Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Baboci, Lorena (2014) Human papillomavirus - associated head and neck squamous cell carcinomas in North-East Italy. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
2688Kb

Abstract (inglese)

Background: Specific oncogenic types of human papillomaviruses (HPV), most frequently HPV16, are causally associated with a subset of head and neck squamous cell carcinomas (HNSCC). HPV DNA associated tumors appear to be heterogeneous in prevalence over time and geographically, in the oncogenic activity (direct and indirect viral markers) and clinical behavior. However, it remains unclear which biomarkers can reliably determine which HNSCC are truly driven by HPV transformation.
Aims: In the present thesis, the first aim was to determine the prevalence of the truly HPV-associated HNSCC tumors in North-East Italy. The second aim, was to investigate the association of HPV DNA positivity with other viral (viral load, oncoE6 protein, HPV antibodies) and cellular (p16INK4a, pRb) markers. The third aim, was to evaluate the prognostic significance of HPV-association tumors for clinical outcome (i.e. survival).
Materials and Methods: Overall, 247 fresh frozen and 53 (21%) formalin-fixed paraffin-embedded (FFPE) tumor tissue biopsies and 102 (41%) sera were collected from 247 newly detected HNSCC patients from North-East Italy. Clinical parameters for each patient were obtained from the clinical database.
HPV DNA was determined by polymerase chain reaction (PCR) with consensus MY09/MY11 primers and Restriction Fragment Length Polymorphism (RFLP) analysis and/or BSGP5+/6+-PCR/Multiplex Papillomavirus Genotyping (MPG) capable of detecting all known 51 mucosal HPV types.
The HPV DNA+ tumor tissues were further analyzed for i) viral load by HPV16 qPCR and quantitative BSGP5+/6+-PCR/MS; ii) detection of HPV E6*I transcripts by RT-PCR; iii) expression levels of cellular protein p16INK4a and pRb by IHC; and iv) presence of HPVE6 protein for types 16 and 18 by the commercial OncoE6TM Oral Test; Antibodies to HPV early and late proteins of the eight most frequent high-risk HPV types were determine din all available sera by bead-based multiplex serology.
Results: Overall, HPV DNA+ was 8.5% (21/247), type 16 was detected in 95% (20 cases) and type 58 in 5% (1 case). No multiple infections were detected. The HPV RNA+ was 6% (14/244). Oropharynx was the site with the highest HPV prevalence by DNA (27%) and RNA (20%). In the other anatomic sites, HPV prevalence was < 8%.
Among the HPVDNA+ RNA+ tumors, i) 93% of the HPV16+ tissues (13/14) showed high viral load; ii) 60% (6/10) showed both up-regulation of p16INK4a and down-regulation of pRb; iii) and in 100% (8/8) HPV16 E6 oncoprotein was detected. All sera of 7 HPV-driven tumors showed strong positive antibody reactions with HPVE6 and E7 proteins, 6 for type 16 and 1 for type 58, type-concordant with the related tumor. Another single serum HPV16 DNA+ in the tumor, showed positivity for all early HPV16 proteins suggestive of an HPV-driven tumor. Kaplan-Meier analyses for the oropharynx showed a trend for better survival in the HPV-associated group than in the HPV negative ones.
Conclusions: A low HPV prevalence was found in HNSCC of the population living in the North-East of Italy. Oropharynx was the preferential site for HPV infection while the HPV prevalence in the other anatomic sites appeared negligeable. We observed that the HPVDNA+ RNA+ samples showed a good correlation with the other markers like high viral load, presence of the E6 oncoprotein, and HPVE6 and E7 seromarkers. In contrast to recent reports we did not find a good correlation between HPVDNA+ RNA+ and the up-regulation of p16INK4a and down-regulation of pRb. Survival analyses showed a better prognosis in the HPV-driven patients with tumors occurring in the oropharynx.

Abstract (italiano)

Il papillomavirus umano (HPV), più frequentemente il tipo 16, sono causalmente associati agli tumori squamosi di testa collo (HNSCC). Questi tumori sono caratterizzati da un'elevata eterogeneità geografica e una migliore risposta alla terapia.
L'obiettivo di questo studio è di valutare la prevalenza e l'attività biologica di HPV in HNSCC nel nord dell'Italia. La genotipizzazione per se non è sufficiente a definire il ruolo del virus nella patogenesi HNSCC. E' necessario analizzare e verificare la presenza di altri marker diretti come i trascritti virali, la carica virale, oncoE6 proteine e anticorpi HPV e dei marker indiretti come l'espressione delle proteine cellulari p16INK4a e pRb. I risultati ottenuti sono stati alla fine correlati con la sopravivenza.
Nel presente studio sono stati arruolati 247 pazienti del Nord-Est dell'Italia. Sono stati raccolti biopsie tumorale congelate per tutti i pazienti, e per un sottogruppo dei blocchetti di paraffina e del plasma.
La presenza del DNA virale è stato determinato con i) reazione a catena della polimerasi con primer consenso MY09/MY11 e tipizzazione con digestione enzimatica e/o ii) BSGP5+/6+ -PCR/Multiplex Papillomavirus Genotype (MPG). I casi HPV DNA positivi sono stati ulteriormente analizzati per: i) carica virale (quantitative PCR); ii) presenza dei trascritti virali (E6*I method); iii) l'espressione delle proteine cellulari p16INK4a e pRb (immunohistochimica, IHC); iv) espressione dell'oncoproteina E6 (OncoE6TM kit, AVC); v) anticorpi anti HPV (Multiplex HPV serology).
La prevalenza basata sulla positività del DNA virale era del 9% (21/247). HPV16 è stato trovato nel 95% (20/21) dei casi, 1 HPV58 è stato identificato come infezione singola. La prevalenza basato sul HPV DNA+RNA+ era del 6% (14/244). L'orofaringe era il sito con la più elevata prevalenza di HPV (HPV DNA+ = 27%, HPV DNA+ RNA+ = 20%). 86% (12/14) dei campioni aveva un'alta carica virale per il tipo analizzato; ii) over espressione p16INK4a nel 90% (9/10), down-regulation pRb nel 55% (6/11); iii) la presenza dell'oncoproteina E6 era presente nel 100% (8/8) dei casi testati. La presenza di anticorpi anti HPV è stata valutata in 102 plasmi; 8 su 102 erano positivi per anticorpi HPV, con elevata correlazione con lo status HPV dei relativi tessuto tumorale. Le analisi di Kaplan-Meier per l'orofaringe hanno mostrato un trend di migliore sopravvivenza nei pazienti con tumori HPV positivi per DNA e RNA rispetto ai pazienti HPV negativi.
Bassa prevalenza di HPV nei tumori testa collo nel nord dell'Italia confrontato ad altri paesi. L'orofaringe rimane il sito prediletto dell'infezione per l'HPV (27 %). HPV16 era il principale tipo trovato (95%). Migliore sopravvivenza dei pazienti con tumori HPV positivi.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Del Mistro, Annarosa
Correlatore:Pawlita, Michael
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > ONCOLOGIA E ONCOLOGIA CHIRURGICA
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:2014
Parole chiave (italiano / inglese):papillomavirus umano, tumori del testa-collo squamosi, marker HPV-correlati/ huma papillomavirus, head and neck squamous cell carcinoma, HPV-driven tumors.
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/06 Oncologia medica
Area 06 - Scienze mediche > MED/31 Otorinolaringoiatria
Area 05 - Scienze biologiche > BIO/19 Microbiologia generale
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche
Codice ID:6647
Depositato il:04 Nov 2014 15:19
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Waddell K, Magyezi J, Bousarghin L, Coursaget P, Lucas S, Downing R, et al. Antibodies against human papillomavirus type 16 (HPV-16) and conjunctival squamous cell neoplasia in Uganda. British journal of cancer. 2003; 88(12): 2002-3. Cerca con Google

