca con Google

S. Sitch, B. Smith, C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplans, S. Levis, W. Lucht, M.T. Sykes, K. Thonicke, and S. Venevsky. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the lpj dynamic global vegetation model. Global Change Biology, 9:161–185, 2003. Cerca con Google

V.L. Sork. Evolutionary ecology of mast-seeding in temperate and tropical oaks (Quercus spp.). In T.H. Fleming and A. Estrada, editors, Frugivory and Seed Dispersal: Ecological and Evolutionary Aspects, pages 133–147. Kluwer Academic, Dordrecht, NL, 1993. Cerca con Google

N.L. Stephenson, A. J. Das, R. Condit, S. E. Russo, P. J. Baker, N.G. Beckman, D.A. Coomes, E.R. Lines, W. K. Morris, N. Ruger, E. Alvarez, C. Blundo, S. Bunyavejchewin, G. Chuyong, Cerca con Google

S.J. Davies, A. Duque, C.N. Ewango, O. Flores, J. F. Franklin, H: R. Grau, Z. Hao, M. E. Harmon, S. P. Hubbell, D. Kenfack, Y. Lin, J. R. Makana, A. Malizia, L. R. Malizia, R. J. Pabst, Cerca con Google

N. Pongpattananurak, S. H. Su, I. F. Sun, S. Tan, D. Thomas, P. J. van Mantgem, X. Wang, S. K. Wiser, and M. A. Zavala. Rate of tree carbon accumulation increases continuously with tree size. Cerca con Google

Nature, 0, 2014. Cerca con Google

N. Strigul, D. Pristinski, D. Purves, J. Dushoff, and S. Pacala. Scaling from trees to forest: tractable macroscopic equations for forest dynamics. Ecological Monographs, 78:523–545, 2008. Cerca con Google

L. Susmel, editor. Normalizzazione delle foreste alpine. Basi ecosistemiche, equilibrio, modelli colturali, produttività. Liviana Ed., Padova, Italy, 1980. Cerca con Google

L. Tamburino and E. Venturino. Public parks management via mathematical tools. International Journal of Computer Mathematics, 89:1808–1825, 2012. Cerca con Google

B. G. West, J. H. Brown, and B.J. Enquist. A general model for the origin of allometric scaling laws in biology. Science, 276:122–126, 1997. Cerca con Google

B. G. West, B. Enquist, and J. H. Brown. A general quantitative theory of forest structure and dynamics. PNAS, 106:7040 – 7045, 2009. Cerca con Google

M. Kerkhoff A. J. White, E. P. Ernest and Enquist J. Relationships between body size and abundance in ecology. Trends in Ecology and Evolution, 22:323–330, 2007. Cerca con Google

J. O. Wolff. Population fluctuations of mast-eating rodents are corelated with production of acorns. Journal of Mammalogy, 77:850–856, 1996. Cerca con Google

J. O. Wolff, R. D. Dueser, and K. S. Berry. Food habits of peromyscus leucopus and peromyscus maniculatus. Journal of Mammalogy, 66:795–798, 1985. Cerca con Google

B.A. Wood, L. Cao, and M.D. Dearing. Deer mouse (peromyscus maniculatus) home-range size and fidelity in sage-steppe habitat. Western North American Naturalist, 70:345–354, 2010. Cerca con Google

J. A. Yunger. Response of two low-density populations of peromyscus leucopus to increased food availability. Journal of Mammalogy, 83:267–279, 2002. Cerca con Google

D. Zhao, B. Borders, and M. Wilson. Individual-tree diameter growth and mortality models for bottomland mixed-species hardwood stands in the lower mississippi alluvial valley. Forest Ecology and Management, 199:307–322, 2004. Cerca con Google

G. Y. Zhou, S. Liu, Z. Li, D. Zhang, X. Tang, C. Zhou, J. Yan, and J. Mo. Old-growth forests can accumulate carbon in soils. Science, 314:14–17, 2006. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record