Autophagy is an ubiquitous degradation system, that is conserved through species. Cells activate autophagy to degrade long-lived proteins, damaged organelles or portions of cytoplasm, that are engulfed in double-membrane vesicles called autophagosomes, that ultimately fuse to lysosomes, where the cargo is degraded and breakdown products are recycled to sustain cellular energetic demands. Skeletal muscle is the most abundant tissue in mammals and controls 80% of the blood glucose. We have recently shown that an efficient autophagy is required for muscle mass maintenance (Masiero et al., 2009). During ageing, muscles inevitably undergo atrophy, a process named sarcopenia (Rossi et al. 2008). Moreover, it has been reported that autophagy declines with age (Tan et al., 2013). Since the mechanisms involved in age-related muscle loss remain obscure, we investigated whether autophagy impairment contributes to sarcopenia. In this work, the muscle-specific autophagy knockout (Atg7-/-MLC), that were recently generated in our laboratory, were characterized during ageing (Masiero et al., 2009). Aged Atg7-/- mice have reduced lifespan and exacerbated atrophic and myopathic phenotype. In vivo force measurements showed that they are weaker compared to age-matched control mice. Alteration of mitochondrial morphology is a typical feature of Atg7-/- muscles. Therefore, we studied mitochondrial function in adult mice. Mitochondria of Atg7-/- mice were dysfunctional, in fact they did not retain membrane potential upon inhibition of ATP synthase. This mitochondrial alteration induced an increase of oxidative stress. A proteomic approach on oxidized protein, in collaboration with Prof. Friguet at the University of Paris, revealed that contractile proteins, such as actin and myosin, were significantly more carbonylated when autophagy was blocked. Functional assays of force measurements on single isolated fibers and sliding properties of purified actin/myosin, performed in collaboration with Prof. Bottinelli at the University of Pavia, showed an impairment of these contractile proteins in Atg7-/- mice. Atg7-/- mice also undergo spontaneous denervation, as confirmed by upregulation of denervation markers, such as Muscle Specific Kinase (MuSK), Acetylcholine Receptor gamma subunit (AchR-gamma) and Neural Cell Adhesion Molecule (NCAM). Moreover, in collaboration with Dr. Rudolf at Karlsruhe Institute of Technology (KIT), in Karlsrhue, we performed in vivo imaging of neuromuscular junction (NMJ), that revealed NMJ fragmentation and instability in autophagy-deficient mice. These findings suggest that inhibition of autophagy specifically in muscle generates a series of events that affect NMJ and causes a precocious denervation, contributing to sarcopenia. Since oxidative stress is an important feature of Atg7-/- mice and is believed to contribute to ageing, we treated adult mice with an antioxidant vitamin E analogue (Trolox), for 30 days, and we monitored the effects on the phenotype of Atg7-/- muscles. Trolox treatment reduced the level of protein carbonylation, restored the sliding properties of actin and myosin and brought back the force to normal level. Mitochondria function was also ameliorated but we did not find any benefit on atrophy and NMJ morphology. However, there was a small amelioration on NMJ stability. These data showed that oxidative stress contributes only to some aspects of ageing features present in Atg7-/- mice. Therefore, other mechanisms are involved for the atrophy and the denervation aspects. We then hypothesized that muscles release neurotrophic factors that are critical for muscle-nerve interaction and stability. Initially, we tought for neurotrophic factors that were down-regulated in autophagy-deficient muscle both in adult and old mice. qRT-PCR identified FGF binding protein 1 (FGFBP1) to be the one that was always suppressed in Atg7-/- mice. FGFBP1 is protein involved in the bio-activation of FGF proteins, that are important pre-synaptic organizers. In order to investigate the role of FGFBP1 in NMJ instability we used loss and gain of function approaches. Down-regulation of FGFBP1 in control mice induced instability and fragmentation of NMJ. On the contrary FGFBP1 over-expression in Atg7-/- muscles reduced the number of denervated fibers and restored NMJ stability. Then we investigated the connection between autophagy impairment and FGFBP1 down-regulation, by analyzing MuSK activity, a kinase that is essential for NMJ maintenance. We observed an alterated MuSK clustering in NMJ of Atg7-/- mice. Moreover MuSK down-regulation in vivo leads to FGFBP1 suppression. These results suggest that NMJ requires the secretion of FGFBP1 neurotrophic factor that is under MuSK regulation and that autophagy is critical for a normal MuSK localization and activity. It has been consistently demonstrated that two lifestyle adaptations, namely caloric restriction and exercise, are able to extend lifespan and, in parallel, to mitigate age-related alterations in NMJ (Melov et al., 2007; Fontana et al., 2010; Sandri et al., 2013; Schiaffino et al., 2013; Coen et al., 2013; Toledo et al., 2013; Guarente, 2013). Moreover, both these conditions promote autophagy activation in