Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

De Santi, Carlo (2014) Degradation mechanisms of devices for optoelectronics and power electronics based on Gallium Nitride heterostructures. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
10Mb

Abstract (inglese)

Gallium Nitride is rapidly emerging as a promising material for electronic devices in various fields. Since it is a direct bandgap semiconductor it can be used for highly efficient light emitting devices (Light Emitting Diodes and Laser Diodes) and the possibility of growing alloys containing Aluminum and Indium allow for the selection of the peak wavelength along the whole UV-green part of the radiation spectrum. Moreover, the high electron mobility, the ability of withstand high electric fields and the good thermal dissipation make GaN-based diodes and transistors devices with a good potential for high frequency and power applications. Before final products containing Gallium Nitride devices can permeate the international market, it is required to guarantee that they are reliable enough to have long lifetimes to appeal potential customers, and that their performance/cost relationship is superior compared to other competitors, at least in some specific fields of application. Aim of this thesis is to investigate the strong points of Gallium Nitrides by means of characterization and reliability tests on various different structures (LEDs, laser diodes, blocking diodes, HEMTs, GITs, MISs), in order to analyze the behavior of the material from different points of view.

Within this work is reported a detailed study of the gradual degradation of InGaN-based laser diodes and Light-Emitting Diodes submitted to electro-thermal stress. The purpose is to compare the behavior of the two devices by means of electro-optical measurements, electroluminescence characterization, near field emission measurements and Deep-Level Transient Spectroscopy (DLTS) investigation in order to give a deeper understanding of the mechanisms involved in LD degradation. Particular attention is given to the role of injection efficiency decrease and non-radiative recombination. The comparison of the degradation kinetics and an analysis of the degradation modes of the two device structures allowed a complete study of the physical mechanisms responsible for the degradation. It was found that the degradation of the devices can be ascribed to an increase of the defect density, which has a strong impact on non radiative recombination kinetics. The activation energy of the detected deep level is 0.35 - 0.45 eV. As an effect of combined electrical and thermal stress tests on commercially-available InGaN-based blue laser diodes, it has been found that sometimes there is an initial decrease of the threshold current, which is ascribed to the increase of the activation of p-type dopant, promoted by the temperature and the flow of minority carriers.

In order to investigate the effects of the creation of defects, two different commercial blue InGaN-based LEDs were submitted to 3 MeV proton irradiation at various fluencies (10^11, 10^12 and 10^13 p/cm2). The degradation process was characterized by combined current-voltage (I - V), optical power-current (L - I) and capacitance-voltage (C - V) measurements, in order to investigate the changes induced by the irradiation and the recovery after annealing time at high temperature (150 °C‰). The experimental data suggest the creation of non-radiative recombination centers near or into the active region of the LEDs, due to atomic displacement. This hypothesis is confirmed by the results of the recovery tests: the increase of the optical power and its correlation with the recovery of the forward current is consistent with the annealing of those defects.

Part of the activity on high electron mobility transistors was devoted to the realization of measurement setups in order to carry out novel characterization techniques. Were analyzed the advantages and limitations of the current-transient method used for the study of the deep levels in GaN-based high electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The choice of the measurement parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients and the duration of the filling pulses) and of the analysis procedure (the method used for the extrapolation of the time constants of the processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. Moreover, was collected a database of defects described in more than 60 papers on GaN and its compounds, which can be used to extract information on the nature and origin of the traps in AlGaN/GaN HEMTs. Using this newly developed technique and other more common tests, several reliability and lifetime test were carried out on various structures, in order to gain a better understanding of their problematic aspects and possible improvements. One potential variation is the composition of the gate stack. Degradation tests were performed at Vgs = -5 V and increasing Vds levels on GaN HEMTs with different gate materials: Ni/Au/Ni, ITO and Ni/ITO. At each step of the stress experiment, the electrical and optical characteristics of the transistors were measured in order to analyze the degradation process. It was found that stress induces a permanent degradation of the gate diode, consisting in an increase in the leakage current. This change is due to the generation of parasitic conductive paths, as suggested by electroluminescence (EL) mapping, and devices based on ITO showed higher reliability. These data strongly support the hypothesis that the robustness is influenced by processing parameters and/or by the gate material, since all analyzed devices come from the same epitaxial wafer.

Other than varying the gate material, it is possible to add a p-type layer under the gate in order to achieve normally-off operation. This change produces a benefit in terms of performances, but can give birth to unusual trapping phenomena. It was carried out an extensive analysis of the time and field-dependent trapping processes that occur in GaN-based gate injection transistors exposed to high drain voltage levels. Results indicate that, even if the devices do not suffer from current collapse, continuous exposure to high drain voltages can induce a remarkable increase in the on-resistance (Ron). The increase in Ron can be recovered by leaving the device in rest conditions. Temperature-dependent analysis indicates that the activation energy of the detrapping process is equal to 0.47 eV. By time-resolved electroluminescence characterization, it is shown that this effect is related to the capture of electrons in the gate - drain access region. This is further confirmed by the fact that charge emission can be significantly accelerated through the injection of holes from the gate. A first-order model was developed to explain the time dependence of the trapping process. Using other deep levels characterization techniques, such as drain current transients, gate frequency sweeps and backgating, several other trap states were identified in these devices. Their activation energies are 0.13, 0.14, 0.25, 0.47 and 0.51 eV.
During the accelerated lifetime tests of these devices, it was found a variation of the relative amplitude of the transconductance peaks, well correlated with the increase of the electroluminescence. This effect can be explained by the activation of the p-type dopant, a phenomenon which was detected also in laser diodes.

It is possible to develop diodes able to withstand very high reverse voltages using a similar structure, deprived of the gate region and with an additional Schottky diode (Natural superjunction). In this case, the activation energies of the detected deep levels were 0.35, 0.36, 0.44 and 0.47 eV. These values are very similar to the ones found in GITs, and this fact, along with the presence of the p-dopant activation in very different devices, confirms that it is useful to study different structures based on the same material in order to gain more knowledge on its performances, possibilities and reliability aspects.

Abstract (italiano)

Il Nitruro di Gallio si sta rapidamente proponendo come un materiale promettente per dispositivi elettronici in vari campi applicativi. Dato che si tratta di un semiconduttore a bandgap diretto, può essere utilizzato per realizzare emettitori di radiazione luminosa altamente efficienti (LED e diodi laser), e la possibilità di realizzare leghe contenenti Alluminio e Indio permette di selezionare la lunghezza d’onda di picco all’interno dell’intervallo UV - verde dello spettro elettromagnetico. Prima che i prodotti finali basati su Nitruro di Gallio possano permeare il mercato internazionale, è necessario garantire che siano abbastanza affidabili da possedere lunghi tempi di vita ai fini di essere considerati da potenziali acquirenti, e che il loro rapporto prestazioni/costi sia superiore rispetto a quello dei dispositivi attualmente presenti nel mercato, almeno per alcune specifiche applicazioni. Lo scopo di questa tesi è analizzare i punti di forza dei materiali composti basati su Nitruro di Gallio tramite caratterizzazione e test affidabilistici su varie strutture differenti (LED, diodi laser, diodi bloccanti, HEMT, GIT, MIS), per comprendere il comportamento del materiale da diversi punti di vista.

