Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Ferdousi, Amena (2014) Dispersion in Alluvial River. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2234Kb

Abstract (inglese)

River pollution is the contamination of river water by pollutant being discharged directly or indirectly on it. Depending on the degree of pollutant concentration, subsequent negative environmental effects such as oxygen depletion and severe reductions in water quality may occur which affect the whole environment. River pollution can then cause a serious threat for fresh water and as well as the entire living creatures. Dispersion in natural stream is the ability of a stream to dilute soluble pollutants. Different types of pollution, such as accidental spill of toxic chemicals, industrial waste, intermittent discharge from combined sewer overflows and temperature variations produced by thermal outflows, may generate a cloud whose longitudinal spreading strongly affects the pollutant concentration dynamics. Pollutants discharging form a point source is easier to control where as pollutant discharging from non point sources arehardlycontrollable and may represent severe threat to the river ecosystem. The longitudinal dispersion coefficient is used to describe the change in characteristics of a solute cloud from an initial state of high concentration and low spatial variance to a downstream state of lower concentration and higher spatial variance. Therefore, in order to correctly estimate the degree of pollutionwithin a stream and ensure an efficient and informed management of riverine environments,a reliable estimationof the dispersion withinthe stream is a crucial concern.
The objective of my research is to develop a mathematical model for determining the dispersion in alluvial river. In order to achieve the goal, a model has been developed which provides an analytical relation for the prediction of the dispersion coefficient in natural streams, given the planimetric configuration of the river and the relevant hydrodynamic and morphodynamic parameters (i.e., width to depth ratio, the sediment grain size, scaled with the flow depth, the Shields stress).
One of the most striking features of alluvial rivers is their tendency to develop regular meandering plan forms. Their geometry is in fact characterized by a sequence of symmetrical curves which amplify over time due to erosion processes at the outer bank and deposition at the inner bank. This planimetric pattern affects both the hydrodynamics of the river and the distribution of bed elevations, as well as its hydraulic response, as the average bed slope is progressively reduced along with the flow cross sections. The flow filed that establishes in meandering rivers has clearly a great relevance on the behavior of the pollutant cloud and hence on the dispersion that drives its microscopic evolution.
To develop a dispersion coefficient predicting model, the analytical models of flow field establishing in the cross section of a straightriver [TubinoansColombini, 1992] and of a meandering river [Frascati and Lanzoni, 2013] aredeveloped. The two dimensional mass balance equation governing the dynamics of a pollutant is then solved using asymptoticexpression and Morse and Feshbach[1953] formalism. Finally, using the two dimensional spatial distributions of the concentration, the flow depth and the velocity, the dispersion coefficient are obtained.
For straight rivers the cross-sectional velocityand the theoretically predicted dispersion coefficients with the field datacollected by Godfrey and Frederick (1970)in two rivers (Clinch River, Copper Creek). The comparison is reasonably good.
The performance of the model is also tested with reference to the predictions provided by the model proposed by Deng (2001). The resultant model is found to give prediction closer to 80% of the experimental data,a much better performance agreement with respect to the model of Deng (2001).
The results of the model developed to estimate the dispersion coefficients in meandering river, have been compared with the experimental data available in experimental and referring to six different rivers. Also in this case the agreement between the dispersion coefficient predicted theoretically and those calculated on the basis of tracer tests is quite good and better than that ensured by the other theoretical and empirical predictors available in literature

Abstract (italiano)