2. Rautava J, Syrjanen S. Biology of human papillomavirus infections in head and neck carcinogenesis. Head and neck pathology. 2012; 6 Suppl 1: S3-15. Cerca con Google

3. Munger K, Baldwin A, Edwards KM, Hayakawa H, Nguyen CL, Owens M, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol. 2004; 78(21): 11451-60. Cerca con Google

4. Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010; 401(1): 70-9. Cerca con Google

5. Pinheiro Rdos S, de Franca TR, Ferreira Dde C, Ribeiro CM, Leao JC, Castro GF. Human papillomavirus in the oral cavity of children. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2011; 40(2): 121-6. Cerca con Google

6. Munoz N, Castellsague X, de Gonzalez AB, Gissmann L. Chapter 1: HPV in the etiology of human cancer. Vaccine. 2006; 24 Suppl 3: S3/1-10. Cerca con Google

7. Wang KL. Human papillomavirus and vaccination in cervical cancer. Taiwan J Obstet Gynecol. 2007; 46(4): 352-62. Cerca con Google

8. IARC. Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum 2011; 100B: 1–475. A review of human carcinogens—Part B: biological agents, vol. 100B, 2011. IARC Monogr Eval Carcinog Risks Hum 2011; 100B: 1–475. 2011. Cerca con Google

9. House MG, Ito H, Gonen M, Fong Y, Allen PJ, DeMatteo RP, et al. Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1,600 patients during two decades at a single institution. J Am Coll Surg. 2010; 210(5): 744-52, 52-5. Cerca con Google

10. Modis Y, Trus BL, Harrison SC. Atomic model of the papillomavirus capsid. EMBO J. 2002; 21(18): 4754-62. Cerca con Google

11. Lie AK, Kristensen G. Human papillomavirus E6/E7 mRNA testing as a predictive marker for cervical carcinoma. Expert Rev Mol Diagn. 2008; 8(4): 405-15. Cerca con Google

12. Fields. Virology; 2007. Cerca con Google

13. Howard JD, Chung CH. Biology of human papillomavirus-related oropharyngeal cancer. Seminars in radiation oncology. 2012; 22(3): 187-93. Cerca con Google

14. Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol. 2003; 77(24): 13125-35. Cerca con Google

15. Bousarghin L, Touze A, Sizaret PY, Coursaget P. Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol. 2003; 77(6): 3846-50. Cerca con Google

16. Day PM, Lowy DR, Schiller JT. Papillomaviruses infect cells via a clathrin-dependent pathway. Virology. 2003; 307(1): 1-11. Cerca con Google

17. Doorbar J. The papillomavirus life cycle. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2005; 32 Suppl 1: S7-15. Cerca con Google

18. Hamid NA, Brown C, Gaston K. The regulation of cell proliferation by the papillomavirus early proteins. Cell Mol Life Sci. 2009; 66(10): 1700-17. Cerca con Google

19. Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nature reviews Cancer. 2010; 10(8): 550-60. Cerca con Google

20. del Mar Pena LM, Laimins LA. Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol. 2001; 75(20): 10005-13. Cerca con Google

21. Grassmann K, Rapp B, Maschek H, Petry KU, Iftner T. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol. 1996; 70(4): 2339-49. Cerca con Google

22. Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006; 110(5): 525-41. Cerca con Google

23. Grassmann K, Rapp B, Maschek H, Petry KU, Iftner T. Identification of a differentiation-inducible promoter in the E7 open reading frame of human papillomavirus type 16 (HPV-16) in raft cultures of a new cell line containing high copy numbers of episomal HPV-16 DNA. J Virol. 1996; 70(4): 2339-49. Cerca con Google

24. Smotkin D, Wettstein FO. Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer-derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences of the United States of America. 1986; 83(13): 4680-4. Cerca con Google

25. Sherman L, Alloul N. Human papillomavirus type 16 expresses a variety of alternatively spliced mRNAs putatively encoding the E2 protein. Virology. 1992; 191(2): 953-9. Cerca con Google

26. Rohlfs M, Winkenbach S, Meyer S, Rupp T, Durst M. Viral transcription in human keratinocyte cell lines immortalized by human papillomavirus type-16. Virology. 1991; 183(1): 331-42. Cerca con Google

27. Zheng ZM, Tao M, Yamanegi K, Bodaghi S, Xiao W. Splicing of a cap-proximal human Papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5' cap. J Mol Biol. 2004; 337(5): 1091-108. Cerca con Google

28. Doorbar J, Parton A, Hartley K, Banks L, Crook T, Stanley M, et al. Detection of novel splicing patterns in a HPV16-containing keratinocyte cell line. Virology. 1990; 178(1): 254-62. Cerca con Google

29. Alloul N, Sherman L. Transcription-modulatory activities of differentially spliced cDNAs encoding the E2 protein of human papillomavirus type 16. J Gen Virol. 1999; 80 ( Pt 9): 2461-70. Cerca con Google