In questo lavoro viene effettuato uno studio dettagliato del degrado graduale di LED e diodi laser in InGaN sottoposti a stress elettrotermici. lo scopo è di paragonare il comportamento delle due tipologie di dispositivi tramite caratterizzazione elettrica e ottica, elettroluminescenza, mappe di emissione in campo vicino e Deep-Level Transient Spectroscopy (DLTS), in modo da ottenere una comprensione profonda dei meccanismi di degrado che causano il calo di performance dei diodi laser. Un’attenzione particolare è rivolta al ruolo del calo dell’efficienza di iniezione e alla ricombinazione non-radiativa. Il confronto delle cinetiche di degrado e l’analisi del tipo di danno nelle due diverse strutture ha permesso uno studio completo dei meccanismi fisici responsabili del calo delle prestazioni. Il degrado dei dispositivi è stato attribuito ad un aumento della concentrazione di difetti, che ha un forte impatto sulle cinetiche di ricombinazione non-radiativa. L’energia di attivazione del livello profondo rilevato è 0.35 - 0.45 eV. Come effetto dei test di vita accelerata elettrici e termici compiuti su diodi laser blu commerciali basati su InGaN, si è notato che a volte si ha un iniziale calo della corrente di soglia, dovuto all’aumento dell’attivazione del drogante di tipo p, promossa dalla temperatura e dal flusso di portatori minoritari.

Per comprendere gli effetti della creazione di difetti, due differenti tipologie di LED blu commerciali basati su InGaN sono stati sottoposti a irraggiamento tramite protoni con un’energia di 3 MeV a varie fluenze (10^11, 10^12 and 10^13 p/cm2). Il processo di degrado è stato caratterizzato tramite misure corrente - tensione (I - V), potenza ottica - corrente (L - I) e capacità - tensione (C - V) combinate, per cercare di comprendere le modifiche indotte dall’irraggiamento e il recupero conseguente all’annealing ad alte temperature (150 ‰). I dati sperimentali suggeriscono la creazione di centri di ricombinazione non-radiativa vicino o all’interno della regione attiva dei LED, causati dallo spostamento di atomi. Questa ipotesi viene confermata dai risultati dei test di recupero: l’aumento della potenza ottica e la sua correlazione con il recupero della corrente diretta è consistente con l’annealing dei difetti.

Parte dell’attività sui transistor ad elevata mobilità elettronica è stata dedicata alla realizzazione di setup di misura che permettessero di utilizzare tecniche di caratterizzazione avanzata. Si sono analizzati i vantaggi e i limiti della metodologia dei transienti di corrente utilizzata per lo studio dei livelli profondi in HEMT basati su GaN, verificando in che modo diverse procedure adottate per la misurazione e l’analisi dei dati possano influenzare i risultati. La scelta dei parametri di misura (come i livelli di tensione utilizzati per indurre l’intrappolamento di carica e monitorare il transiente di corrente e la durata degli impulsi di filling) e della procedura di analisi (il metodo usato per l’estrapolazione delle costanti di tempo dei processi) può influenzare i risultati e può fornire informazioni sulla posizione degli stati trappola responsabili per il calo della corrente. Inoltre, è stato raccolto un database di difetti descritti in più di 60 articoli scientifici sul Nitruro di Gallio e i suoi composti, che può essere utilizzato per ottenere informazioni sulla natura e sull’origine delle trappole negli HEMT in AlGaN/GaN. Utilizzando questa tecnica innovativa e altri test più comuni, sono stati condotti test affidabilistici e di tempo di vita su varie strutture, per ottenere una miglior comprensione delle loro problematiche e dei possibili miglioramenti. Una possibile variazione riguarda la composizione dello stack di gate. Sono stati condotti test di degrado a Vgs = -5 V e valori di Vds crescenti su HEMT in GaN con differenti materiali di gate: Ni/Au/Ni, ITO e Ni/ITO. Ad ogni passo dello stress sono state misurate le caratteristiche elettriche e ottiche dei transistor, per analizzare il processo di degrado. Si è trovato che lo stress causa un degrado permanente del diodo di gate, che consiste in un aumento della corrente di leakage. Questo cambiamento è dovuto alla generazione di cammini conduttivi parassiti, come suggerito dalle misure di elettroluminescenza (EL), e dispositivi basati su ITO hanno mostrato un’affidabilità maggiore. Questi dati sostengono fortemente l’ipotesi che la robustezza è influenzata dai parametri di processo e/o dal materiale di gate, dato che tutti i dispositivi analizzati provengono dallo stesso wafer epitassiale.

Oltre a variare il materiale di gate, è possibile aggiungere uno strato di tipo p sotto il gate per ottenere un funzionamento normally-off. Questo cambiamento fornisce un incremento delle performance, ma può dar nascita a fenomeni di trapping particolari. Si è condotta un’accurata analisi dei processi di trapping dipendenti dal tempo e dal campo elettrico che si verificano nei transistor ad iniezione di corrente di gate (GIT) quando vengono sottoposti ad elevate tensioni di drain. I risultati indicano che, anche se i dispositivi non soffrono di cali di corrente per tempi brevi, l’esposizione continua a tensioni di drain elevate può indurre un aumento significativo della resistività in zona lineare (Ron). Il valore originario di Ron può essere recuperato lasciano il dispositivo a riposo. L’analisi della dipendenza dalla temperatura indica che l’energia di attivazione del processo di detrappolamento è pari a 0.47 eV. Tramite una caratterizzazione dell’elettroluminescenza risolta temporalmente, viene mostrato che questo effetto è correlato alla cattura di elettroni nella regione di accesso gate - drain. Questa interpretazione è inoltre confermata dal fatto che l’emissione della carica può essere significativamente accelerata attraverso l’iniezione di lacune dal gate. Un modello del primo ordine è stato sviluppato per spiegare la dipendenza dal tempo del processo di trapping. Utilizzando altre tecniche di caratterizzazione dei livelli profondi, come i transienti di corrente di drain, gli sweep di frequenza di gate e il backgating, in questi dispositivi si sono identificati vari altri stati trappola. Le loro energie di attivazione sono 0.13, 0.14, 0.25, 0.47 e 0.51 eV.
Durante i test di vita accelerata di questi dispositivi, si è trovata una variazione dell’ampiezza relativa dei picchi di transconduttanza ben correlata con l’aumento dell’elettroluminescenza. Questo effetto può essere spiegato tramite l’attivazione del drogante p, un fenomeno che si è osservato anche nei diodi laser.

Utilizzando una struttura simile, è possibile realizzare diodi capaci di sopportare tensioni inverse molto elevate, rimuovendo la regione di gate e aggiungendo un diodo Schottky (Natural Superjunction). In questo caso, si sono rilevati livelli profondi di energia di attivazione 0.35, 0.36, 0.44 e 0.47 eV. Questi valori sono molto simili a quelli trovati nei GIT, e questo fatto, insieme alla presenza dell’ativazione del drogante p in dispositivi molto differenti tra loro, conferma l’utilità dello studio di differenti strutture basate sullo stesso materiale per ottenere una maggior conoscenza delle sue performance, possibilità e aspetti affidabilistici.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Meneghesso, Gaudenzio - Zanoni, Enrico
Correlatore:Meneghini, Matteo
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):Gallium Nitride, HEMT, GIT, Natural superjunction, LED, Laser Diode, Characterization, Reliability, Trapping, Deep Levels, Failure
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:6609
Depositato il:03 Nov 2014 13:39
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi, and A. Usui, “Preparation of freestanding GaN wafers by hydride phase vapor epitaxy with void-assisted separation,” Jpn. J. Appl. Phys., vol. 42, pp. L1–L3, January 2003. Cerca con Google

[2] S. Strite and H. Morkoc, “GaN, AlGaN and InN: a review,” J. Vac. Sci. Technol., vol. 10, no. 4, 1992. Cerca con Google