Lo studio della dinamica di un inquinante convenzionale (e.g., BOD) all’interno di un corso d’acqua naturale richiede la conoscenza del campo di moto e della batimetria che si realizzano nel corso d’acqua stesso, delle modalità di immissione (continua o localizzata, accidentale o sistematica) e delle reazioni chimiche a cui l’inquinante è soggetto. L’obiettivo della presente tesi è quello di caratterizzare la distribuzione spazio-temporale della nuvola di inquinante, in modo da poter valutare i carichi inquinanti e controllare il soddisfacimento, o meno, dei requisiti di legge. In particolare, l’attenzione è stata concentrata sul comportamento dell’inquinante nel cosiddetto campo lontano, ovvero a una distanza dalla sorgente tale per cui l’inquinante si è mescolato verticalmente e trasversalmente, distribuendosi quasi uniformemente sulla sezione. In tali condizioni, ai fini applicativi è sufficiente studiare il comportamento della concentrazione media sulla sezione. Tale comportamento è retto dalla classica equazione dell’avvezione-dispersione la cui soluzione, nel caso di immissione istantanea e localizzata di una determinata massa di sostanza inquinante e tratto di corso d’acqua omogeneo, è data dal classico andamento Gaussiano. La stima del coefficiente di dispersione da utilizzare nella suddetta equazione risulta di fondamentale importanza per una corretta previsione del comportamento spazio-temporale dell’inquinante. La struttura di tale coefficiente, d’altra parte, è strettamente legata al campo di moto che si realizza in un alveo naturale e, in particolare, alle deviazioni rispetto ai valori medi sulla sezione della velocità e della concentrazione. Utilizzando le attuali conoscenza relative al campo di moto in alvei a fondo mobile, nella presente tesi viene derivata una soluzione analitica del coefficiente di dispersione dipendente da parametri in ingresso quali il rapporto larghezza-profondità desumibile dalla geometria della sezione, il diametro dei sedimenti, normalizzato con la profondità della corrente, la pendenza del corso d’acqua. Il problema è inizialmente affrontato nel caso di alveo rettilineo e sezione in equilibrio con il trasporto in cui il fondo varia gradualmente in direzione trasversale. Risulta cos`ı possibile suddividere la generica sezione in una zona centrale, dove la profondità della corrente si mantiene approssimativamente costante, e due regioni di sponda, nelle quali la profondità si riduce gradualmente a zero. Il campo di moto calcolato tendendo conto di questa lenta variazione trasversale del fondo (che consente di semplificare opportunamente l’equazione della quantità di moto), raccordato con quello che si realizza nella regione centrale, unitamente all’equazione del bilancio di massa dell’inquinante, consentono di determinare analiticamente il coefficiente di dispersione.
Il passo successivo è stato quello di considerare in caso di alvei alluvionali ad andamento meandriforme. Si tratta di una tipologia di configurazione planimetrica molto comune in natura, caratterizzata da una sequenza più o meno regolare di curve alternate. Sfruttando il fatto che molto spesso la curvatura dell’asse del canale è debole, risulta possibile ottenere una soluzione analitica del campo di moto e della topografia del fondo. Tale soluzione, associata all’equazione del bilancio di massa dell’inquinante riscritta in coordinate curvilinee, opportunamente semplificata sfruttando l’ipotesi di deboli curvature, consente di determinare analiticamente il coefficiente di dispersione. Le stime del coefficiente di dispersione ottenute nei casi di alveo rettilineo e ad andamento meandriforme, sono state infine confrontate con i dati di campo reperibili in letteratura, ottenuti tramite campagne di misura con traccianti. Per entrambe le configurazioni planimetriche analizzate(rettilinea e meandriforme), l’accordo tra coefficienti osservati in campo e i risultati delle previsioni teoriche appare generalmente buono e, comunque, decisamente migliore di quello offerto dalle varie formulazioni semi-empiriche e teoriche attualmente disponibili in letteratura

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lanzoni, Stefano
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):Longitudinal dispersion coefficient, Allivial river, Meander river, Straight channel, Alluvial transverse velocity, Flow depth
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/01 Idraulica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:6682
Depositato il:13 Nov 2014 09:18
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Allen, J.R.L. (1970), Physical processes of sedimentation: an introduction. Allen & Unwin. Cerca con Google

[2] Ames, H., and Contributor eHow, Factors Affecting a River’s Velocity. http://www.ehow.com/ info 8223150 factors- affecting- rivers- velocity.html Vai! Cerca con Google

[3] Bansal, M.K. (1971), Dispersion in Natural Streams. Journal of the Hydraulics Division, 97, 1867−1886. Cerca con Google

[4] De Barros, F.P.J., Mills, W.B., and Cotta, R.M. (2006), Integral transform solution of a two-dimensional model for contaminant dispersion in rivers and Cerca con Google

channels with spatially variable coefficients. Environmental Modelling & Software, 21, 699−709. Cerca con Google

[5] Batchelor, G.K. (1999), An introduction to fluid dynamics. Cambridge University Press. Cerca con Google