30. Shirasawa H, Jin MH, Shimizu K, Akutsu N, Shino Y, Simizu B. Transcription-modulatory activity of full-length E6 and E6*I proteins of human papillomavirus type 16. Virology. 1994; 203(1): 36-42. Cerca con Google

31. Song S, Liem A, Miller JA, Lambert PF. Human papillomavirus types 16 E6 and E7 contribute differently to carcinogenesis. Virology. 2000; 267(2): 141-50. Cerca con Google

32. Griep AE, Lambert PF. Role of papillomavirus oncogenes in human cervical cancer: transgenic animal studies. Proc Soc Exp Biol Med. 1994; 206(1): 24-34. Cerca con Google

33. Jeon S, Lambert PF. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America. 1995; 92(5): 1654-8. Cerca con Google

34. Shirasawa H, Tanzawa H, Matsunaga T, Simizu B. Quantitative detection of spliced E6-E7 transcripts of human papillomavirus type 16 in cervical premalignant lesions. Virology. 1991; 184(2): 795-8. Cerca con Google

35. Hsu EM, McNicol PJ, Guijon FB, Paraskevas M. Quantification of HPV-16 E6-E7 transcription in cervical intraepithelial neoplasia by reverse transcriptase polymerase chain reaction. International journal of cancer. 1993; 55(3): 397-401. Cerca con Google

36. McNicol P, Guijon F, Wayne S, Hidajat R, Paraskevas M. Expression of human papillomavirus type 16 E6-E7 open reading frame varies quantitatively in biopsy tissue from different grades of cervical intraepithelial neoplasia. Journal of clinical microbiology. 1995; 33(5): 1169-73. Cerca con Google

37. Schmitt M, Dalstein V, Waterboer T, Clavel C, Gissmann L, Pawlita M. Diagnosing cervical cancer and high-grade precursors by HPV16 transcription patterns. Cancer research. 2010; 70(1): 249-56. Cerca con Google

38. Hsu EM, McNicol PJ. Characterization of HPV-16 E6/E7 transcription in CaSki cells by quantitative PCR. Molecular and cellular probes. 1992; 6(6): 459-66. Cerca con Google

39. Schmitt M, Pawlita M. The HPV transcriptome in HPV16 positive cell lines. Molecular and cellular probes. 2011; 25(2-3): 108-13. Cerca con Google

40. Schwarz E, Freese UK, Gissmann L, Mayer W, Roggenbuck B, Stremlau A, et al. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature. 1985; 314(6006): 111-4. Cerca con Google

41. Chow LT, Nasseri M, Wolinsky SM, Broker TR. Human papillomavirus types 6 and 11 mRNAs from genital condylomata acuminata. J Virol. 1987; 61(8): 2581-8. Cerca con Google

42. Smotkin D, Prokoph H, Wettstein FO. Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J Virol. 1989; 63(3): 1441-7. Cerca con Google

43. Baker C, and C. Calef. Maps of papillomavirus mRNA transcripts. 1996. Cerca con Google

44. Loo YM, Melendy T. Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. Journal of virology. 2004; 78(4): 1605-15. Cerca con Google

45. Masterson PJ, Stanley MA, Lewis AP, Romanos MA. A C-terminal helicase domain of the human papillomavirus E1 protein binds E2 and the DNA polymerase alpha-primase p68 subunit. Journal of virology. 1998; 72(9): 7407-19. Cerca con Google

46. Conger KL, Liu JS, Kuo SR, Chow LT, Wang TS. Human papillomavirus DNA replication. Interactions between the viral E1 protein and two subunits of human dna polymerase alpha/primase. The Journal of biological chemistry. 1999; 274(5): 2696-705. Cerca con Google

47. Han Y, Loo YM, Militello KT, Melendy T. Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A. Journal of virology. 1999; 73(6): 4899-907. Cerca con Google

48. Donaldson MM, Mackintosh LJ, Bodily JM, Dornan ES, Laimins LA, Morgan IM. An Interaction between Human Papillomavirus 16 E2 and TopBP1 Is Required for Optimum Viral DNA Replication and Episomal Genome Establishment. Journal of virology. 2012; 86(23): 12806-15. Cerca con Google

49. Melendy T, Sedman J, Stenlund A. Cellular factors required for papillomavirus DNA replication. Journal of virology. 1995; 69(12): 7857-67. Cerca con Google

50. Bouvard V, Storey A, Pim D, Banks L. Characterization of the human papillomavirus E2 protein: evidence of trans-activation and trans-repression in cervical keratinocytes. The EMBO journal. 1994; 13(22): 5451-9. Cerca con Google

51. Doorbar J, Ely S, Sterling J, McLean C, Crawford L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991; 352(6338): 824-7. Cerca con Google

52. Wang Q, Kennedy A, Das P, McIntosh PB, Howell SA, Isaacson ER, et al. Phosphorylation of the human papillomavirus type 16 E1--E4 protein at T57 by ERK triggers a structural change that enhances keratin binding and protein stability. J Virol. 2009; 83(8): 3668-83. Cerca con Google

53. Hwang ES, Nottoli T, Dimaio D. The HPV16 E5 protein: expression, detection, and stable complex formation with transmembrane proteins in COS cells. Virology. 1995; 211(1): 227-33. Cerca con Google

54. Disbrow GL, Hanover JA, Schlegel R. Endoplasmic reticulum-localized human papillomavirus type 16 E5 protein alters endosomal pH but not trans-Golgi pH. Journal of virology. 2005; 79(9): 5839-46. Cerca con Google

55. Straight SW, Herman B, McCance DJ. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. Journal of virology. 1995; 69(5): 3185-92. Cerca con Google

56. Crusius K, Rodriguez I, Alonso A. The human papillomavirus type 16 E5 protein modulates ERK1/2 and p38 MAP kinase activation by an EGFR-independent process in stressed human keratinocytes. Virus genes. 2000; 20(1): 65-9. Cerca con Google

57. Kiselev FL, Kiseleva NP, Kobzeva VK, Gritsko TM, Semenova LA, Pavlova LS, et al. [Status of the human DNA papillomavirus in cervical tumors]. Molekuliarnaia biologiia. 2001; 35(3): 470-6. Cerca con Google

58. Band V, Dalal S, Delmolino L, Androphy EJ. Enhanced degradation of p53 protein in HPV-6 and BPV-1 E6-immortalized human mammary epithelial cells. EMBO J. 1993; 12(5): 1847-52. Cerca con Google