[3] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metal-organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Pyhs. Lett., vol. 48, pp. 353–355, 1986. Cerca con Google

[4] V. Harle, B. Hahn, H.-J. Lugauer, S. Bader, G. Bruderl, D. Eisert, U. Strauss, U. Zehnder, A. Lell, and N. Hiller, “GaN-Based LEDs and Lasers on SiC,” Phys. Stat. Sol. A, vol. 180, pp. 5–13, 2000. Cerca con Google

[5] S. N. Mohammad and H. Morko, “Progress and Prospects of group-III Nitride Semiconductors,” Progr. Quant. Electr., vol. 20, no. 5/6, pp. 361–525, 1996. Cerca con Google

[6] M. K. Kelly, R. P. Vaudo, V. M. Phanse, L. Görgens, O. Ambacher, and M. Stutzmann, “Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff,” Jpn. J. Appl. Phys., vol. 38, pp. L217–L219, 1999. Cerca con Google

[7] H. P. Maruska and J. J. Tietjen, Appl. phys. lett., 1969, 15, 327. Cerca con Google

[8] J. H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel, “Properties, processing and applications of gallium nitride and related semiconductors,” INSPEC publication, EMIS Datareviews series, 23. Cerca con Google

[9] D. Gogova, E. Talik, I. G. Ivanov, and B. Monemar, “Large-area free-standing GaN substrate grown by hydride vapor phase epitaxy on epitaxial lateral overgrown GaN template,” Physica, vol. 371, pp. 133–139, 2006. Cerca con Google

[10] B. Monemar, “III-V nitrides - important future electronic materials,” Journal of Material Science: materials in electronics, vol. 10, p. 234, 1999. Cerca con Google

[11] M. Osinski, “Gallium-nitride-based technologies,” SPIE press critical review, vol. CR83, 2001. Cerca con Google

[12] S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode, the complete story, 2nd ed. Springer Verlag Berlin Heidelberg New York: Springer, 2000. Cerca con Google

[13] Q. Fareed, R. Gaska, and M. Shur, “Migration enhanced metal organic chemical vapor deposition of AlN/GaN/InN-based heterostructures,” in Semiconductor Device Research Symposium, 2003 International, 2003, pp. 402–403. Cerca con Google

[14] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito and Y. Nanishi, “Unusual properties of the foundamental band gap of InN,” Applied Physics Letters, vol. 80, no. 21, pp. 3967–3969, May 2002. Cerca con Google

[15] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride and II-VI ZnSe-based emiconductor device technologies,” J. Appl. phys. lett., vol. 73, no. 3, 1994. Cerca con Google

[16] K. P. O’Donnel, “A mistery wrapped in an enigma: optical properties of InGaN alloys,” Phys. Stat. Sol. A, vol. 183, pp. 117–120, 2001. Cerca con Google

[17] H. K. Cho and G. M. Yang, “Generation of misfitdislocations in high indium content in InGaN layer grown on GaN,” Journal of christal growth, vol. 243, pp. 124–128, 2002. Cerca con Google

[18] F. Hitzel, s. Lahmann, U. Rossow, and A. Hangleiter, “Correlation between emission spectra and defect position in InGaN-based light emitting devices,” Phys. stat. sol., vol. 0, no. 1, pp. 537–541, 2002. Cerca con Google

[19] S. Hautakangas, J. Oila, M. Alatalo, K. Saarinen, L. Liszkay, D. Seghier, and H. P. Gislason, “Vacancy defects as compensating centres in Mg-doped GaN,” Physical review letters, vol. 90, no. 13, p. 137402, April 2003. Cerca con Google

[20] J. W. Orton and C. T. Foxon, “Shallow donors in GaN and related compunds,” in Properties, processing and application of Gallium Nitride and Related Semiconductors, ser. EMIS Datareviews series, J. H. Edgar, S. Strite, I. Akasaki, H. Amano, and C. Wetzel, Eds., vol. 23. London: INSPEC, 1999, pp. 294–299. Cerca con Google

[21] J. Neugerbauer and C. G. V. de Walle, J. Appl. Phys., 1999, 85, 3003. Cerca con Google

[22] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Japanese Journal of Applied Physics, vol. 28, no. Part 2, No. 12, pp. L2112–L2114, 1989. Cerca con Google

[23] S. M. Myers, C. H. Seager, A. F. Wright, B. L. Vaandrager, and J. S. Nelson, “Electronbeam dissociation of the MgH complex in p-type GaN,” J. appl. phys., vol. 98, no. 11, pp. 6630–6635, December 2002. Cerca con Google

[24] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., 1992, l129. Cerca con Google

[25] S. M. Myers, A. F. Wright, G. A. Petersen, W. R. Wampler, C. H. Seager, M. H. Crawford, and J. Han, “Diffusion, release, and updake of hydrogen in magnesium-doped gallium nitride: theory and experiment,” J. Appl. Phys., vol. 89, no. 6, pp. 3195–3202, March 2001. Cerca con Google

[26] T.-C. Wen, S.-C. Lee, W.-I. Lee, T.-Y. C. andS. H. Chen, and J.-S. Tsang, “Activation of p-type GaN in pure oxygen ambient,” Jpn. J. Appl. Phys., vol. 40, no. 5B, pp. L 495–L 497, May 2001. Cerca con Google

[27] J.-S. Jang, S.-J. Park, and T.-Y. Seong, “Effects of surface treatment on the electrical properties of ohmic contacts to (In)GaN for high performance optical devices,” Phys. stat. sol., vol. 94, no. 2, pp. 576–582, 2002. Cerca con Google

[28] U. V. Bhapkar and M. Shur, “Monte carlo calculation of velocity-field characteristics of wurtzite GaN,” Journal of Applied Physics, vol. 82, no. 4, pp. 1649–1655, 1997. Cerca con Google

[29] R. Trew, “High-frequency solid-state electronic devices,” Electron Devices, IEEE Transactions on, vol. 52, no. 5, pp. 638–649, 2005. Cerca con Google

[30] K. Brennan and A. Brown, Theory of modern electronic semiconductor devices, ser. A Wiley-Interscience publication. John Wiley, 2002. Cerca con Google

[31] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” Journal of applied physics, vol. 86, no. 1, pp. 1–78, July 1999. Cerca con Google

[32] T.Wang, Y. H. Liu, Y. B. Lee, Y. Izumi, J. P. Ao, J. Bai, H. D. Li, and S. Sakai, “Fabrication of high performance of AlGaN/GaN-based UV light-emitting diodes,” Journal of Crystal Growth, 2002. Cerca con Google

[33] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, 1st ed. Prentice-Hall, 2001. Cerca con Google

[34] E. F. Schubert, Light Emitting Diodes, 2nd Edition, 2nd ed. Springer Verlag Berlin Heidelberg New York: Cambridge University Press, 2006. Cerca con Google

[35] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. John Wiley & Sons, 1981. Cerca con Google

[36] C. Moe, M. Reed, G. Garrett, G. Metcalfe, T. Alexander, H. Shen, M. Wraback, A. Lunev, Y. Bilenko, X. Hu, A. Sattu, J. Deng, M. Shatalov, and R. Gaska, “Degradation mechanisms beyond device self-heating in deep ultraviolet light emitting diodes,” in Reliability Physics Symposium, 2009 IEEE International, 2009, pp. 94–97. Cerca con Google

[37] S.-N. Lee, H. Peak, J. Son, H. Kim, K. Kim, K. Ha, O.H.Nam, and Y.Park, “Effects of Mg dopant on the degradation of InGaN multiple quantum wells in AlInGaN-based light emitting devices,” Applied physics letters, 2008. Cerca con Google