[6] Bartlett, R.A. (1995). Troubled waters: Champion International and the Pigeon River Controversy. Knoxville: University of Tennessee Press. Cerca con Google

[7] Beltaos, S., and Day, T.J. (1978), A field study of longitudinal dispersion. Can.J. Civ. Eng., 5, 572−585. Cerca con Google

[8] Bencala, K.E. (1983), Simulation of solute transport in a mountain pool-andriffle stream with a kinetic mass transfer model for sorption. Water Resources Cerca con Google

Research, 19, 732−738. Cerca con Google

[9] Blanckaert, K., and de Vriend, H.J. (2003), Nonlinear modeling of mean flow redistribution in curved open channels. Water Resources Research, 39, 1375. Cerca con Google

[10] Blondeaux, P., and Seminara, G. (1985), A unified bar−bend theory of river meanders. Journal of Fluid Mechanics, 157, 449−470. Cerca con Google

[11] Bogle, G. (1997), Stream velocity profiles and longitudinal dispersion. Journal of Hydraulic Engineering 123, 816−820. Cerca con Google

[12] Boxall, J.B., and Guymer, I. (2003), Analysis and prediction of transverse mixing coefficients in natural channels. Journal of Hydraulic Engineering, 129, Cerca con Google

129−139. Cerca con Google

[13] Boxall, J.B., and Guymer, I. (2007), Longitudinal mixing in meandering channels: new experimental data set and verification of a predictive technique. Water Cerca con Google

Res, 41, 341−354. Cerca con Google

[14] Boxall, J.B., Guymer, I., and Marion, A. (2003), Transverse mixing in sinuous natural open channel flows. Journal of Hydraulic Research, 41, 153−165. Cerca con Google

[15] Bridge, J.S. (2009), Rivers and Floodplains: Forms, Processes, and Sedimentary Record, John Wiley & Sons. Cerca con Google

[16] Chang, Y.C. (1971), Lateral mixing in meandering channels. University of Iowa. Cerca con Google

[17] Chitale, S., Mosselman, E., and Laursen, E. (2000), River width adjustment. I:Processes and Mechanisms. Journal of Hydraulic Engineering, 126, 159−162. Cerca con Google

[18] Colby, B.R.D. (1961), Effect of depth of flow on discharge of bed materials. U.S. Department of the Interior. Cerca con Google

[19] Davies, R.J. (2007), Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production. Geological Society of London. Cerca con Google

[20] Day, T.J. (1977), Longitudinal dispersion of fluid particles in mountain stream′s: theory and field evidence. Journal of Hydrology (N.Z), 16, 7−25. Cerca con Google

[21] Dean, R.B. (1974), Reynolds Number Dependence of Skin Friction in Two-dimensional Rectangular Duct Flow and a Discussion of the law of the Wake. Cerca con Google

National Aeronautics and Space Administration. Cerca con Google

[22] Deng, Z., Singh, V., and Bengtsson, L. (2001), Longitudinal Dispersion Coefficient in Straight Rivers. Journal of Hydraulic Engineering, 127, 919−927. Cerca con Google

[23] Deng, Z., Bengtsson, L., Singh, V., and Adrian, D. (2002), Longitudinal Dispersion Coefficient in Single-Channel Streams. Journal of Hydraulic Engineering Cerca con Google

128, 901−916. Cerca con Google

[24] Dobran, B.H. (1983), Dispersion in Mountainous Natural Streams. Journal of Environmental Engineering , 109, 970−973. Cerca con Google

[25] Elder, J.W. (1959), The dispersion of marked fluid in turbulent shear flow. Journal of Fluid Mechanics, 5, 544−560. Cerca con Google

[26] Engelund, F. (1964), A Practical Approach to Self-preserving Turbulent Flows. Danish Acad. of Technical Sciences. Cerca con Google

[27] Falcon, M.A. (1979), Analysis of flow in alluvial channel bends. University of Iowa. Cerca con Google

[28] Ferguson, R.I. (1977), Meander sinuosity and direction variance. Geological Society of America Bulletin, 88, 212. Cerca con Google

[29] Finnegan, N.J., Roe, G., Montgomery, D.R., and Hallet, B. (2005), Controls on the channel width of rivers: Implications for modeling fluvial incision of bedrock. Cerca con Google