59. Sedman SA, Barbosa MS, Vass WC, Hubbert NL, Haas JA, Lowy DR, et al. The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. Journal of virology. 1991; 65(9): 4860-6. Cerca con Google

60. Tang S, Tao M, McCoy JP, Jr., Zheng ZM. The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. Journal of virology. 2006; 80(9): 4249-63. Cerca con Google

61. Lungu O, Crum CP, Silverstein S. Biologic properties and nucleotide sequence analysis of human papillomavirus type 51. J Virol. 1991; 65(8): 4216-25. Cerca con Google

62. Snijders PJ, Meijer CJ, van den Brule AJ, Schrijnemakers HF, Snow GB, Walboomers JM. Human papillomavirus (HPV) type 16 and 33 E6/E7 region transcripts in tonsillar carcinomas can originate from integrated and episomal HPV DNA. J Gen Virol. 1992; 73 ( Pt 8): 2059-66. Cerca con Google

63. Nakagawa S, Yoshikawa H, Yasugi T, Kimura M, Kawana K, Matsumoto K, et al. Ubiquitous presence of E6 and E7 transcripts in human papillomavirus-positive cervical carcinomas regardless of its type. J Med Virol. 2000; 62(2): 251-8. Cerca con Google

64. Sotlar K, Stubner A, Diemer D, Menton S, Menton M, Dietz K, et al. Detection of high-risk human papillomavirus E6 and E7 oncogene transcripts in cervical scrapes by nested RT-polymerase chain reaction. Journal of medical virology. 2004; 74(1): 107-16. Cerca con Google

65. Unger T, Mietz JA, Scheffner M, Yee CL, Howley PM. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol Cell Biol. 1993; 13(9): 5186-94. Cerca con Google

66. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990; 63(6): 1129-36. Cerca con Google

67. Hiller T, Poppelreuther S, Stubenrauch F, Iftner T. Comparative analysis of 19 genital human papillomavirus types with regard to p53 degradation, immortalization, phylogeny, and epidemiologic risk classification. Cancer Epidemiol Biomarkers Prev. 2006; 15(7): 1262-7. Cerca con Google

68. Fu L, Van Doorslaer K, Chen Z, Ristriani T, Masson M, Trave G, et al. Degradation of p53 by human Alphapapillomavirus E6 proteins shows a stronger correlation with phylogeny than oncogenicity. PLoS One. 2010; 5(9). Cerca con Google

69. Mesplede T, Gagnon D, Bergeron-Labrecque F, Azar I, Senechal H, Coutlee F, et al. P53-degradation activity, Expression and Subcellular Localization of E6 Proteins from 29 Human Papillomavirus Genotypes. J Virol. 2011. Cerca con Google

70. Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990; 248(4951): 76-9. Cerca con Google

71. Thomas M, Narayan N, Pim D, Tomaic V, Massimi P, Nagasaka K, et al. Human papillomaviruses, cervical cancer and cell polarity. Oncogene. 2008; 27(55): 7018-30. Cerca con Google

72. Oda H, Kumar S, Howley PM. Regulation of the Src family tyrosine kinase Blk through E6AP-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America. 1999; 96(17): 9557-62. Cerca con Google

73. Jackson S, Harwood C, Thomas M, Banks L, Storey A. Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes Dev. 2000; 14(23): 3065-73. Cerca con Google

74. Stacey SN, Jordan D, Williamson AJ, Brown M, Coote JH, Arrand JR. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J Virol. 2000; 74(16): 7284-97. Cerca con Google

75. Stacey SN, Jordan D, Snijders PJ, Mackett M, Walboomers JM, Arrand JR. Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. Journal of virology. 1995; 69(11): 7023-31. Cerca con Google

76. Moral-Hernández. The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Arch Virol. 2010. Cerca con Google

77. Yamada T, Yamashita T, Nishikawa T, Fujimoto S, Fujinaga K. Biologic activity of human papillomavirus type 16 E6/E7 cDNA clones isolated from SiHa cervical carcinoma cell line. Virus Genes. 1995; 10(1): 15-25. Cerca con Google

78. Schneider-Gadicke A, Kaul S, Schwarz E, Gausepohl H, Frank R, Bastert G. Identification of the human papillomavirus type 18 E6 and E6 proteins in nuclear protein fractions from human cervical carcinoma cells grown in the nude mouse or in vitro. Cancer Res. 1988; 48(11): 2969-74. Cerca con Google

79. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004; 279(24): 25729-44. Cerca con Google

80. Cricca M, Venturoli S, Leo E, Costa S, Musiani M, Zerbini M. Molecular analysis of HPV 16 E6I/E6II spliced mRNAs and correlation with the viral physical state and the grade of the cervical lesion. J Med Virol. 2009; 81(7): 1276-82. Cerca con Google

81. Schmitt M, Dalstein V, Waterboer T, Clavel C, Gissmann L, Pawlita M. The HPV16 transcriptome in cervical lesions of different grades. Mol Cell Probes. 2011; 25(5-6): 260-5. Cerca con Google

82. Snijders PJ, van den Brule AJ, Schrijnemakers HF, Raaphorst PM, Meijer CJ, Walboomers JM. Human papillomavirus type 33 in a tonsillar carcinoma generates its putative E7 mRNA via two E6* transcript species which are terminated at different early region poly(A) sites. J Virol. 1992; 66(5): 3172-8. Cerca con Google

83. Riley RR, Duensing S, Brake T, Munger K, Lambert PF, Arbeit JM. Dissection of human papillomavirus E6 and E7 function in transgenic mouse models of cervical carcinogenesis. Cancer Res. 2003; 63(16): 4862-71. Cerca con Google

84. Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, et al. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene. 2001; 20(54): 7888-98. Cerca con Google

85. Dyson N, Howley PM, Munger K, Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989; 243(4893): 934-7. Cerca con Google

86. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998; 12(15): 2245-62. Cerca con Google

87. DeGregori J, Johnson DG. Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Curr Mol Med. 2006; 6(7): 739-48. Cerca con Google

88. Hwang SG, Lee D, Kim J, Seo T, Choe J. Human papillomavirus type 16 E7 binds to E2F1 and activates E2F1-driven transcription in a retinoblastoma protein-independent manner. J Biol Chem. 2002; 277(4): 2923-30. Cerca con Google