[38] J.-S. Huang, T. Olson, and E. Isip, “Human-body-model electrostatic-discharge and electricaloverstress studies of buried-heterostructure semiconductor lasers,” Device and Materials Reliability, IEEE Transactions on, vol. 7, no. 3, pp. 453–461, 2007. Cerca con Google

[39] J. Jeong, K. Park, and H. Park, “Wavelength shifts of 1.5-m DFB lasers due to human-bodymodel electrostatic discharge followed by accelerated aging experiments,” Lightwave Technology, Journal of, vol. 13, no. 2, pp. 186–190, 1995. Cerca con Google

[40] F. Essely, C. Bestory, N. Guitard, A. Bafleur, A. Wislez, E. Doche, P. Perdu, A. Touboul, and D. Lewis, “Study of the ESD defects impact on ICs reliability,” Microelectronics Reliability, vol. 44, no. 9-11, pp. 1811 – 1815, 2004. [Online]. Available: http://dx.doi.org/10.1016/j.microrel.2004.07.090 Vai! Cerca con Google

[41] W. Greason, Z. Kucerovsky, and K. Chum, “Latent effects due to ESD in CMOS integrated circuits: review and experiments,” Industry Applications, IEEE Transactions on, vol. 29, no. 1, pp. 88–97, 1993. Cerca con Google

[42] J.-S. Huang and H. Lu, “Size effect on ESD threshold and degradation behavior of InP buried heterostructure semiconductor lasers,” Open Applied Physics Journal, vol. 2, pp. 5–10, 2009. Cerca con Google

[43] H. Ichikawa, C. Fukuda, S. Matsukawa, K. Hamada, N. Ikoma, and T. Nakabayashi, “Improvement in electrostatic-discharge tolerance of 1.3 m AlGaInAs/InP buried heterostructure laser diodes,” in Indium Phosphide Related Materials, 2009. IPRM ’09. IEEE International Conference on, 2009, pp. 245–248. Cerca con Google

[44] C.-Y. Huang, M.-C. Wu, H.-C. Yu, W.-J. Jiang, J.-M. Wang, and C.-P. Sung, “Effect of electrostatic discharge on power output and reliability of 850 nm vertical-cavity surface-emitting lasers,” Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 22, no. 4, pp. 1970–1973, 2004. Cerca con Google

[45] W. C. Tang, H. J. Rosen, P. Vettiger, and D. J. Webb, “Evidence for current-density-induced heating of AlGaAs single-quantum-well laser facets,” Applied Physics Letters, vol. 59, no. 9, pp. 1005–1007, August 1994. Cerca con Google

[46] C. H. Henry, P. M. Petroff, R. A. Logan, and F. R. Merritt, “Catastrophic damage of AlxGa1-xAs double-heterostructure laser material,” Journal of Applied Physics, vol. 50, no. 5, pp. 3721–3732, August 1979. Cerca con Google

[47] U. Menzel, R. Puchert, A. Barwolff, and A. Lau, “Facet heating and axial temperature profiles in high-power GaAlAs/GaAs laser diodes,” Microelectronics Reliability, vol. 38, pp. 821–825, 1998. Cerca con Google

[48] G. Chen and C. L. Tien, “Facet heating of quantum well lasers,” Journal of Applied Physics, vol. 74, no. 5, pp. 2167–2174, 1993. Cerca con Google

[49] F. A. Houle, D. L. Neiman, W. C. Tang, and H. J. Rosen, “Chemical changes accompanying facet degradation of AlGaAs quantum well lasers,” Journal of Applied Physics, vol. 72, no. 9, pp. 3884–3896, November 1992. Cerca con Google

[50] F. Magistrali, E. Mariani, G. Salmini, and M. Vanzi, “Failure analysis of 980 nm high power lasers,” 20th Symposium for Testing and Failure Analysis, pp. 335–340, November 1994. Cerca con Google

[51] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs - an overview of device operation and applications,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1022–1031, 2002. Cerca con Google

[52] S. P. Lepkowski, J. A. Majewski, and G. Jurczak, “Nonlinear Elasticity in Wurtzite GaN/AlN Planar Superlattices and Quantum Dots,” Acta Physica Polonica A, vol. 108, p. 749, Nov. 2006. Cerca con Google

[53] O. Ambacher, B. Foutz, J. Smart, J. Shealy, N.Weimann, K. Chu, M. Murphy, A. Sierakowski, W. Schaff, L. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, no. 1, pp. 334–344, 2000. Cerca con Google

[54] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” Electron Devices, IEEE Transactions on, vol. 48, no. 3, pp. 450–457, 2001. Cerca con Google

[55] A. Bykhovski, R. Gaska, and M. Shur, “Piezoelectric doping and elastic strain relaxation in AlGaN - GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 73, no. 24, pp. 3577–3579, 1998. Cerca con Google

[56] J. Ibbetson, P. T. Fini, K. D. Ness, S. DenBaars, J. Speck, and U. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Applied Physics Letters, vol. 77, no. 2, pp. 250–252, 2000. Cerca con Google

[57] P. Chang, E. S. E. Division, and E. S. Meeting, State-of-the-Art Program on Compound Semiconductors: (SOTAPOCS XLII) and Processes at the Compound-Semiconductor/Solution Interface: Proceedings of the International Symposia, ser. Proceedings (Electrochemical Society). Electrochemical Society, 2005. Cerca con Google

[58] P. Srivastava, J. Das, D. Visalli, M. Van Hove, P. E. Malinowski, D. Marcon, S. Lenci, K. Geens, K. Cheng, M. Leys, S. Decoutere, R. Mertens, and G. Borghs, “Record breakdown voltage (2200 v) of GaN DHFETs on si with 2 m buffer thickness by local substrate removal,” Electron Device Letters, IEEE, vol. 32, no. 1, pp. 30–32, 2011. Cerca con Google

[59] F. Padovani and R. Stratton, “Field and thermionic-field emission in schottky barriers,” Solid-State Electronics, vol. 9, no. 7, pp. 695 – 707, 1966. Cerca con Google

[60] R. Stratton, “Theory of field emission from semiconductors,” Phys. Rev., vol. 125, pp. 67–82, Jan 1962. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRev.125.67 Vai! Cerca con Google

[61] L. Yu, Q. Z. Liu, Q. J. Xing, D. Qiao, S. Lau, and J. Redwing, “The role of the tunneling component in the current - voltage characteristics of metal-GaN schottky diodes,” Journal of Applied Physics, vol. 84, no. 4, pp. 2099–2104, 1998. Cerca con Google

[62] E. Miller, X. Z. Dang, and E. Yu, “Gate leakage current mechanisms in AlGaN/GaN heterostructure field-effect transistors,” Journal of Applied Physics, vol. 88, no. 10, pp. 5951–5958, 2000. Cerca con Google

[63] T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN schottky interfaces,” Applied Physics Letters, vol. 84, no. 24, pp. 4884–4886, 2004. Cerca con Google

[64] H. Hasegawa and S. Oyama, “Mechanism of anomalous current transport in n-type GaN Schottky contacts,” Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, vol. 20, no. 4, pp. 1647–1655, 2002. Cerca con Google

[65] D. M. Sathaiya and S. Karmalkar, “Thermionic trap-assisted tunneling model and its application to leakage current in nitrided oxides and AlGaN/GaN high electron mobility transistors,” Journal of Applied Physics, vol. 99, no. 9, pp. 093 701–093 701–6, 2006. Cerca con Google