skeletal muscles and in other tissues. It has also been reported that autophagy is required for exercise itself and for training-induced adaptations in glucose homeostasis (He et al., 2012). These findings remain controversial as skeletal muscle–specific autophagy-knockout mice show the opposite phenotype (Kim et al., 2013). In this scenario, it is still unknown whether it is whole body or muscle specific autophagy that is required to sustain contraction, maintain glucose homeostasis, and trigger exercise-induced benefits. For this reason, we used Tamoxifen-inducible, muscle-specific, Atg7 knockout mice (Atg7-/-HSA), that we have recently generated (Masiero et al., 2009), to investigate the role of autophagy in physical exercise. This inducible muscle-specific genetic model allows to minimize the chance of any adaptations and compensations that usually occur with constitutive deletion of genes. In order to investigate whether acute block of autophagy in muscle affects exercise performance, controls and autophagy-deficient mice were exercised on a treadmill. We used a concentric exercise protocol while monitoring the maximum distance ran to exhaustion. Surprisingly, we did not find any significant differences in running capacity between controls and inducible Atg7-/-. Thus, autophagy is not required to sustain muscle contraction during concentric physical activity. We hypothesized whether a damaging eccentric-type muscle contraction might unravel a novel role for autophagy during muscle repair after exercise. So we performed repeated bouts of eccentric exercise to exhaustion for three consecutive days to induce damaging eccentric contraction in controls and inducible Atg7-/- animals, and found out that in these conditions, autophagy-deficient mice ran significantly less than controls. Morphological analyses did not show any sign of inflammation or myofibre degeneration, thus suggesting that impaired performance of Atg7-/- muscles was not due to major structural alterations. We also looked for possible energetic imbalance upon exercise, by monitoring the activity of P-AMPK, one of the major sensor of energetic stress, and by checking glucose and lactate levels in the blood. However, no significant differences were observed, thus suggesting that autophagy is not required for metabolic regulation of skeletal muscle during exercise. Since autophagy is important for organelle quality control, we tested whether mitochondrial homeostasis was affected after exercise. Interestingly, isolated muscle fibers from inducible Atg7-/- animals contained dysfunctional mitochondria that well correlated with their impaired performance. Being mitochondria the main source of ROS in the cell, it was feasible to hypothesize that oxidative stress may play a role in this condition. To address that, we measured total protein carbonylation and ROS production in exercised muscles that indeed was higher in Atg7-/- muscles. All together these data showed that acute inhibition of autophagy led to accumulation of dysfunctional mitochondria, increased oxidative stress and reduced physical performance during eccentric contraction. Excessive oxidative stress impairs muscle function, thus potentially explaining the reduced physical performance of Atg7-/- mice. We therefore treated controls and inducible Atg7-/- mice with the anti-oxidant N-Acetyl Cysteine (NAC) for 6 weeks, and then exercised them eccentrically. Surprisingly, NAC treatment severely impaired performance of controls but did not elicit any benefit in inducible Atg7-/- animals. Moreover it impaired mitochondrial function of controls. This data were confirmed after treatment with another anti-oxidant (Mito-TEMPO), that was specific for mitochondria. It has been reported that anti-oxidant treatment reduces activation of autophagy in control animals and that ROS are important for signalling pathways in the cell (Underwood et al., 2010; Owusu-Ansah et al., 2013). Our findings support these evidences, suggesting that physiological levels of ROS are important for the correct basal and stimulus-induced autophagy activation. Our results highlight the role of autophagy in the maintenance of mitochondrial function but not in AMPK activation and exercise dependent glucose homeostasis, suggesting that autophagy is an adaptive response to exercise that ensures mitochondria-quality control during damaging contractions.

Il sistema autofagico-lisosomiale è un sistema di degradazione ubiquitario e conservato tra le diverse specie. Esso viene attivato dalla cellula per degradare proteine con lunga emivita, organelli danneggiati e porzioni citoplasmatiche, che vengono sequestrate da un network di vescicole a doppia membrana, dette autofagosomi. Gli autofagosomi che contengono il materiale da degradare fondono con i lisosomi, dove il loro contenuto viene degradato e i prodotti riciclati per soddisfare la richiesta energetica cellulare. Il muscolo scheletrico è il tessuto più abbondante nei mammiferi e utilizza l’80% del glucosio presente nel corpo. Un efficiente sistema autofagico è necessario per il mantenimento della massa muscolare (Masiero et al., 2009). Durante l’invecchiamento, il tessuto muscolare subisce un inevitabile processo di atrofia, detto