89. McLaughlin-Drubin ME, Huh KW, Munger K. Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J Virol. 2008; 82(17): 8695-705. Cerca con Google

90. Longworth MS, Laimins LA. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol. 2004; 78(7): 3533-41. Cerca con Google

91. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, et al. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J. 1999; 18(9): 2449-58. Cerca con Google

92. Longworth MS, Wilson R, Laimins LA. HPV31 E7 facilitates replication by activating E2F2 transcription through its interaction with HDACs. EMBO J. 2005; 24(10): 1821-30. Cerca con Google

93. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev. 1997; 11(16): 2101-11. Cerca con Google

94. Zerfass K, Schulze A, Spitkovsky D, Friedman V, Henglein B, Jansen-Durr P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol. 1995; 69(10): 6389-99. Cerca con Google

95. Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Munger K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A. 2005; 102(32): 11492-7. Cerca con Google

96. Heck DV, Yee CL, Howley PM, Munger K. Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proc Natl Acad Sci U S A. 1992; 89(10): 4442-6. Cerca con Google

97. Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT. Interaction of papillomaviruses with the cell surface. J Virol. 1994; 68(11): 7260-6. Cerca con Google

98. Schiller JT, Day PM, Kines RC. Current understanding of the mechanism of HPV infection. Gynecol Oncol. 2010; 118(1 Suppl): S12-7. Cerca con Google

99. Crum CP, Nuovo G, Friedman D, Silverstein SJ. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. Journal of virology. 1988; 62(1): 84-90. Cerca con Google

100. Stoler MH, Wolinsky SM, Whitbeck A, Broker TR, Chow LT. Differentiation-linked human papillomavirus types 6 and 11 transcription in genital condylomata revealed by in situ hybridization with message-specific RNA probes. Virology. 1989; 172(1): 331-40. Cerca con Google

101. Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nature reviews Cancer. 2011; 11(1): 9-22. Cerca con Google

102. Randi G, Malvezzi M, Levi F, Ferlay J, Negri E, Franceschi S, et al. Epidemiology of biliary tract cancers: an update. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2009; 20(1): 146-59. Cerca con Google

103. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer Journal international du cancer. 2010; 127(12): 2893-917. Cerca con Google

104. McKean-Cowdin R, Feigelson HS, Ross RK, Pike MC, Henderson BE. Declining cancer rates in the 1990s. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2000; 18(11): 2258-68. Cerca con Google

105. Pai SI, Westra WH. Molecular pathology of head and neck cancer: implications for diagnosis, prognosis, and treatment. Annu Rev Pathol. 2009; 4: 49-70. Cerca con Google

106. AIOM. Linee guida tumori della testa e del collo. 2013. Cerca con Google

107. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2005; 14(2): 467-75. Cerca con Google

108. Ribeiro KB, Levi JE, Pawlita M, Koifman S, Matos E, Eluf-Neto J, et al. Low human papillomavirus prevalence in head and neck cancer: results from two large case-control studies in high-incidence regions. International journal of epidemiology. 2011; 40(2): 489-502. Cerca con Google

109. Nasman A, Attner P, Hammarstedt L, Du J, Eriksson M, Giraud G, et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? International journal of cancer Journal international du cancer. 2009; 125(2): 362-6. Cerca con Google

110. Hammarstedt L, Dahlstrand H, Lindquist D, Onelov L, Ryott M, Luo J, et al. The incidence of tonsillar cancer in Sweden is increasing. Acta Otolaryngol. 2007; 127(9): 988-92. Cerca con Google

111. Sturgis EM, Cinciripini PM. Trends in head and neck cancer incidence in relation to smoking prevalence: an emerging epidemic of human papillomavirus-associated cancers? Cancer. 2007; 110(7): 1429-35. Cerca con Google

112. Rodrigo JP, Heideman DA, Garcia-Pedrero JM, Fresno MF, Brakenhoff RH, Diaz Molina JP, et al. Time trends in the prevalence of HPV in oropharyngeal squamous cell carcinomas in northern Spain (1990-2009). International journal of cancer Journal international du cancer. 2013. Cerca con Google

113. Sturgis EM, Ang KK. The epidemic of HPV-associated oropharyngeal cancer is here: is it time to change our treatment paradigms? J Natl Compr Canc Netw. 2011; 9(6): 665-73. Cerca con Google

114. Blomberg M, Nielsen A, Munk C, Kjaer SK. Trends in head and neck cancer incidence in Denmark, 1978-2007: focus on human papillomavirus associated sites. International journal of cancer Journal international du cancer. 2011; 129(3): 733-41. Cerca con Google

115. Mork J, Moller B, Dahl T, Bray F. Time trends in pharyngeal cancer incidence in Norway 1981-2005: a subsite analysis based on a reabstraction and recoding of registered cases. Cancer causes & control : CCC. 2010; 21(9): 1397-405. Cerca con Google

116. Kreimer AR, Bhatia RK, Messeguer AL, Gonzalez P, Herrero R, Giuliano AR. Oral human papillomavirus in healthy individuals: a systematic review of the literature. Sexually transmitted diseases. 2010; 37(6): 386-91. Cerca con Google

117. Herrero R, Castellsague X, Pawlita M, Lissowska J, Kee F, Balaram P, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. Journal of the National Cancer Institute. 2003; 95(23): 1772-83. Cerca con Google

118. Qiu D, Hirabayashi Y. Comparison of time trends in liver cancer incidence (1973-1997) in East Asia, Europe and USA, from Cancer Incidence in Five Continents Vol. IV-VIII. Jpn J Clin Oncol. 2007; 37(5): 402-3. Cerca con Google

119. Hirabayashi Y, Tanaka S. Comparison of time trends in colorectal cancer incidence (1973-97) in East Asia, Europe and USA, from Cancer Incidence in Five Continents Vol. IV-VIII. Jpn J Clin Oncol. 2007; 37(4): 325-7. Cerca con Google

120. Wittekindt C, Wagner S, Mayer CS, Klussmann JP. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS current topics in otorhinolaryngology, head and neck surgery. 2012; 11: Doc09. Cerca con Google

121. Kleter B, van Doorn LJ, ter Schegget J, Schrauwen L, van Krimpen K, Burger M, et al. Novel short-fragment PCR assay for highly sensitive broad-spectrum detection of anogenital human papillomaviruses. Am J Pathol. 1998; 153(6): 1731-9. Cerca con Google