[66] S. K. Gupta, J. Singh, and J. Akhtar, Physics and Technology of Silicon Carbide Devices. InTech, 2012. Cerca con Google

[67] H. Zhang, E. Miller, and E. Yu, “Analysis of leakage current mechanisms in schottky contacts to GaN and Al0,25Ga0,75N/GaN grown by molecular-beam epitaxy,” Journal of Applied Physics, vol. 99, no. 2, pp. 023 703–023 703–6, 2006. Cerca con Google

[68] W. S. Tan, M. Uren, P. Houston, R. Green, R. Balmer, and T. Martin, “Surface leakage currents in SiNx passivated AlGaN/GaN HFETs,” Electron Device Letters, IEEE, vol. 27, no. 1, pp. 1–3, 2006. Cerca con Google

[69] G. Meneghesso, A. Zanandrea, A. Stocco, I. Rossetto, C. de Santi, F. Rampazzo, M. Meneghini, E. Zanoni, E. Bahat-Treidel, O. Hilt, P. Ivo, and J. Wuerfl, “GaN-HEMTs devices with single- and double-heterostructure for power switching applications,” in Reliability Physics Symposium (IRPS), 2013 IEEE International, 2013, pp. 3C.1.1–3C.1.7. Cerca con Google

[70] O. Fathallah, M. Gassoumi, S. Saadaoui, B. Grimbert, C. Gaquiere, and H. Maaref, “Effects of the drain width on the electrical behavior of deep defect in AlGaN/GaN/SiC HEMTs,” in Microelectronics Proceedings (MIEL), 2010 27th International Conference on, 2010, pp. 479–481. Cerca con Google

[71] G. Meneghesso, M. Meneghini, A. Stocco, D. Bisi, C. de Santi, I. Rossetto, A. Zanandrea, F. Rampazzo, and E. Zanoni, “Degradation of AlGaN/GaN HEMT devices: Role of reverse-bias and hot electron stress,” Microelectronic Engineering, vol. 109, no. 0, pp. 257 – 261, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.mee.2013.03.017 Vai! Cerca con Google

[72] E. Zanoni, M. Meneghini, A. Chini, D. Marcon, and G. Meneghesso, “AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction,” Electron Devices, IEEE Transactions on, vol. 60, no. 10, pp. 3119–3131, 2013. Cerca con Google

[73] H. Jung, R. Behtash, J. Thorpe, K. Riepe, F. Bourgeois, H. Blanck, A. Chuvilin, and U. Kaiser, “Reliability behavior of GaN HEMTs related to Au diffusion at the Schottky interface,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 6, no. SUPPL. 2, pp. S976–S979, 2009. Cerca con Google

[74] M. Zhao, X.Wang, X. Liu, J. Huang, Y. Zheng, and K.Wei, “Thermal Storage of AlGaN/GaN High-Electron-Mobility Transistors,” Device and Materials Reliability, IEEE Transactions on, vol. 10, no. 3, pp. 360–365, 2010. Cerca con Google

[75] S. Singhal, J. Roberts, P. Rajagopal, T. Li, A. Hanson, R. Therrien, J. Johnson, I. Kizilyalli, and K. Linthicum, “GaN-on-Si Failure Mechanisms and Reliability Improvements,” in Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, 2006, pp. 95–98. Cerca con Google

[76] F. Vitobello and A. R. Barnes, “Long duration high temperature storage test on GaN HEMTs,” in Reliability Physics Symposium (IRPS), 2012 IEEE International, 2012, pp. 2C.4.1–2C.4.6. Cerca con Google

[77] D. Marcon, X. Kang, J. Viaene, M. Van Hove, P. Srivastava, S. Decoutere, R. Mertens, and G. Borghs, “GaN-based HEMTs tested under high temperature storage test,” Microelectronics Reliability, vol. 51, no. 9-11, pp. 1717–1720, 2011. Cerca con Google

[78] T. Kikkawa, K. Makiyama, T. Ohki, M. Kanamura, K. Imanishi, N. Hara, and K. Joshin, “High performance and high reliability AlGaN/GaN HEMTs,” physica status solidi (a), vol. 206, no. 6, pp. 1135–1144, 2009. [Online]. Available: http://dx.doi.org/10.1002/pssa.200880983 Vai! Cerca con Google

[79] J. Joh, L. Xia, and J. del Alamo, “Gate Current Degradation Mechanisms of GaN High Electron Mobility Transistors,” in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 385–388. Cerca con Google

[80] J. Joh and J. del Alamo, “Critical voltage for electrical degradation of GaN high-electron mobility transistors,” Electron Device Letters, IEEE, vol. 29, no. 4, pp. 287–289, 2008. Cerca con Google

[81] J. del Alamo and J. Joh, “GaN HEMT reliability,” Microelectronics Reliability, vol. 49, no. 9–11, pp. 1200 – 1206, 2009. [Online]. Available: http://dx.doi.org/10.1016/j.microrel.2009.07.003 Vai! Cerca con Google

[82] M. Meneghini, A. Stocco, M. Bertin, D. Marcon, A. Chini, G. Meneghesso, and E. Zanoni, “Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias,” Applied Physics Letters, vol. 100, no. 3, pp. 033 505–033 505–3, 2012. Cerca con Google

[83] F. Gao, B. Lu, L. Li, S. Kaun, J. S. Speck, C. V. Thompson, and T. Palacios, “Role of oxygen in the OFF-state degradation of AlGaN/GaN high electron mobility transistors,” Applied Physics Letters, vol. 99, no. 22, pp. 223 506–223 506–3, 2011. Cerca con Google

[84] S. Park, C. Floresca, U. Chowdhury, J. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, and M. Kim, “Physical degradation of GaN HEMT devices under high drain bias reliability testing,” Microelectronics Reliability, vol. 49, no. 5, pp. 478–483, 2009. Cerca con Google

[85] A. Conway, M. Chen, P. Hashimoto, P. Willadsen, and M. Micovic, “Accelerated RF life Testing of GaN HFETs,” in Reliability physics symposium, 2007. proceedings. 45th annual. ieee international, 2007, pp. 472–475. Cerca con Google

[86] B. Huebschman, F. Crowne, A. Darwish, E. Viveiros, K. Kingkeo, and N. Goldsman, “Identification of Pre-Catastrophic Failure Mechanisms in High Power GaN HEMT,” in Compound Semiconductor Integrated Circuit Symposium (CSICS), 2011 IEEE, 2011, pp. 1–4. Cerca con Google

[87] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT) - a normally-off AlGaN/GaN power transistorusing conductivity modulation,” Electron Devices, IEEE Transactions on, vol. 54, no. 12, pp. 3393–3399, 2007. Cerca con Google

[88] H. Ishida, D. Shibata, M. Yanagihara, Y. Uemoto, H. Matsuo, T. Ueda, T. Tanaka, and D. Ueda, “Unlimited high breakdown voltage by natural super junction of polarized semiconductor,” Electron Device Letters, IEEE, vol. 29, no. 10, pp. 1087–1089, 2008. Cerca con Google

[89] J. Barbolla, S. Duenas, and L. Bailon, “Admittance spettroscopy in junctions,” Solid-State Electronics, vol. 35, no. 3, pp. 285–297, 1991. Cerca con Google

[90] M. Meneghini, L. R. Trevisanello, G. Meneghesso, and E. Zanoni, “A review on the reliability of GaN-based LEDs,” IEEE transactions on device and materials reliability, vol. 8, no. 2, pp. 323–331, June 2008. Cerca con Google

[91] Y. Xi and E.F.Shubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Applied Physics Letters, vol. 85, no. 12, September 2004. Cerca con Google