sarcopenia, che è indipendente dall’attività del soggetto ma si aggrava in condizioni di disuso (Rossi et al., 2008). I meccanismi coinvolti nella perdita di massa muscolare non sono ancora stati individuati con chiarezza. Poiché l’autofagia diminuisce con l’età (Tan et al., 2013), abbiamo studiato il ruolo dell’autofagia durante l’invecchiamento del tessuto muscolare. In questo lavoro sono stati quindi caratterizzati topi knockout condizionali per il gene Atg7 (Atg7-/-), gene che codifica per un enzima critico per la formazione degli autofagosomi (Masiero et al., 2009). In questo modo è possibile ottenere il blocco del processo autofagico in modo specifico nel muscolo scheletrico. Questi animali e i rispettivi controlli sono stati analizzati durante l’invecchiamento. I topi Atg7-/- muoiono prima dei controlli e, da vecchi, presentano un fenotipo miopatico, in cui le condizioni di atrofia sono esacerbate rispetto agli animali Atg7-/- adulti. Misure di forza in vivo di questi animali hanno mostrato come gli animali Atg7-/- risultino più deboli dei controlli; inoltre, gli animali Atg7-/- adulti presentano la stessa forza dei controlli vecchi, suggerendo uno stato di indebolimento precoce. Poiché il sistema autofagico è importante per la rimozione degli organelli danneggiati, abbiamo studiato i mitocondri. Durante l’invecchiamento, i mitocondri dei muscoli Atg7-/- si accumulano e presentano un’alterata morfologia alla microscopia elettronica. Abbiamo quindi analizzato la loro funzionalità misurando la capacità di mantenere il potenziale di membrana mitocondriale dopo l’aggiunta di un inibitore dell’ATP sintasi. I mitocondri degli Atg7-/- sono risultati incapaci di mantenere il potenziale, al contrario dei controlli. L’alterata funzionalità mitocondriale induce un aumento della produzione di ROS con conseguente stress ossidativo. Mediante un approccio di proteomica in collaborazione con il Prof. Friguet dell’Univeristà di Parigi, abbiamo caratterizzato le proteine ossidate e abbiamo trovato che le proteine contrattili, actina e miosina, erano le proteine maggiormente carbonilate nei topi vecchi knockout rispetto ai controlli della stessa età. Per capire se questa alterazione contribuisse alla debolezza muscolare di questi animali abbiamo eseguito saggi funzionali in collaborazione con il gruppo del Prof. Bottinelli dell’Università di Pavia. Misurazioni della forza sulle singole fibre e della velocità di scorrimento dei filamenti di actina/miosina hanno mostrato che gli Atg7-/- hanno capacità contrattili minori e alterazioni nell’interazione actina/miosina. Sebbene la presenza di fibre denervate sia fisiologica durante l’invecchiamento, gli animali adulti Atg7-/- presentano segni di denervazione precoce, indicata dall’aumento di espressione di markers specifici come Muscle Specific Kinase (MuSK), Acetylcholine Receptor gamma subunit (AchR-gamma) e Neural Cell Adhesion Molecule (NCAM); inoltre la loro espressione aumenta ulteriormente con l’età. Abbiamo quindi deciso di analizzare in dettaglio la giunzione neuromuscolare in collaborazione con il gruppo del Dr. Rudolf presso Karlsruhe Institute of Technology (KIT) a Karlsrhue. Esperimenti di in vivo imaging hanno mostrato che le giunzioni degli Atg7-/- sono instabili e frammentate. Tali alterazioni sono già ben evidenti in animali adulti Atg7-/- suggerendo nuovamente un processo di invecchiamento precoce dovuto al blocco autofagico. Ci siamo poi focalizzati sul potenziale ruolo dello stress ossidativo nel generare e contribuire al fenotipo di questi animali. Abbiamo trattato gli animali per 30 giorni con un anti-ossidante (Trolox), analogo della vitamina E. Dopo il trattamento, le capacità contrattili di actina/miosina e di funzionalità mitocondriale sono tornate al livello dei controlli, mentre abbiamo osservato solo effetti minori sulla giunzione neuromuscolare e nessun miglioramento sull’ atrofia. Questi risultati indicano che lo stress ossidativo ha sicuramente un ruolo sulla funzionalità di proteine contrattili e dei mitocondri, ma che altri fattori sono implicati nel mantenimento della giunzione neuro-muscolare e nell’atrofia. Ci siamo quindi focalizzati su fattori neurotrofici secreti dal muscolo, che fossero alterati nei topi knockout, sia negli adulti che nei vecchi. Dopo uno screening mediante qRT-PCR abbiamo individuato FGF-binding protein 1 (FGFBP1) come l’unico fattore che risultava soppressonei topi Atg7-/- ad entrambe le età. FGFB1 è un importante attivatore di proteine FGFs coinvolte nell’organizzazione pre-sinaptica. A questo punto per capire il ruolo di FGFBP1, abbiamo effettuato esperimenti di silenziamento e di sovra-espressione in vivo. Inizialmenete abbiamo ridotto l’espressione di FGFBP1 in animali di controllo per mimare il fenotipo dei topi Atg7-/-. Due settimane di silenziamento sono state sufficienti per provocare instabilità e frammentazione della giunzione neuromuscolare. Successivamente abbiamo over-espresso FGFBP1 negli animali Atg7-/- per ristabilirne l’espressione ed abbiamo osservato un drastico miglioramento della stabilità della giunzione neuromuscolare. In ultimo, per far luce sul meccanismo che lega l’assenza di autofagia all’alterazione di FGFBP1, ci siamo concentrati