122. van den Brule AJ, Snijders PJ, Gordijn RL, Bleker OP, Meijer CJ, Walboomers JM. General primer-mediated polymerase chain reaction permits the detection of sequenced and still unsequenced human papillomavirus genotypes in cervical scrapes and carcinomas. Int J Cancer. 1990; 45(4): 644-9. Cerca con Google

123. van den Brule AJ, Snijders PJ, Raaphorst PM, Schrijnemakers HF, Delius H, Gissmann L, et al. General primer polymerase chain reaction in combination with sequence analysis for identification of potentially novel human papillomavirus genotypes in cervical lesions. J Clin Microbiol. 1992; 30(7): 1716-21. Cerca con Google

124. Coutlee F, Gravitt P, Kornegay J, Hankins C, Richardson H, Lapointe N, et al. Use of PGMY primers in L1 consensus PCR improves detection of human papillomavirus DNA in genital samples. J Clin Microbiol. 2002; 40(3): 902-7. Cerca con Google

125. de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders PJ. The use of general primers GP5 and GP6 elongated at their 3' ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995; 76 ( Pt 4): 1057-62. Cerca con Google

126. Schmitt M, Bravo IG, Snijders PJ, Gissmann L, Pawlita M, Waterboer T. Bead-based multiplex genotyping of human papillomaviruses. Journal of clinical microbiology. 2006; 44(2): 504-12. Cerca con Google

127. Schmitt M, Dondog B, Waterboer T, Pawlita M. Homogeneous amplification of genital human alpha papillomaviruses by PCR using novel broad-spectrum GP5+ and GP6+ primers. J Clin Microbiol. 2008; 46(3): 1050-9. Cerca con Google

128. Depuydt CE, Boulet GA, Horvath CA, Benoy IH, Vereecken AJ, Bogers JJ. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J Cell Mol Med. 2007; 11(4): 881-91. Cerca con Google

129. Schneider-Gadicke A, Schwarz E. Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO J. 1986; 5(9): 2285-92. Cerca con Google

130. Smeets SJ, Hesselink AT, Speel EJ, Haesevoets A, Snijders PJ, Pawlita M, et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. International journal of cancer Journal international du cancer. 2007; 121(11): 2465-72. Cerca con Google

131. Halec G, Schmitt M, Dondog B, Sharkhuu E, Wentzensen N, Gheit T, et al. Biological activity of probable/possible high-risk human papillomavirus types in cervical cancer. International journal of cancer Journal international du cancer. 2013; 132(1): 63-71. Cerca con Google

132. Muller H, Lukas J, Schneider A, Warthoe P, Bartek J, Eilers M, et al. Cyclin D1 expression is regulated by the retinoblastoma protein. Proc Natl Acad Sci U S A. 1994; 91(8): 2945-9. Cerca con Google

133. Lukas J, Muller H, Bartkova J, Spitkovsky D, Kjerulff AA, Jansen-Durr P, et al. DNA tumor virus oncoproteins and retinoblastoma gene mutations share the ability to relieve the cell's requirement for cyclin D1 function in G1. J Cell Biol. 1994; 125(3): 625-38. Cerca con Google

134. Hoffmann M, Tribius S, Quabius ES, Henry H, Pfannenschmidt S, Burkhardt C, et al. HPV DNA, E6*I-mRNA expression and p16INK4A immunohistochemistry in head and neck cancer - how valid is p16INK4A as surrogate marker? Cancer letters. 2012; 323(1): 88-96. Cerca con Google

135. Holzinger D, Flechtenmacher C, Henfling N, Kaden I, Grabe N, Lahrmann B, et al. Identification of oropharyngeal squamous cell carcinomas with active HPV16 involvement by immunohistochemical analysis of the retinoblastoma protein pathway. International journal of cancer Journal international du cancer. 2013; 133(6): 1389-99. Cerca con Google

136. Kirnbauer R, Taub J, Greenstone H, Roden R, Durst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993; 67(12): 6929-36. Cerca con Google

137. Dillner J, Lenner P, Lehtinen M, Eklund C, Heino P, Wiklund F, et al. A population-based seroepidemiological study of cervical cancer. Cancer research. 1994; 54(1): 134-41. Cerca con Google

138. Wang SS, Schiffman M, Herrero R, Carreon J, Hildesheim A, Rodriguez AC, et al. Determinants of human papillomavirus 16 serological conversion and persistence in a population-based cohort of 10 000 women in Costa Rica. British journal of cancer. 2004; 91(7): 1269-74. Cerca con Google

139. Frazer IH. Interaction of human papillomaviruses with the host immune system: a well evolved relationship. Virology. 2009; 384(2): 410-4. Cerca con Google

140. Zumbach K, Hoffmann M, Kahn T, Bosch F, Gottschlich S, Gorogh T, et al. Antibodies against oncoproteins E6 and E7 of human papillomavirus types 16 and 18 in patients with head-and-neck squamous-cell carcinoma. International journal of cancer Journal international du cancer. 2000; 85(6): 815-8. Cerca con Google

141. Reuschenbach M, Waterboer T, Wallin KL, Einenkel J, Dillner J, Hamsikova E, et al. Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers. International journal of cancer Journal international du cancer. 2008; 123(11): 2626-31. Cerca con Google

142. Smith EM, Ritchie JM, Pawlita M, Rubenstein LM, Haugen TH, Turek LP, et al. Human papillomavirus seropositivity and risks of head and neck cancer. International journal of cancer Journal international du cancer. 2007; 120(4): 825-32. Cerca con Google

143. Rosales R, Lopez-Contreras M, Cortes RR. Antibodies against human papillomavirus (HPV) type 16 and 18 E2, E6 and E7 proteins in sera: correlation with presence of papillomavirus DNA. Journal of medical virology. 2001; 65(4): 736-44. Cerca con Google

144. D'Souza G, Kreimer AR, Viscidi R, Pawlita M, Fakhry C, Koch WM, et al. Case-control study of human papillomavirus and oropharyngeal cancer. The New England journal of medicine. 2007; 356(19): 1944-56. Cerca con Google

145. Smith EM, Wang D, Kim Y, Rubenstein LM, Lee JH, Haugen TH, et al. P16INK4a expression, human papillomavirus, and survival in head and neck cancer. Oral oncology. 2008; 44(2): 133-42. Cerca con Google