[92] M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U. K. Mishra, Y. Pei, and E. Zanoni, “Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method,” Electron Devices, IEEE Transactions on, vol. 58, no. 9, pp. 2996–3003, 2011. Cerca con Google

[93] T. Mizutani, T. Okino, K. Kawada, Y. Ohno, S. Kishimoto, and K. Maezawa, “Drain current DLTS of AlGaN/GaN HEMTs,” physica status solidi (a), vol. 200, no. 1, pp. 195–198, 2003. [Online]. Available: http://dx.doi.org/10.1002/pssa.200303464 Vai! Cerca con Google

[94] J. Joh and J. del Alamo, “A current-transient methodology for trap analysis for GaN high electron mobility transistors,” Electron Devices, IEEE Transactions on, vol. 58, no. 1, pp. 132–140, 2011. Cerca con Google

[95] R. Vetury, N.-Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” Electron Devices, IEEE Transactions on, vol. 48, no. 3, pp. 560–566, 2001. Cerca con Google

[96] M. Tapajna, R. J. T. Simms, Y. Pei, U. K. Mishra, and M. Kuball, “Integrated optical and electrical analysis: Identifying location and properties of traps in AlGaN/GaN HEMTs during electrical stress,” Electron Device Letters, IEEE, vol. 31, no. 7, pp. 662–664, 2010. Cerca con Google

[97] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, W. Liu, and S. Tripathy, “Identification of deep levels in GaN associated with dislocations,” Journal of Physics: Condensed Matter, vol. 16, no. 34, p. 6305, 2004. [Online]. Available: http://stacks.iop.org/0953-8984/16/i=34/a=027 Vai! Cerca con Google

[98] A. Johnston and T. Miyahira, “Characterization of proton damage in light-emitting diodes,” Nuclear Science, IEEE Transactions on, vol. 47, no. 6, pp. 2500–2507, 2000. Cerca con Google

[99] S. Khanna, D. Estan, H. Liu, M. Gao, M. Buchanan, and A. SpringThorpe, “1-15 MeV proton and alpha particle radiation effects on GaAs quantum well light emitting diodes,” Nuclear Science, IEEE Transactions on, vol. 47, no. 6, pp. 2508–2514, 2000. Cerca con Google

[100] H. Becker and A. Johnston, “Proton damage in LEDs with wavelengths above the silicon wavelength cutoff,” Nuclear Science, IEEE Transactions on, vol. 51, no. 6, pp. 3558–3563, 2004. Cerca con Google

[101] R. Khanna, K. K. Allums, C. Abernathy, S. Pearton, J. Kim, F. Ren, R. Dwivedi, T. N. Fogarty, and R. Wilkins, “Effects of high-dose 40 MeV proton irradiation on the electroluminescent and electrical performance of InGaN light-emitting diodes,” Applied Physics Letters, vol. 85, no. 15, pp. 3131–3133, 2004. Cerca con Google

[102] M. Osinski, P. Perlin, H. Schone, A. Paxton, and E. Taylor, “Effects of proton irradiation on AlGaN/InGaN/GaN green light emitting diodes,” Electronics Letters, vol. 33, no. 14, pp. 1252–1254, 1997. Cerca con Google

[103] S. Cai, Y. Tang, R. Li, Y. Wei, L. Wong, Y. Chen, K. Wang, M. Chen, R. Schrimpf, J. Keay, and K. Galloway, “Annealing behavior of a proton irradiated AlxGa1􀀀xN/GaN high electron mobility transistor grown by MBE,” Electron Devices, IEEE Transactions on, vol. 47, no. 2, pp. 304–307, 2000. Cerca con Google

[104] F. Gaudreau, C. Carlone, A. Houdayer, and S. Khanna, “Spectral properties of proton irradiated gallium nitride blue diodes,” Nuclear Science, IEEE Transactions on, vol. 48, no. 6, pp. 1778–1784, 2001. Cerca con Google

[105] S. Khanna, D. Estan, A. Houdayer, H. Liu, and R. Dudek, “Proton radiation damage at low temperature in GaAs and GaN light-emitting diodes,” Nuclear Science, IEEE Transactions on, vol. 51, no. 6, pp. 3585–3594, 2004. Cerca con Google

[106] N. Trivellin, M. Meneghini, C. D. Santi, S. Vaccari, G. Meneghesso, E. Zanoni, K. Orita, S. Takigawa, T. Tanaka, and D. Ueda, “Degradation of InGaN lasers: Role of non-radiative recombination and injection efficiency,” Microelectronics Reliability, vol. 51, no. 9-11, pp. 1747 – 1751, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.microrel.2011.07.038 Vai! Cerca con Google

[107] N. Trivellin, M. Meneghini, E. Zanoni, K. Orita, M. Yuri, T. Tanaka, D. Ueda, and G. Meneghesso, “A review on the reliability of GaN-based laser diodes,” in Reliability Physics Symposium (IRPS), 2010 IEEE International, 2010, pp. 1–6. Cerca con Google

[108] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Applied Physics Letters, vol. 79, no. 18, pp. 2895–2897, 2001. Cerca con Google

[109] N. Tansu and L. Mawst, “Temperature sensitivity of 1300-nm InGaAsN quantum-well lasers,” Photonics Technology Letters, IEEE, vol. 14, no. 8, pp. 1052–1054, 2002. Cerca con Google

[110] M. Meneghini, C. de Santi, N. Trivellin, K. Orita, S. Takigawa, T. Tanaka, D. Ueda, G. Meneghesso, and E. Zanoni, “Analysis of the deep level responsible for the degradation of InGaN-based laser diodes by DLTS,” in Proc. SPIE, vol. 8262, 2012, pp. 826 215–826 215–8. [Online]. Available: http://dx.doi.org/10.1117/12.906551 Vai! Cerca con Google

[111] H. M. Chung, W. C. Chuang, Y. Pan, C. Tsai, M. Lee, W. Chen, W. Chen, C. I. Chiang, C. H. Lin, and H. Chang, “Electrical characterization of isoelectronic In-doping effects in GaN films grown by metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 76, no. 7, pp. 897–899, 2000. Cerca con Google

[112] H. K. Cho, F. A. Khan, I. Adesida, Z.-Q. Fang, and D. C. Look, “Deep level characteristics in n-GaN with inductively coupled plasma damage,” Journal of Physics D: Applied Physics, vol. 41, no. 15, p. 155314, 2008. [Online]. Available: http://stacks.iop.org/0022-3727/41/i=15/a=155314 Vai! Cerca con Google

[113] A. Hierro, S. A. Ringel, M. Hansen, J. S. Speck, U. K. Mishra, and S. P. DenBaars, “Hydrogen passivation of deep levels in n-GaN,” Applied Physics Letters, vol. 77, no. 10, pp. 1499–1501, 2000. [Online]. Available: http://dx.doi.org/10.1063/1.1290042 Vai! Cerca con Google

[114] D. Look, Z.-Q. Fang, and B. Claflin, “Identification of donors, acceptors, and traps in bulk-like HVPE GaN,” Journal of Crystal Growth, vol. 281, no. 1, pp. 143 – 150, 2005. [Online]. Available: http://dx.doi.org/10.1016/j.jcrysgro.2005.03.035 Vai! Cerca con Google

[115] M. Meneghini, N. Trivellin, K. Orita, S. Takigawa, T. Tanaka, D. Ueda, G. Meneghesso, and E. Zanoni, “Degradation of InGaN-based laser diodes analyzed by means of electrical and optical measurements,” Applied Physics Letters, vol. 97, no. 26, pp. 263 501–263 501–3, 2010. Cerca con Google