su MuSK, una chinasi essenziale per la regolazione della maggior parte dei segnali implicati nello sviluppo e mantenimento della giunzione neuromuscolare. La localizzazione di MuSK risulta alterata negli animali Atg7-/- e il silenziamento di MuSK in vivo in animali di controllo porta all’abbattimento dell’espressione di FGFBP1. Questi risultati suggeriscono che il mantenimento della giunzione neuromuscolare richiede la secrezione di FGFBP1 da parte del muscolo e che l’autofagia è un processo critico per la giusta localizzazione e quindi attività di MuSK. Diversi lavori hanno dimostrato come la restrizione calorica e l’esercizio fisico migliorino la qualità della vita, siano in grado di ritardare l’insorgenza di caratteristiche proprie dell’invecchiamento ed avere effetti benefici sul mantenimento della giunzione neuromuscolare (Melov et al., 2007; Fontana et al., 2010; Sandri et al., 2013; Schiaffino et al., 2013; Coen et al., 2013; Toledo et al., 2013; Guarente, 2013). In letteratura sono presenti lavori che hanno analizzato il ruolo dell’autofagia nell’esercizio (He et al., 2012; Kim et al., 2013), essi però presentano risultati contrastanti. He et al. sostengono che l’autofagia sia richiesta per l’esercizio fisico e la regolazione dell’omeostasi del glucosio (He et al., 2009), al contario altri gruppi osservano un fenotipo opposto in animali in cui l’autofagia è assente costitutivamente nel muscolo scheletrico (Kim et al., 2013). In questo scenario, quindi, non è ancora chiaro il ruolo dell’autofagia durante l’esercizio e se gli effetti benefici dello stesso sono mediati da essa. Per investigare questo aspetto, abbiamo utilizzato animali in cui la delezione del gene Atg7, viene indotta specificamente nel muscolo scheletrico dopo somministrazione di Tamoxifen (Masiero et al., 2009). In questo modo è possibile escludere meccanismi di compensazione e adattamento presenti in modelli in cui le delezioni sono costitutive. Abbiamo deleto acutamente il gene Atg7 in animali adulti e, insieme ai rispettivi controlli, li abbiamo sottoposti ad un protocollo di esercizio concentrico su treadmill. Tuttavia non abbiamo osservato differenze nelle distanze percorse tra i due genotipi. Questo indica che l’autofagia non è richiesta per sostenere attività contrattile durante un normale esercizio concentrico. Abbiamo, poi, sottoposto gli animali ad un protocollo di tre giorni di esercizio eccentrico, per valutare se l’autofagia fosse invece richiesta per il mantenimento del tessuto muscolare in seguito a contrazioni che inducono danno. In questo caso abbiamo osservato che gli animali Atg7-/- corrono di meno rispetto ai controlli e, in particolare, questa differenza risulta significativa nelle femmine. Per investigare il motivo della ridotta performance abbiamo inizialmente analizzato la morfologia, senza però osservare segni di alterazione o infiammazione. Successivamente, abbiamo valutato aspetti metabolici, ma né i livelli di glicemia e di lattacidemia, né la fosforilazione della chinasi attivata da AMP (AMPK), uno dei maggiori indicatori di stress energetico, risultano differenti tra Atg7-/- e controlli dopo l’esercizio. Dato che l’autofagia è richiesta per il mantenimento del pool mitocondriale, abbiamo analizzato se la funzionalità dei mitocondri fosse alterata dopo l’esercizio. In questo caso abbiamo confermato che la delezione acuta di Atg7 causa l’accumulo di mitocondri disfunzionanti, e che la loro percentuale aumentava dopo l’esercizio. La presenza di mitocondri anomali causa un aumento dello stress ossidativo. Infatti abbiamo potuto dimostrare una maggiore carbonilazione delle proteine e aumentati livelli di produzione di ROS dopo l’esercizio, nei topi Atg7-/- rispetto ai controlli. Per valutare gli effetti dello stress ossidativo abbiamo trattato gli animali per sei settimane con un anti-ossidante generico N-acetil-cisteina (NAC). Sorprendentemente, il trattamento si è rivelato dannoso per la performance degli animali di controllo e in più non è stato in grado di migliorare l’attività dei topi Atg7-/-. L’antiossidante ha causato, inoltre, l’accumulo di mitocondri disfunzionanti nei topi di controllo. Questi risultati sono stati confermati anche dopo un trattamento con un diverso anti-ossidante (Mito-TEMPO), ad azione specifica sui mitocondri. E’ riportato in letteratura che il trattamento con anti-ossidanti riduce i livelli di autofagia in animali di controllo e che livelli fisiologici di ROS svolgono funzioni critiche nel signalling cellulare (Underwood et al., 2010; Owusu-Ansah et al., 2013). Negli animali di controllo trattati con anti-ossidante sono state confermate queste evidenze, ed infatti l’autofagia era bloccata. Questa inibizione potrebbe essere la causa dell’accumulo di mitocondri disfunzionanati e della loro performance. Questi risultati sottolineano il ruolo dell’autofagia nel mantenimento della funzionalità mitocondriale durante contrazioni eccentriche. Inoltre definiscono che l’autofagia non è richiesta per il supporto energetico durante le normali contrazioni e che AMPK e i livelli ematici di glucosio non dipendono dall’ attività del sistema autofagico.

ROLE OF AUTOPHAGY IN AGE-RELATED MUSCLE LOSS / Lo Verso, Francesca. - (2014 Jan 29).