Geology, 33, 229−232. Cerca con Google

[30] Fischer, H.B. (1968), Methods for predicting dispersion coefficient in natural streams, with application to lower reaches of the Green and Duwamish Rivers. Cerca con Google

U.S. Geological Survey Professional Paper, 582−A, 27 pp. Cerca con Google

[31] Fischer, H. (1975), Discussion on simple method for predicting dispersion in streams by R.S. Mc Quiveyand T.N Keefer. J Environ Eng Div ASCE, 101, Cerca con Google

453−455. Cerca con Google

[32] Fischer, H.B. (1967), The Mechanics of Dispersion in Natural Streams. American Society of Civil Engineers. Cerca con Google

[33] Fischer, H.B. (1968), Dispersion Predictions in Natural Streams. Journal of the Sanitary Engineering Division, 94, 927−944. Cerca con Google

[34] Fischer, H.B. (1969), The effect of bends on dispersion in streams. Water Resources Research, 5. Cerca con Google

[35] Fischer, H.B. (1973), Longitudinal Dispersion and Turbulent Mixing in Open-Channel Flow. Annual Review of Fluid Mechanics, 5, 59−78. Cerca con Google

[36] Fischer, H.B., E, J.L., Robert, Y.C.K., and Imberger, J. (1979), Mixing in inland and coastal waters. New York: Academic Press. Cerca con Google

[37] Forsman, K.J. (2001), Contaminant transport in non-uniform streams and streambeds. Uppsala University. Cerca con Google

[38] Frascati, A., and Lanzoni, S. (2009), Morphodynamic regime and long-term evolution of meandering rivers. Journal of Geophysical Research: Earth Surface, Cerca con Google

114, F02002. Cerca con Google

[39] Frascati, A., and Lanzoni, S. (2013), A mathematical model for meandering rivers with varying width. Journal of Geophysical Research: Earth Surface, 118, Cerca con Google

1641−1657. Cerca con Google

[40] Godfrey, R.G., and Frederick, B.J. (1970), Stream dispersion at selected sites. United States Geological Survey. Cerca con Google

[41] Gore, J.A. (1985), Restoration of rivers and streams. U.S Department of Energy. Cerca con Google

[42] Gupta, A. (2011), Tropical Geomorphology. Cambridge University Press. Cerca con Google

[43] Hart, J., Guymer, I., Jones, A., and Stovin, V. (2013), Longitudinal Dispersion Coefficients Within Turbulent and Transitional Pipe Flow. In Experimental Cerca con Google

and Computational Solutions of Hydraulic Problems, Springer Berlin Heidelberg,133−145. Cerca con Google

[44] Ho, D.T., Schlosser, P., and Caplow, T. (2002), Determination of longitudinal dispersion coefficient and net advection in the tidal hudson river with a largescale, Cerca con Google

high resolution SF6 tracer release experiment. Environ. Sci. Technol, 36,3234−3241. Cerca con Google

[45] Howard, A.D. (1980), Threshold in river regims. In Threshold in Geomorphology, Allen & Unwin, Concord, Mass., 227−258. Cerca con Google

[46] Howard, A.D. (1987). Modeling fluvial systems: Rock, gravel and sand bed channel. In River Channels, Blcakwell, Malden, Mass. Cerca con Google

[47] Howard, A.D. (2013). Long Profile Development of Bedrock Channels: Interaction of Weathering, Mass Wasting, Bed Erosion, and Sediment Transport. In Cerca con Google

Rivers Over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union. 297−319. Cerca con Google

[48] Howard, A.D., Dietrich, W.E., and Seidl, M.A. (1994), Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth, Cerca con Google

99, 13971−13986. Cerca con Google

[49] Howard, A. (1992), Modelling channel migration and floodplain development in meandering streams. In Lowland Floodplain Rivers: Geomorphological Perspec- Cerca con Google

tives. John Wiley & Sons. Cerca con Google

[50] Ikeda, S., Parker, G., and Sawai, K. (1981), Bend theory of river meanders.Part 1. Linear development. Journal of Fluid Mechanics, 112, 363−377. Cerca con Google

[51] Iwasa, Y., and Aya, S. (1991), Predicting Longitudinal Dispersion Coefficient in Open-Channel Flows. In Proceedings of the International Symposium on Environ. Cerca con Google