146. Sano H, Saika K. International comparisons of cumulative risk of bladder cancer, from cancer incidence in five continents Vol. VIII. Jpn J Clin Oncol. 2006; 36(11): 757-8. Cerca con Google

147. Katanoda K, Qiu D. International comparisons of cumulative risk of uterine cancer, from cancer incidence in five continents Vol. VIII. Jpn J Clin Oncol. 2006; 36(7): 474-5. Cerca con Google

148. Sano H, Marugame T. International comparisons of cumulative risk of lung cancer, from cancer incidence in five continents Vol. VIII. Jpn J Clin Oncol. 2006; 36(5): 334-5. Cerca con Google

149. Paz IB, Cook N, Odom-Maryon T, Xie Y, Wilczynski SP. Human papillomavirus (HPV) in head and neck cancer. An association of HPV 16 with squamous cell carcinoma of Waldeyer's tonsillar ring. Cancer. 1997; 79(3): 595-604. Cerca con Google

150. Ang KK, Sturgis EM. Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Seminars in radiation oncology. 2012; 22(2): 128-42. Cerca con Google

151. Matsuda T, Marugame T. International comparisons of cumulative risk of gallbladder cancer and other biliary tract cancer, from Cancer Incidence in Five Continents Vol. VIII. Jpn J Clin Oncol. 2007; 37(1): 74-5. Cerca con Google

152. Saika K, Matsuda T. International comparisons of cumulative risk of pancreatic cancer, from cancer incidence in five continents Vol. VIII. Jpn J Clin Oncol. 2006; 36(12): 828-9. Cerca con Google

153. Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. Journal of the National Cancer Institute. 2000; 92(9): 709-20. Cerca con Google

154. Vu HL, Sikora AG, Fu S, Kao J. HPV-induced oropharyngeal cancer, immune response and response to therapy. Cancer letters. 2010; 288(2): 149-55. Cerca con Google

155. Halec G, Holzinger D, Schmitt M, Flechtenmacher C, Dyckhoff G, Lloveras B, et al. Biological evidence for a causal role of HPV16 in a small fraction of laryngeal squamous cell carcinoma. British journal of cancer. 2013; in press. Cerca con Google

156. Lungu O, Crum CP, Silverstein S. Biologic properties and nucleotide sequence analysis of human papillomavirus type 51. J Virol. 1991; 65(8): 4216-25. Cerca con Google

157. Holzinger D, Schmitt M, Dyckhoff G, Benner A, Pawlita M, Bosch FX. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer research. 2012; 72(19): 4993-5003. Cerca con Google

158. Kirby KS. A new method for the isolation of ribonucleic acids from mammalian tissues. The Biochemical journal. 1956; 64(3): 405-8. Cerca con Google

159. Roche. https://cssportal.roche.com/LFR_PublicDocs/ras/05467454001_en_04.pdf. 2010. Vai! Cerca con Google

160. de Koning MN, Quint WG, Pirog EC. Prevalence of mucosal and cutaneous human papillomaviruses in different histologic subtypes of vulvar carcinoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc. 2008; 21(3): 334-44. Cerca con Google

161. Manos MM TY, Wright DK, Lewis AJ, Broker TR, Wolinsky SM. Use of polymerase chain reaction amplification for detection of genital papillomavirus. Cancer cells. 1989; 29(20-7). Cerca con Google

162. Nobre RJ, de Almeida LP, Martins TC. Complete genotyping of mucosal human papillomavirus using a restriction fragment length polymorphism analysis and an original typing algorithm. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2008; 42(1): 13-21. Cerca con Google

163. Schmitt M, Depuydt C, Benoy I, Bogers J, Antoine J, Arbyn M, et al. Prevalence and viral load of 51 genital human papillomavirus types and three subtypes. Int J Cancer. 2012. Cerca con Google

164. Schmitt M. Detection of nucleic acids from human alpha papillomaviruses in the uterine cervix. University of Heidelberg. 2008; Dissertation. Cerca con Google

165. Schmitt M, Dondog B, Waterboer T, Pawlita M, Tommasino M, Gheit T. Abundance of multiple high-risk human papillomavirus (HPV) infections found in cervical cells analyzed by use of an ultrasensitive HPV genotyping assay. Journal of clinical microbiology. 2010; 48(1): 143-9. Cerca con Google

166. Schmitt M, Depuydt CE, Benoy I, Bogers J, Antoine J, Pawlita M, et al. Viral load of high-risk human papillomaviruses as reliable clinical predictor for the presence of cervical lesions. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2013. Cerca con Google

167. Waterboer T, Sehr P, Michael KM, Franceschi S, Nieland JD, Joos TO, et al. Multiplex human papillomavirus serology based on in situ-purified glutathione s-transferase fusion proteins. Clinical chemistry. 2005; 51(10): 1845-53. Cerca con Google

168. Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays. Journal of immunological methods. 2006; 309(1-2): 200-4. Cerca con Google

169. Sehr P, Muller M, Hopfl R, Widschwendter A, Pawlita M. HPV antibody detection by ELISA with capsid protein L1 fused to glutathione S-transferase. Journal of virological methods. 2002; 106(1): 61-70. Cerca con Google

170. Clifford GM, Shin HR, Oh JK, Waterboer T, Ju YH, Vaccarella S, et al. Serologic response to oncogenic human papillomavirus types in male and female university students in Busan, South Korea. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007; 16(9): 1874-9. Cerca con Google

171. Kreimer AR, Johansson M, Waterboer T, Kaaks R, Chang-Claude J, Drogen D, et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013; 31(21): 2708-15. Cerca con Google

172. http://www.vectorlabs.com/catalog.aspx?catID=436. Vai! Cerca con Google

173. Corporation AV. OncoE6 Oral Test, user manual. 2012. Cerca con Google

174. Zhao FH, Jeronimo J, Qiao YL, Schweizer J, Chen W, Valdez M, et al. An evaluation of novel, lower-cost molecular screening tests for human papillomavirus in rural China. Cancer Prev Res (Phila). 2013; 6(9): 938-48. Cerca con Google

175. Anantharaman D, Gheit T, Waterboer T, Abedi-Ardekani B, Carreira C, McKay-Chopin S, et al. Human papillomavirus infections and upper aero-digestive tract cancers: the ARCAGE study. Journal of the National Cancer Institute. 2013; 105(8): 536-45. Cerca con Google