ROLE OF AUTOPHAGY IN AGE-RELATED MUSCLE LOSS

Lo Verso, Francesca
2014

Abstract

Il sistema autofagico-lisosomiale è un sistema di degradazione ubiquitario e conservato tra le diverse specie. Esso viene attivato dalla cellula per degradare proteine con lunga emivita, organelli danneggiati e porzioni citoplasmatiche, che vengono sequestrate da un network di vescicole a doppia membrana, dette autofagosomi. Gli autofagosomi che contengono il materiale da degradare fondono con i lisosomi, dove il loro contenuto viene degradato e i prodotti riciclati per soddisfare la richiesta energetica cellulare. Il muscolo scheletrico è il tessuto più abbondante nei mammiferi e utilizza l’80% del glucosio presente nel corpo. Un efficiente sistema autofagico è necessario per il mantenimento della massa muscolare (Masiero et al., 2009). Durante l’invecchiamento, il tessuto muscolare subisce un inevitabile processo di atrofia, detto sarcopenia, che è indipendente dall’attività del soggetto ma si aggrava in condizioni di disuso (Rossi et al., 2008). I meccanismi coinvolti nella perdita di massa muscolare non sono ancora stati individuati con chiarezza. Poiché l’autofagia diminuisce con l’età (Tan et al., 2013), abbiamo studiato il ruolo dell’autofagia durante l’invecchiamento del tessuto muscolare. In questo lavoro sono stati quindi caratterizzati topi knockout condizionali per il gene Atg7 (Atg7-/-), gene che codifica per un enzima critico per la formazione degli autofagosomi (Masiero et al., 2009). In questo modo è possibile ottenere il blocco del processo autofagico in modo specifico nel muscolo scheletrico. Questi animali e i rispettivi controlli sono stati analizzati durante l’invecchiamento. I topi Atg7-/- muoiono prima dei controlli e, da vecchi, presentano un fenotipo miopatico, in cui le condizioni di atrofia sono esacerbate rispetto agli animali Atg7-/- adulti. Misure di forza in vivo di questi animali hanno mostrato come gli animali Atg7-/- risultino più deboli dei controlli; inoltre, gli animali Atg7-/- adulti presentano la stessa forza dei controlli vecchi, suggerendo uno stato di indebolimento precoce. Poiché il sistema autofagico è importante per la rimozione degli organelli danneggiati, abbiamo studiato i mitocondri. Durante l’invecchiamento, i mitocondri dei muscoli Atg7-/- si accumulano e presentano un’alterata morfologia alla microscopia elettronica. Abbiamo quindi analizzato la loro funzionalità misurando la capacità di mantenere il potenziale di membrana mitocondriale dopo l’aggiunta di un inibitore dell’ATP sintasi. I mitocondri degli Atg7-/- sono risultati incapaci di mantenere il potenziale, al contrario dei controlli. L’alterata funzionalità mitocondriale induce un aumento della produzione di ROS con conseguente stress ossidativo. Mediante un approccio di proteomica in collaborazione con il Prof. Friguet dell’Univeristà di Parigi, abbiamo caratterizzato le proteine ossidate e abbiamo trovato che le proteine contrattili, actina e miosina, erano le proteine maggiormente carbonilate nei topi vecchi knockout rispetto ai controlli della stessa età. Per capire se questa alterazione contribuisse alla debolezza muscolare di questi animali abbiamo eseguito saggi funzionali in collaborazione con il gruppo del Prof. Bottinelli dell’Università di Pavia. Misurazioni della forza sulle singole fibre e della velocità di scorrimento dei filamenti di actina/miosina hanno mostrato che gli Atg7-/- hanno capacità contrattili minori e alterazioni nell’interazione actina/miosina. Sebbene la presenza di fibre denervate sia fisiologica durante l’invecchiamento, gli animali adulti Atg7-/- presentano segni di denervazione precoce, indicata dall’aumento di espressione di markers specifici come Muscle Specific Kinase (MuSK), Acetylcholine Receptor gamma subunit (AchR-gamma) e Neural Cell Adhesion Molecule (NCAM); inoltre la loro espressione aumenta ulteriormente con l’età. Abbiamo quindi deciso di analizzare in dettaglio la giunzione neuromuscolare in collaborazione con il gruppo del Dr. Rudolf presso Karlsruhe Institute of Technology (KIT) a Karlsrhue. Esperimenti di in vivo imaging hanno mostrato che le giunzioni degli Atg7-/- sono instabili e frammentate. Tali alterazioni sono già ben evidenti in animali adulti Atg7-/- suggerendo nuovamente un processo di invecchiamento precoce dovuto al blocco autofagico. Ci siamo poi focalizzati sul potenziale ruolo dello stress ossidativo nel generare e contribuire al fenotipo di questi animali. Abbiamo trattato gli animali per 30 giorni con un anti-ossidante (Trolox), analogo della vitamina E. Dopo il trattamento, le capacità contrattili di actina/miosina e di funzionalità mitocondriale sono tornate al livello dei controlli, mentre abbiamo osservato solo effetti minori sulla giunzione neuromuscolare e nessun miglioramento sull’ atrofia. Questi risultati indicano che lo stress ossidativo ha sicuramente un ruolo sulla funzionalità di proteine contrattili e dei mitocondri, ma che altri fattori sono implicati nel mantenimento della giunzione neuro-muscolare e nell’atrofia. Ci siamo quindi focalizzati su fattori neurotrofici secreti dal muscolo, che fossero alterati nei topi knockout, sia negli adulti che nei vecchi. Dopo uno screening mediante qRT-PCR abbiamo individuato FGF-binding protein 1 (FGFBP1) come l’unico fattore che risultava soppressonei topi Atg7-/- ad entrambe le età. FGFB1 è un importante attivatore di proteine FGFs coinvolte nell’organizzazione pre-sinaptica. A questo punto per capire il ruolo di FGFBP1, abbiamo effettuato esperimenti di silenziamento e di sovra-espressione in vivo. Inizialmenete abbiamo ridotto l’espressione di FGFBP1 