Hydr., Hong Kong, 505−510. Cerca con Google

[52] Jamali, M., Lawrence, G., and Maloney, K. (2005), Dispersion in Varying Geometry Rivers with Application to Methanol Releases. Journal of Hydraulic Cerca con Google

Engineering, 131, 390−396. Cerca con Google

[53] Johannesson, H., and Parker, G. (1989a), Secondary Flow in Mildly Sinuous Channel. Journal of Hydraulic Engineering, 115, 289−308. Cerca con Google

[54] Johannesson, H., and Parker, G. (1989b), Linear theory of river meanders.Water Resources Monograph, American Geophysical Union, 181−213. Cerca con Google

[55] Kalkwijk, J.P.T., and De Vriend, H.J. (1980a), Computation of the Flow in Shallow River Bends. Journal of Hydraulic Research, 18, 327−342. Cerca con Google

[56] Kashefipour, S.M., and Falconer, R.A. (2002), Longitudinal dispersion coefficients in natural channels. Water Research, 36, 1596−1608. Cerca con Google

[57] Langbain, W.B., and Iseri, K.T. (1995), Manual of Hydrology: Part 1. General Surface-Water Techniques. Geological Survey Water Supply Paper 1541-A Cerca con Google

Methods and practices of the Geological Survey. Cerca con Google

[58] Lee, H.J., and DeLisa, J.A. (2007), Manual of nerve conduction study and surface anatomy for needle electomyography. Fourth ed. Lippincott Williams and Cerca con Google

Wilkins. Cerca con Google

[59] Leopold, L.B., Wolman, M.G., and Miller, John P (1995), Fluvial processes in geomorphology. New York: Dover Publications. Cerca con Google

[60] Liu, H. (1977), Predicting Dispersion Coefficient of Streams. Journal of the Environmental Engineering Division, 103, 59−69. Cerca con Google

[61] Marani, M., Lanzoni, S., Zandolin, D., Seminara, G., and Rinaldo, A. (2002),Tidal meanders. Water Resources Research, 38(11), 1225. Cerca con Google

[62] Marion, A., and Zaramella, M. (2006), Effects of Velocity Gradients and Secondary Flow on the Dispersion of Solutes in a Meandering Channel. Journal of Cerca con Google

Hydraulic Engineering, 132, 1295−1302. Cerca con Google

[63] Marivoet, J.L., and Van Craenenbroeck, W. (1986), Longitudinal dispersion in ship-canals. Journal of Hydraulic Research, 24, 123−132. Cerca con Google

[64] McQuivey, R.S., and Keefer, T.N. (1976), Convective Model of Longitudinal Dispersion. Journal of the Hydraulics Division, 102, 1409−1424. Cerca con Google

[65] Morse, P.M., and Feshbach, H. (1953), Methods of Theoretical Physics, Part I. McGraw-Hill: New York. Cerca con Google

[66] Mueller, J.E. (1968), An Introduction to the Hydraulic and Topographic Sinuosity Indexes. Annals of the Association of American Geographers, 58, 371−385. Cerca con Google

[67] Nayfeh, A.H. (2007), Perturbation methods. Weinheim: Wiley. Cerca con Google

[68] NC Division of Water Quality (2010), Methodology for Identification of Intermittent and Perennial Streams and their Origins. Cerca con Google

[69] Odgaard, A.J. (1981), Transverse Bed Slope in Alluvial Channel Bends. Journal of the Hydraulics Division, 107, 1677−1694. Cerca con Google

[70] Odgaard, A.J., and Bergs, M.A. (1988), Flow processes in a curved alluvial channel. Water Resources Research, 24, 45−56. Cerca con Google

[71] Perez, J., Halterman, D., Hodory, L., and White, D. (1997), A Guide to Developing Local Watershed Action Plans in Ohio. Cerca con Google

[72] Piasecki, M., and Katopodes, N. (1999), Identification of Stream Dispersion Coefficients by Adjoint Sensitivity Method. Journal of Hydraulic Engineering, Cerca con Google

125, 714−724. Cerca con Google

[73] Putnam, W.C., Birkeland, P.W., and Larson, E.E. (1989), Putnam′s geology.New York: Oxford University Press. Cerca con Google

[74] Repetto, M.T. (2002), Planimetric instability of channels with variable width. Journal of Fluid Mechanics, 457, 79−109. Cerca con Google