[116] F. Manyakhin, A. Kovalev, and A. E. Yunovich, “Aging mechanisms of InGaN/AlGaN/GaN light-emitting diodes operating at high currents,” MRS Internet Jour. Nitr. Sem. Res., vol. 3, no. 53, 1998. Cerca con Google

[117] S. Tomiya, O. Goto, and M. Ikeda, “Structural defects and degradation phenomena in highpower pure-blue InGaN-based laser diodes,” Proceedings of the IEEE, pp. 1–6, 2010. Cerca con Google

[118] F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, A. Castaldini, A. Cavallini, L. Rigutti, U. Strass, U. Zehnder, and E. Zanoni, “Influence of short-term low current DC aging on the electrical and optical properties of InGaN blue light-emitting diodes,” Journal of applied physics, vol. 99, 2006. Cerca con Google

[119] K. Orita, M. Meneghini, H. Ohno, N. Trivellin, N. Ikedo, S. Takigawa, M. Yuri, T. Tanaka, E. Zanoni, and G. Meneghesso, “Analysis of diffusion-related gradual degradation of InGaNbased laser diodes,” Quantum Electronics, IEEE Journal of, vol. 48, no. 9, pp. 1169–1176, 2012. Cerca con Google

[120] S. Tomiya, T. Hino, S. Goto, M. Takeya, and M. Ikeda, “Dislocation related issues in the degradation of GaN-based laser diodes,” Selected Topics in Quantum Electronics, IEEE Journal of, vol. 10, no. 6, pp. 1277–1286, 2004. Cerca con Google

[121] M. Meneghini, C. De Santi, N. Trivellin, K. Orita, S. Takigawa, T. Tanaka, D. Ueda, G. Meneghesso, and E. Zanoni, “Investigation of the deep level involved in InGaN laser degradation by deep level transient spectroscopy,” Applied Physics Letters, vol. 99, no. 9, pp. 093 506–093 506–3, 2011. Cerca con Google

[122] C. de Santi, M. Meneghini, S. Carraro, S. Vaccari, N. Trivellin, S. Marconi, M. Marioli, G. Meneghesso, and E. Zanoni, “Variations in junction capacitance and doping activation associated with electrical stress of InGaN/GaN laser diodes,” Microelectronics Reliability, vol. 53, no. 9–11, pp. 1534 – 1537, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.microrel.2013.07.053 Vai! Cerca con Google

[123] L. Liu, M. Ling, J. Yang, W. Xiong, W. Jia, and G. Wang, “Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure,” Journal of Applied Physics, vol. 111, no. 9, pp. 093 110–093 110–9, 2012. Cerca con Google

[124] J. Neugebauer and C. G. Van de Walle, “Hydrogen in GaN: Novel aspects of a common impurity,” Phys. Rev. Lett., vol. 75, pp. 4452–4455, Dec 1995. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.75.4452 Vai! Cerca con Google

[125] W. Gotz, N. Johnson, D. Bour, M. McCluskey, and E. Haller, “Local vibrational modes of the Mg-H acceptor complex in GaN,” Applied Physics Letters, vol. 69, no. 24, pp. 3725–3727, 1996. Cerca con Google

[126] X. Li and J. Coleman, “Time-dependent study of low energy electron beam irradiation of Mg-doped GaN grown by metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 69, no. 11, pp. 1605–1607, 1996. Cerca con Google

[127] A. Castiglia, J. F. Carlin, and N. Grandjean, “Role of stable and metastable Mg-H complexes in p-type GaN for cw blue laser diodes,” Applied Physics Letters, vol. 98, no. 21, pp. 213 505– 213 505–3, 2011. Cerca con Google

[128] Y.-J. Lin, “Activation mechanism of annealed Mg-doped GaN in air,” Applied Physics Letters, vol. 84, no. 15, pp. 2760–2762, 2004. Cerca con Google

[129] L. Marona, P. Wisniewski, P. Prystawko, I. Grzegory, T. Suski, S. Porowski, P. Perlin, R. Czernecki, and M. Leszczynski, “Degradation mechanisms in InGaN laser diodes grown on bulk GaN crystals,” Applied Physics Letters, vol. 88, no. 20, pp. 201 111–201 111–3, 2006. Cerca con Google

[130] V. Kummler, G. Bruderl, S. Bader, S. Miller, A. Weimar, A. Lell, V. Ha¨rle, U. T. Schwarz, N. Gmeinwieser, and W. Wegscheider, “Degradation analysis of InGaN laser diodes,” physica status solidi (a), vol. 194, no. 2, pp. 419–422, December 2002. Cerca con Google

[131] X. Cao, P. Sandvik, S. LeBoeuf, and S. Arthur, “Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses,” Microelectronics Reliability, vol. 43, no. 12, pp. 1987 – 1991, 2003. [Online]. Available: http: //dx.doi.org/10.1016/j.microrel.2003.06.001 Cerca con Google

[132] M. Takeya, T. Hashizu, and M. Ikeda, “Degradation of GaN-based high-power lasers and recent advancements,” in Proc. SPIE, vol. 5738, 2005, pp. 63–71. [Online]. Available: http://dx.doi.org/10.1117/12.597099 Vai! Cerca con Google

[133] N. Shigekawa, K. Shiojima, and T. Suemitsu, “Optical study of high-biased AlGaN/GaN high-electron-mobility transistors,” Journal of Applied Physics, vol. 92, no. 1, pp. 531–535, 2002. Cerca con Google

[134] A. Polyakov, N. Smirnov, A. Govorkov, E. Kozhukhova, A. Dabiran, P. Chow, A. Wowchak, I.-H. Lee, J.-W. Ju, and S. Pearton, “Comparison of electrical properties and deep traps in p-AlxGa1-xN grown by molecular beam epitaxy and metal organic chemical vapor deposition,” Journal of Applied Physics, vol. 106, no. 7, pp. 073 706–073 706–6, 2009. Cerca con Google

[135] M. Meneghini, C. De Santi, T. Ueda, T. Tanaka, D. Ueda, E. Zanoni, and G. Meneghesso, “Time- and field-dependent trapping in GaN-based enhancement-mode transistors with pgate,” Electron Device Letters, IEEE, vol. 33, no. 3, pp. 375–377, 2012. Cerca con Google

[136] S. Binari, P. Klein, and T. Kazior, “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1048–1058, 2002. Cerca con Google

[137] C. Hu, S. C.Tam, F.-C. Hsu, P.-K. Ko, T.-Y. Chan, and K. Terrill, “Hot-electron-induced MOSFET degradation - model, monitor, and improvement,” Electron Devices, IEEE Transactions on, vol. 32, no. 2, pp. 375–385, 1985. Cerca con Google

[138] T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Drain current DLTS of AlGaN-GaN MIS-HEMTs,” Electron Device Letters, IEEE, vol. 25, no. 8, pp. 523– 525, 2004. Cerca con Google

[139] D. Bisi, M. Meneghini, C. de Santi, A. Chini, M. Dammann, P. Bruckner, M. Mikulla, G. Meneghesso, and E. Zanoni, “Deep-level characterization in GaN HEMTs - part I: Advantages and limitations of drain current transient measurements,” Electron Devices, IEEE Transactions on, vol. 60, no. 10, pp. 3166–3175, 2013. Cerca con Google