in animali di controllo per mimare il fenotipo dei topi Atg7-/-. Due settimane di silenziamento sono state sufficienti per provocare instabilità e frammentazione della giunzione neuromuscolare. Successivamente abbiamo over-espresso FGFBP1 negli animali Atg7-/- per ristabilirne l’espressione ed abbiamo osservato un drastico miglioramento della stabilità della giunzione neuromuscolare. In ultimo, per far luce sul meccanismo che lega l’assenza di autofagia all’alterazione di FGFBP1, ci siamo concentrati su MuSK, una chinasi essenziale per la regolazione della maggior parte dei segnali implicati nello sviluppo e mantenimento della giunzione neuromuscolare. La localizzazione di MuSK risulta alterata negli animali Atg7-/- e il silenziamento di MuSK in vivo in animali di controllo porta all’abbattimento dell’espressione di FGFBP1. Questi risultati suggeriscono che il mantenimento della giunzione neuromuscolare richiede la secrezione di FGFBP1 da parte del muscolo e che l’autofagia è un processo critico per la giusta localizzazione e quindi attività di MuSK. Diversi lavori hanno dimostrato come la restrizione calorica e l’esercizio fisico migliorino la qualità della vita, siano in grado di ritardare l’insorgenza di caratteristiche proprie dell’invecchiamento ed avere effetti benefici sul mantenimento della giunzione neuromuscolare (Melov et al., 2007; Fontana et al., 2010; Sandri et al., 2013; Schiaffino et al., 2013; Coen et al., 2013; Toledo et al., 2013; Guarente, 2013). In letteratura sono presenti lavori che hanno analizzato il ruolo dell’autofagia nell’esercizio (He et al., 2012; Kim et al., 2013), essi però presentano risultati contrastanti. He et al. sostengono che l’autofagia sia richiesta per l’esercizio fisico e la regolazione dell’omeostasi del glucosio (He et al., 2009), al contario altri gruppi osservano un fenotipo opposto in animali in cui l’autofagia è assente costitutivamente nel muscolo scheletrico (Kim et al., 2013). In questo scenario, quindi, non è ancora chiaro il ruolo dell’autofagia durante l’esercizio e se gli effetti benefici dello stesso sono mediati da essa. Per investigare questo aspetto, abbiamo utilizzato animali in cui la delezione del gene Atg7, viene indotta specificamente nel muscolo scheletrico dopo somministrazione di Tamoxifen (Masiero et al., 2009). In questo modo è possibile escludere meccanismi di compensazione e adattamento presenti in modelli in cui le delezioni sono costitutive. Abbiamo deleto acutamente il gene Atg7 in animali adulti e, insieme ai rispettivi controlli, li abbiamo sottoposti ad un protocollo di esercizio concentrico su treadmill. Tuttavia non abbiamo osservato differenze nelle distanze percorse tra i due genotipi. Questo indica che l’autofagia non è richiesta per sostenere attività contrattile durante un normale esercizio concentrico. Abbiamo, poi, sottoposto gli animali ad un protocollo di tre giorni di esercizio eccentrico, per valutare se l’autofagia fosse invece richiesta per il mantenimento del tessuto muscolare in seguito a contrazioni che inducono danno. In questo caso abbiamo osservato che gli animali Atg7-/- corrono di meno rispetto ai controlli e, in particolare, questa differenza risulta significativa nelle femmine. Per investigare il motivo della ridotta performance abbiamo inizialmente analizzato la morfologia, senza però osservare segni di alterazione o infiammazione. Successivamente, abbiamo valutato aspetti metabolici, ma né i livelli di glicemia e di lattacidemia, né la fosforilazione della chinasi attivata da AMP (AMPK), uno dei maggiori indicatori di stress energetico, risultano differenti tra Atg7-/- e controlli dopo l’esercizio. Dato che l’autofagia è richiesta per il mantenimento del pool mitocondriale, abbiamo analizzato se la funzionalità dei mitocondri fosse alterata dopo l’esercizio. In questo caso abbiamo confermato che la delezione acuta di Atg7 causa l’accumulo di mitocondri disfunzionanti, e che la loro percentuale aumentava dopo l’esercizio. La presenza di mitocondri anomali causa un aumento dello stress ossidativo. Infatti abbiamo potuto dimostrare una maggiore carbonilazione delle proteine e aumentati livelli di produzione di ROS dopo l’esercizio, nei topi Atg7-/- rispetto ai controlli. Per valutare gli effetti dello stress ossidativo abbiamo trattato gli animali per sei settimane con un anti-ossidante generico N-acetil-cisteina (NAC). Sorprendentemente, il trattamento si è rivelato dannoso per la performance degli animali di controllo e in più non è stato in grado di migliorare l’attività dei topi Atg7-/-. L’antiossidante ha causato, inoltre, l’accumulo di mitocondri disfunzionanti nei topi di controllo. Questi risultati sono stati confermati anche dopo un trattamento con un diverso anti-ossidante (Mito-TEMPO), ad azione specifica sui mitocondri. E’ riportato in letteratura che il trattamento con anti-ossidanti riduce i livelli di autofagia in animali di controllo e che livelli fisiologici di ROS svolgono funzioni critiche nel signalling cellulare (Underwood et al., 2010; Owusu-Ansah et al., 2013). Negli animali di controllo trattati con anti-ossidante sono state confermate queste evidenze, ed infatti l’autofagia era bloccata. Questa inibizione potrebbe essere la causa dell’accumulo di mitocondri disfunzionanati e della loro performance. Questi risultati sottolineano il ruolo dell’autofagia nel mantenimento della funzionalità mitocondriale durante contrazioni eccentriche. Inoltre definiscono che l’autofagia non è richiesta per il supporto energetico durante le normali contrazioni e che AMPK e i livelli ematici di glucosio non dipendono dall’ attività del sistema autofagico.