176. Liang C, Marsit CJ, McClean MD, Nelson HH, Christensen BC, Haddad RI, et al. Biomarkers of HPV in head and neck squamous cell carcinoma. Cancer research. 2012; 72(19): 5004-13. Cerca con Google

177. Gallus S, Muttarak R, Martinez-Sanchez JM, Zuccaro P, Colombo P, La Vecchia C. Smoking prevalence and smoking attributable mortality in Italy, 2010. Prev Med. 2011; 52(6): 434-8. Cerca con Google

178. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2011; 29(32): 4294-301. Cerca con Google

179. Braakhuis BJ, Snijders PJ, Keune WJ, Meijer CJ, Ruijter-Schippers HJ, Leemans CR, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. Journal of the National Cancer Institute. 2004; 96(13): 998-1006. Cerca con Google

180. Rietbergen MM, Snijders PJ, Beekzada D, Braakhuis BJ, Brink A, Heideman DA, et al. Molecular characterization of p16-immunopositive but HPV DNA-negative oropharyngeal carcinomas. International journal of cancer Journal international du cancer. 2013. Cerca con Google

181. Cerezo L, Lopez C, de la Torre A, Suarez D, Hervas A, Ruiz A, et al. Incidence of human papillomavirus-related oropharyngeal cancer and outcomes after chemoradiation in a population of heavy smokers. Head & neck. 2013. Cerca con Google

182. Baboci L, Boscolo-Rizzo P, Holzinger D, Bertorelle R, Biasini L, Michel A, et al. Evidence of the causal role of human papillomavirus type 58 in an oropharyngeal carcinoma. Virology journal. 2013; 10(1): 334. Cerca con Google

183. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. The lancet oncology. 2010; 11(11): 1048-56. Cerca con Google

184. St Guily JL, Jacquard AC, Pretet JL, Haesebaert J, Beby-Defaux A, Clavel C, et al. Human papillomavirus genotype distribution in oropharynx and oral cavity cancer in France--The EDiTH VI study. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology. 2011; 51(2): 100-4. Cerca con Google

185. Migaldi M, Pecorari M, Forbicini G, Nanni N, Grottola A, Grandi T, et al. Low prevalence of human papillomavirus infection in the healthy oral mucosa of a Northern Italian population. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology. 2012; 41(1): 16-20. Cerca con Google

186. Gillison ML, Broutian T, Pickard RK, Tong ZY, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA : the journal of the American Medical Association. 2012; 307(7): 693-703. Cerca con Google

187. Jung AC, Briolat J, Millon R, de Reynies A, Rickman D, Thomas E, et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. International journal of cancer Journal international du cancer. 2010; 126(8): 1882-94. Cerca con Google

188. Badaracco G, Rizzo C, Mafera B, Pichi B, Giannarelli D, Rahimi SS, et al. Molecular analyses and prognostic relevance of HPV in head and neck tumours. Oncology reports. 2007; 17(4): 931-9. Cerca con Google

189. Boscolo-Rizzo P, Da Mosto MC, Fuson R, Frayle-Salamanca H, Trevisan R, Del Mistro A. HPV-16 E6 L83V variant in squamous cell carcinomas of the upper aerodigestive tract. Journal of cancer research and clinical oncology. 2009; 135(4): 559-66. Cerca con Google

190. Hafkamp HC, Speel EJ, Haesevoets A, Bot FJ, Dinjens WN, Ramaekers FC, et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5-8. International journal of cancer Journal international du cancer. 2003; 107(3): 394-400. Cerca con Google

191. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. The New England journal of medicine. 2010; 363(1): 24-35. Cerca con Google

192. Hoffmann M, Ihloff AS, Gorogh T, Weise JB, Fazel A, Krams M, et al. p16(INK4a) overexpression predicts translational active human papillomavirus infection in tonsillar cancer. International journal of cancer Journal international du cancer. 2010; 127(7): 1595-602. Cerca con Google

193. Wendt M, Romanitan M, Nasman A, Dalianis T, Hammarstedt L, Marklund L, et al. Presence of human papillomaviruses and p16 expression in hypopharyngeal cancer. Head & neck. 2013. Cerca con Google

194. Reuschenbach M, Kansy K, Garbe K, Vinokurova S, Flechtenmacher C, Toth C, et al. Lack of evidence of human papillomavirus-induced squamous cell carcinomas of the oral cavity in southern Germany. Oral oncology. 2013; 49(9): 937-42. Cerca con Google

195. Schweizer J, Lu PS, Mahoney CW, Berard-Bergery M, Ho M, Ramasamy V, et al. Feasibility study of a human papillomavirus E6 oncoprotein test for diagnosis of cervical precancer and cancer. Journal of clinical microbiology. 2010; 48(12): 4646-8. Cerca con Google

196. Manzo-Merino J, Thomas M, Fuentes-Gonzalez AM, Lizano M, Banks L. HPV E6 oncoprotein as a potential therapeutic target in HPV related cancers. Expert Opin Ther Targets. 2013; 17(11): 1357-68. Cerca con Google

197. Meschede W, Zumbach K, Braspenning J, Scheffner M, Benitez-Bribiesca L, Luande J, et al. Antibodies against early proteins of human papillomaviruses as diagnostic markers for invasive cervical cancer. Journal of clinical microbiology. 1998; 36(2): 475-80. Cerca con Google

198. Heideman DA, Waterboer T, Pawlita M, Delis-van Diemen P, Nindl I, Leijte JA, et al. Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2007; 25(29): 4550-6. Cerca con Google

199. Carter JJ, Koutsky LA, Hughes JP, Lee SK, Kuypers J, Kiviat N, et al. Comparison of human papillomavirus types 16, 18, and 6 capsid antibody responses following incident infection. The Journal of infectious diseases. 2000; 181(6): 1911-9. Cerca con Google

200. Sanjeevi CB, Hjelmstrom P, Hallmans G, Wiklund F, Lenner P, Angstrom T, et al. Different HLA-DR-DQ haplotypes are associated with cervical intraepithelial neoplasia among human papillomavirus type-16 seropositive and seronegative Swedish women. International journal of cancer Journal international du cancer. 1996; 68(4): 409-14. Cerca con Google

201. Ellis JR, Etherington I, Galloway D, Luesley D, Young LS. Antibody responses to HPV16 virus-like particles in women with cervical intraepithelial neoplasia infected with a variant HPV16. Lancet. 1997; 349(9058): 1069-70. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record