[140] A. Chini, F. Soci, M. Meneghini, G. Meneghesso, and E. Zanoni, “Deep levels characterization in GaN HEMTs - part II: Experimental and numerical evaluation of self-heating effects on the extraction of traps activation energy,” Electron Devices, IEEE Transactions on, vol. 60, no. 10, pp. 3176–3182, 2013. Cerca con Google

[141] T. Morita, S. Ujita, H. Umeda, Y. Kinoshita, S. Tamura, Y. Anda, T. Ueda, and T. Tanaka, “GaN gate injection transistor with integrated Si schottky barrier diode for highly efficient DC-DC converters,” in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 7.2.1–7.2.4. Cerca con Google

[142] M. Wolter, M. Marso, P. Javorka, J. Bernát, R. Carius, H. Lüth, and P. Kordoš, “Investigation of traps in AlGaN/GaN HEMTs on silicon substrate,” physica status solidi (c), vol. 0, no. 7, pp. 2360–2363, 2003. [Online]. Available: http://dx.doi.org/10.1002/pssc.200303535 Vai! Cerca con Google

[143] M. Uren, D. Herbert, T. Martin, B. Hughes, J. Birbeck, R. Balmer, A. Pidduck, and S. Jones, “Back bias effects in AlGaN/GaN HFETs,” physica status solidi (a), vol. 188, no. 1, pp. 195–198, 2001. [Online]. Available: http://dx.doi.org/10.1002/1521-396X(200111)188: 1<195::AID-PSSA195>3.0.CO;2-9 Vai! Cerca con Google

[144] K. Tanaka, M. Ishida, T. Ueda, and T. Tanaka, “Effects of deep trapping states at high temperatures on transient performance of AlGaN/GaN heterostructure field-effect transistors,” Japanese Journal of Applied Physics, vol. 52, no. 4S, p. 04CF07, 2013. [Online]. Available: http://stacks.iop.org/1347-4065/52/i=4S/a=04CF07 Vai! Cerca con Google

[145] M. Marso, M. Wolter, P. Javorka, P. Kordos, and H. Luth, “Investigation of buffer traps in an AlGaN/GaN/Si high electron mobility transistor by backgating current deep level transient spectroscopy,” Applied Physics Letters, vol. 82, no. 4, pp. 633–635, 2003. Cerca con Google

[146] U. Honda, Y. Yamada, Y. Tokuda, and K. Shiojima, “Deep levels in n-GaN doped with carbon studied by deep level and minority carrier transient spectroscopies,” Japanese Journal of Applied Physics, vol. 51, no. 4S, p. 04DF04, 2012. [Online]. Available: http://stacks.iop.org/1347-4065/51/i=4S/a=04DF04 Vai! Cerca con Google

[147] M. Meneghini, M. Scamperle, M. Pavesi, M. Manfredi, T. Ueda, H. Ishida, T. Tanaka, D. Ueda, G. Meneghesso, and E. Zanoni, “Electron and hole-related luminescence processes in gate injection transistors,” Applied Physics Letters, vol. 97, no. 3, pp. 033 506–033 506–3, 2010. Cerca con Google

[148] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, and M. Yamaguchi, “Field-plate structure dependence of current collapse phenomena in highvoltage GaN-HEMTs,” Electron Device Letters, IEEE, vol. 31, no. 7, pp. 659–661, 2010. Cerca con Google

[149] S.-H. Lu, W. Zhou, D. Yan, J.-X. Xia, and M. hua Yang, “Effect of source-connected field plate on electric field distribution and breakdown voltage in AlGaN/GaN HEMTs,” in Solid-State and Integrated Circuit Technology, 2006. ICSICT ’06. 8th International Conference on, 2006, pp. 860–862. Cerca con Google

[150] W. Huang, S. Zhang, and J. Xu, “High-breakdown voltage field-plated normally-off Al-GaN/GaN HEMTs for power management,” in Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, 2010, pp. 1335–1337. Cerca con Google

[151] B.-R. Park, J.-G. Lee, H.-J. Lee, J. Lim, K.-S. Seo, and H.-Y. Cha, “Breakdown voltage enhancement in field plated AlGaN/GaN-on-Si HFETs using mesa-first prepassivation process,” Electronics Letters, vol. 48, no. 3, pp. 181–182, 2012. Cerca con Google

[152] G. Xie, E. Xu, J. Lee, N. Hashemi, B. Zhang, F. Fu, and W.-T. Ng, “Breakdown-voltage enhancement technique for RF-based AlGaN/GaN HEMTs with a source-connected air-bridge field plate,” Electron Device Letters, IEEE, vol. 33, no. 5, pp. 670–672, 2012. Cerca con Google

[153] M. Kuball, J. M. Hayes, M. Uren, T. Martin, J. C. H. Birbeck, R. Balmer, and B. Hughes, “Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy,” Electron Device Letters, IEEE, vol. 23, no. 1, pp. 7–9, 2002. Cerca con Google

[154] S. Cheng, C.-Y. Li, C.-H. Liu, and P.-C. Chou, “Characterization and thermal analysis of packaged AlGaN/GaN power HEMT,” in Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 2011 6th International, 2011, pp. 195–197. Cerca con Google

[155] R. Aubry, J. C. Jacquet, J. Weaver, O. Durand, P. Dobson, G. Mills, M.-A. di Forte-Poisson, S. Cassette, and S.-L. Delage, “SThM temperature mapping and nonlinear thermal resistance evolution with bias on AlGaN/GaN HEMT devices,” Electron Devices, IEEE Transactions on, vol. 54, no. 3, pp. 385–390, 2007. Cerca con Google

[156] J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, and P. Kordos, “Determination of channel temperature in AlGaN/GaN HEMTs grown on sapphire and silicon substrates using DC characterization method,” Electron Devices, IEEE Transactions on, vol. 49, no. 8, pp. 1496–1498, 2002. Cerca con Google

[157] S. McAlister, J. Bardwell, S. Haffouz, and H. Tang, “Self-heating and the temperature dependence of the dc characteristics of GaN heterostructure field effect transistors,” Journal of Vacuum Science Technology A: Vacuum, Surfaces, and Films, vol. 24, no. 3, pp. 624–628, 2006. Cerca con Google

[158] J. Joh, J. del Alamo, U. Chowdhury, T.-M. Chou, H.-Q. Tserng, and J. Jimenez, “Measurement of channel temperature in GaN high-electron mobility transistors,” Electron Devices, IEEE Transactions on, vol. 56, no. 12, pp. 2895–2901, 2009. Cerca con Google

[159] E. Zanoni, F. Danesin, M. Meneghini, A. Cetronio, C. Lanzieri, M. Peroni, and G. Meneghesso, “Localized damage in AlGaN/GaN HEMTs induced by reverse-bias testing,” Electron Device Letters, IEEE, vol. 30, no. 5, pp. 427–429, 2009. Cerca con Google

[160] J. Joh and J. del Alamo, “Mechanisms for electrical degradation of GaN high-electron mobility transistors,” in Electron Devices Meeting, 2006. IEDM ’06. International, 2006, pp. 1–4. Cerca con Google

[161] M. Higashiwaki, T. Matsui, and T. Mimura, “AlGaN/GaN MIS-HFETs with fT of 163 GHz using cat-CVD SiN gate-insulating and passivation layers,” Electron Device Letters, IEEE, vol. 27, no. 1, pp. 16–18, 2006. Cerca con Google

[162] M. Marso, G. Heidelberger, K. Indlekofer, J. Bernat, A. Fox, P. Kordos, and H. Luth, “Origin of improved RF performance of AlGaN/GaN MOSHFETs compared to HFETs,” Electron Devices, IEEE Transactions on, vol. 53, no. 7, pp. 1517–1523, 2006. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record