29-gen-2014
Autophagy is an ubiquitous degradation system, that is conserved through species. Cells activate autophagy to degrade long-lived proteins, damaged organelles or portions of cytoplasm, that are engulfed in double-membrane vesicles called autophagosomes, that ultimately fuse to lysosomes, where the cargo is degraded and breakdown products are recycled to sustain cellular energetic demands. Skeletal muscle is the most abundant tissue in mammals and controls 80% of the blood glucose. We have recently shown that an efficient autophagy is required for muscle mass maintenance (Masiero et al., 2009). During ageing, muscles inevitably undergo atrophy, a process named sarcopenia (Rossi et al. 2008). Moreover, it has been reported that autophagy declines with age (Tan et al., 2013). Since the mechanisms involved in age-related muscle loss remain obscure, we investigated whether autophagy impairment contributes to sarcopenia. In this work, the muscle-specific autophagy knockout (Atg7-/-MLC), that were recently generated in our laboratory, were characterized during ageing (Masiero et al., 2009). Aged Atg7-/- mice have reduced lifespan and exacerbated atrophic and myopathic phenotype. In vivo force measurements showed that they are weaker compared to age-matched control mice. Alteration of mitochondrial morphology is a typical feature of Atg7-/- muscles. Therefore, we studied mitochondrial function in adult mice. Mitochondria of Atg7-/- mice were dysfunctional, in fact they did not retain membrane potential upon inhibition of ATP synthase. This mitochondrial alteration induced an increase of oxidative stress. A proteomic approach on oxidized protein, in collaboration with Prof. Friguet at the University of Paris, revealed that contractile proteins, such as actin and myosin, were significantly more carbonylated when autophagy was blocked. Functional assays of force measurements on single isolated fibers and sliding properties of purified actin/myosin, performed in collaboration with Prof. Bottinelli at the University of Pavia, showed an impairment of these contractile proteins in Atg7-/- mice. Atg7-/- mice also undergo spontaneous denervation, as confirmed by upregulation of denervation markers, such as Muscle Specific Kinase (MuSK), Acetylcholine Receptor gamma subunit (AchR-gamma) and Neural Cell Adhesion Molecule (NCAM). Moreover, in collaboration with Dr. Rudolf at Karlsruhe Institute of Technology (KIT), in Karlsrhue, we performed in vivo imaging of neuromuscular junction (NMJ), that revealed NMJ fragmentation and instability in autophagy-deficient mice. These findings suggest that inhibition of autophagy specifically in muscle generates a series of events that affect NMJ and causes a precocious denervation, contributing to sarcopenia. Since oxidative stress is an important feature of Atg7-/- mice and is believed to contribute to ageing, we treated adult mice with an antioxidant vitamin E analogue (Trolox), for 30 days, and we monitored the effects on the phenotype of Atg7-/- muscles. Trolox treatment reduced the level of protein carbonylation, restored the sliding properties of actin and myosin and brought back the force to normal level. Mitochondria function was also ameliorated but we did not find any benefit on atrophy and NMJ morphology. However, there was a small amelioration on NMJ stability. These data showed that oxidative stress contributes only to some aspects of ageing features present in Atg7-/- mice. Therefore, other mechanisms are involved for the atrophy and the denervation aspects. We then hypothesized that muscles release neurotrophic factors that are critical for muscle-nerve interaction and stability. Initially, we tought for neurotrophic factors that were down-regulated in autophagy-deficient muscle both in adult and old mice. qRT-PCR identified FGF binding protein 1 (FGFBP1) to be the one that was always suppressed in Atg7-/- mice. FGFBP1 is protein involved in the bio-activation of FGF proteins, that are important pre-synaptic organizers. In order to investigate the role of FGFBP1 in NMJ instability we used loss and gain of function approaches. Down-regulation of FGFBP1 in control mice induced instability and fragmentation of NMJ. On the contrary FGFBP1 over-expression in Atg7-/- muscles reduced the number of denervated fibers and restored NMJ stability. Then we investigated the connection between autophagy impairment and FGFBP1 down-regulation, by analyzing MuSK activity, a kinase that is essential for NMJ maintenance. We observed an alterated MuSK clustering in NMJ of Atg7-/- mice. Moreover MuSK down-regulation in vivo leads to FGFBP1 suppression. These results suggest that NMJ requires the secretion of FGFBP1 neurotrophic factor that is under MuSK regulation and that autophagy is critical for a normal MuSK localization and activity. It has been consistently demonstrated that two lifestyle adaptations, namely caloric restriction and exercise, are able to extend lifespan and, in parallel, to mitigate age-related alterations in NMJ (Melov et al., 2007; Fontana et al., 2010; Sandri