[75] Van Rijn, L. (1984), Sediment Transport, Part III: Bed forms and Alluvial Roughness. Journal of Hydraulic Engineering, 110, 1733−1754. Cerca con Google

[76] Rozovski, I.L. (1957), Flow of water in bends of open channels, Academy of Sciences of the Ukrainian SSR. Cerca con Google

[77] Rutherford, J.C. (1994), River mixing. New York: Wiley. Cerca con Google

[78] Seminara, G. (2006), Meanders. Journal of Fluid Mechanics, 554, 271−297. Cerca con Google

[79] Seminara, G., and Tubino, M. (1992), Weakly nonlinear theory of regular meanders. Journal of Fluid Mechanics, 244, 257−288. Cerca con Google

[80] Seo, I., and Baek, K. (2004), Estimation of the Longitudinal Dispersion Coefficient Using the Velocity Profile in Natural Streams. Journal of Hydraulic Engi- Cerca con Google

neering, 130, 227−236. Cerca con Google

[81] Seo, I., and Cheong, T. (1998), Predicting Longitudinal Dispersion Coefficient in Natural Streams. Journal of Hydraulic Engineering, 124, 25−32. Cerca con Google

[82] Shelby, B. (1990), Resource Values and Instream Flow Recommendations:Gulkana National Wild River, Alaska. U.S. Department of the Interior, Bureau Cerca con Google

of Land Management. Cerca con Google

[83] Shen, H.W., Harrison, A.S., and Mellema, W.J. (1978), Temperature and Missouri River Stages near Omaha. Journal of the Hydraulics Division 104, 1−20. Cerca con Google

[84] Da Silva, A.M.F., and Ebrahimi, M. (2013), Bank erosion and planimetric evolution of alluvial meandering streams. River Basin Management VII, 277−288. Cerca con Google

[85] Smith, R. (1983), Longitudinal dispersion coefficients for varying channels.Journal of Fluid Mechanics, 130, 299−314. Cerca con Google

[86] Smith, J.D., andMclean, S.R. (1984), AModel for Flow inMeandering Streams. Water Resources Research, 20, 1301−1315. Cerca con Google

[87] Sooky, A.A. (1969), Longitudinal dispersion in open channels. J. Hydraul. Div., Am. Soc. Civ. Eng., 95, 1327−1346. Cerca con Google

[88] Sun, T., Meakin, P., Jssang, T., and Schwarz, K. (1996), A Simulation Model for Meandering Rivers. Water Resources Research, 32, 2937−2954. Cerca con Google

[89] Taylor, G. (1954), The Dispersion of Matter in Turbulent Flow through a Pipe. Proc. R. Soc. Lond. A ,223, 446−468. Cerca con Google

[90] Tennekes, H., and Lumley, J.L. (1972), A First Course in Turbulence. MIT Press. Cerca con Google

[91] Tubino, M., and Colombini, M. (1992), Correnti uniformi a superficie libera e sezione lentamente variabile. In XXIII Convegno Di Idraulica E Costruzioni Cerca con Google

Idrauliche, Florence. Cerca con Google

[92] Vigilar Jr., G.G., and Diplas, P. (1997), Stable Channels with Mobile Bed: Formulation and Numerical Solution. Journal of Hydraulic Engineering, 123, Cerca con Google

189−199. Cerca con Google

[93] Wallis, S.G., and Manson, J.R. (2004), Methods for predicting dispersion coefficients in rivers. Proceedings of the ICE - Water Management, 157, 131−141. Cerca con Google

[94] Wei, Z. (2011), Longitudinal Solution Transport in Open -Channel Flow. Temple University. Cerca con Google

[95] Whipple, K.X. (2002), Implication of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research, 107, EGT−3. Cerca con Google

[96] Yotsukura, N. et al G. (1970), Measurement of mixing characteristics of the Missouri river between Siouxcity Iowa and Plattsmouth Nebraska. U.S. Government Cerca con Google

Printing Office. Cerca con Google

[97] Zhang, W. (2011). Longitudinal solute transport in open channel flow. Temple University. Cerca con Google

[98] Zolezzi, G., and Seminara, G. (2001), Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. Cerca con Google

Journal of Fluid Mechanics, 438, 183−211. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record