et al., 2013; Schiaffino et al., 2013; Coen et al., 2013; Toledo et al., 2013; Guarente, 2013). Moreover, both these conditions promote autophagy activation in skeletal muscles and in other tissues. It has also been reported that autophagy is required for exercise itself and for training-induced adaptations in glucose homeostasis (He et al., 2012). These findings remain controversial as skeletal muscle–specific autophagy-knockout mice show the opposite phenotype (Kim et al., 2013). In this scenario, it is still unknown whether it is whole body or muscle specific autophagy that is required to sustain contraction, maintain glucose homeostasis, and trigger exercise-induced benefits. For this reason, we used Tamoxifen-inducible, muscle-specific, Atg7 knockout mice (Atg7-/-HSA), that we have recently generated (Masiero et al., 2009), to investigate the role of autophagy in physical exercise. This inducible muscle-specific genetic model allows to minimize the chance of any adaptations and compensations that usually occur with constitutive deletion of genes. In order to investigate whether acute block of autophagy in muscle affects exercise performance, controls and autophagy-deficient mice were exercised on a treadmill. We used a concentric exercise protocol while monitoring the maximum distance ran to exhaustion. Surprisingly, we did not find any significant differences in running capacity between controls and inducible Atg7-/-. Thus, autophagy is not required to sustain muscle contraction during concentric physical activity. We hypothesized whether a damaging eccentric-type muscle contraction might unravel a novel role for autophagy during muscle repair after exercise. So we performed repeated bouts of eccentric exercise to exhaustion for three consecutive days to induce damaging eccentric contraction in controls and inducible Atg7-/- animals, and found out that in these conditions, autophagy-deficient mice ran significantly less than controls. Morphological analyses did not show any sign of inflammation or myofibre degeneration, thus suggesting that impaired performance of Atg7-/- muscles was not due to major structural alterations. We also looked for possible energetic imbalance upon exercise, by monitoring the activity of P-AMPK, one of the major sensor of energetic stress, and by checking glucose and lactate levels in the blood. However, no significant differences were observed, thus suggesting that autophagy is not required for metabolic regulation of skeletal muscle during exercise. Since autophagy is important for organelle quality control, we tested whether mitochondrial homeostasis was affected after exercise. Interestingly, isolated muscle fibers from inducible Atg7-/- animals contained dysfunctional mitochondria that well correlated with their impaired performance. Being mitochondria the main source of ROS in the cell, it was feasible to hypothesize that oxidative stress may play a role in this condition. To address that, we measured total protein carbonylation and ROS production in exercised muscles that indeed was higher in Atg7-/- muscles. All together these data showed that acute inhibition of autophagy led to accumulation of dysfunctional mitochondria, increased oxidative stress and reduced physical performance during eccentric contraction. Excessive oxidative stress impairs muscle function, thus potentially explaining the reduced physical performance of Atg7-/- mice. We therefore treated controls and inducible Atg7-/- mice with the anti-oxidant N-Acetyl Cysteine (NAC) for 6 weeks, and then exercised them eccentrically. Surprisingly, NAC treatment severely impaired performance of controls but did not elicit any benefit in inducible Atg7-/- animals. Moreover it impaired mitochondrial function of controls. This data were confirmed after treatment with another anti-oxidant (Mito-TEMPO), that was specific for mitochondria. It has been reported that anti-oxidant treatment reduces activation of autophagy in control animals and that ROS are important for signalling pathways in the cell (Underwood et al., 2010; Owusu-Ansah et al., 2013). Our findings support these evidences, suggesting that physiological levels of ROS are important for the correct basal and stimulus-induced autophagy activation. Our results highlight the role of autophagy in the maintenance of mitochondrial function but not in AMPK activation and exercise dependent glucose homeostasis, suggesting that autophagy is an adaptive response to exercise that ensures mitochondria-quality control during damaging contractions.
muscolo scheletrico-autofagia-atrofia-giunzione neuromuscolare- invecchiamento-esercizio skeletal muscle-autophagy-atrophy-neuromuscolar junction-ageing-exercise
ROLE OF AUTOPHAGY IN AGE-RELATED MUSCLE LOSS / Lo Verso, Francesca. - (2014 Jan 29).
File in questo prodotto:
File Dimensione Formato  
loverso_francesca_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 4.94 MB
Formato Adobe PDF
4.94 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423680
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact