Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Montoya Cardona, Monica Maria (2008) Analisi dinamica-morfologica dei corsi d'acqua pseudo meandriformi mediante modelli a fondo mobile. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
46Mb

Abstract (inglese)

In the last years in river engineering, the numerical models that simulate both fluvial hydraulics and sediment transport, have been used and developed in order to provide an accurated representation of morphological phenomena (mobile bed models). These models allow the simulation of the bed level change, the hydraulic profile, the mean velocity and the streaming lines corresponding to a short flood wave. These models, if used in long-term hydrological events, can provide useful information about fluvial morphological tendency and its temporal variation for different boundary conditions.
In the present thesis work, several numerical simulations of a short flood wave (return period equal to 20 years) on the Torre river are performed to obtain a sensibility analysis by using the hydro-morphological bi-dimensional MIKE 21C model. The sensibility analyses have been carried out in order to establish the dependency of the model from the main parameters.
Moreover a comparison between the simulations of MIKE 21C with those carried out using other two models, HEC-RAS (1D model) and CCHE2D (2D model), is carried out. The results show the better performance of the 2D model in the computation of the morphological variation of gravel bed rivers.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Fattorelli, Sergio
Correlatore:Gregoretti, Carlo
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > IDRONOMIA AMBIENTALE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Sediment transport, hydro-morpfological modelling, MIKE 21C, HEC-RAS, CCHE2D
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/08 Idraulica agraria e sistemazioni idraulico-forestali
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:673
Depositato il:06 Nov 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Ackers, P. & White, W. R. (1973) “Sediment transport: a new approach and analysis”. Journal of Hydraulic Engineering, 99(11), 2041-2060. Cerca con Google

2. Armani, A. & Di Silvio, G (1988) “A one-dimensional model for the transport of a sediment mixture in non-equilibrium conditions”. J. of Hydraulic Research, 26 (3). In: NCCHE (2001) Cerca con Google

3. Ashida, K & Michiue, M (1971) “An investigation of river bed degradation downstream of a dam”. Proceeding 14th Congress of the IAHR. In: NCCHE (2001) Cerca con Google

4. Bagnold, R.A., (1966) “An approach to the sediment transport problem from general physics”, U. S. Geol. Survey Prof. Paper: 422-I. In: NCCHE (2001) Cerca con Google

5. Bathurst, J. C., Hey, R. D., & Thorne, C. R. (1979) “Secondary flow and shear stress at river bends." J. Hydraul. Div., Am. Soc. Civ. Eng., 105(10), 1277-1295. Cerca con Google

6. Bell, S. G. & Sutherland, A. J. (1983) “Non- equilibrium bed load transport by steady flows. Journal of Hydraulic Engineering, 109(3), 356-367. In: NCCHE (2001) Cerca con Google

7. Bernard, R. S. (1993) “STREMR; Numerical Model. for Depth-Averaged Incompressible Flow,” Technical. Report REMR-HY-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS. Cerca con Google

8. BETA Studio srl.(2006a) “Progetto preliminare per il ripristino dell'officiosità idraulica del torrente Torre mediante modellazione idraulica dell'asta del torrente torre dalla diga di Crosis, in comune di Tarcento, fino alla confluenza col Fiume Isonzo al fine della messa in sicurezza del territorio (OPI CD2/430.064). Determinazione delle caratteristiche granulometriche dell’alveo”. Regione Autonoma Friuli - Venezia Giulia. Protezione Civile della Regione. Documento No. 0383TOR0402. Cerca con Google

9. BETA Studio srl.(2006b) “Progetto preliminare per il ripristino dell'officiosità idraulica del torrente Torre mediante modellazione idraulica dell'asta del torrente torre dalla diga di Crosis, in comune di Tarcento, fino alla confluenza col Fiume Isonzo al fine della messa in sicurezza del territorio (OPI CD2/430.064). Relazione idrologica”. Regione Autonoma Friuli - Venezia Giulia. Protezione Civile della Regione. Documento No. 0383TOR0405. Cerca con Google

10. BETA Studio srl.(2006c) “Progetto preliminare per il ripristino dell'officiosità idraulica del torrente Torre mediante modellazione idraulica dell'asta del torrente torre dalla diga di Crosis, in comune di Tarcento, fino alla confluenza col Fiume Isonzo al fine della messa in sicurezza del territorio (OPI CD2/430.064). Relazione geologica e geomorfologica”. Regione Autonoma Friuli - Venezia Giulia. Protezione Civile della Regione. Documento No. 0383TOR040601. Cerca con Google

11. BETA Studio srl.(2006d) “Progetto preliminare per il ripristino dell'officiositÀ idraulica del torrente Torre mediante modellazione idraulica dell'asta del torrente torre dalla diga di Crosis, in comune di Tarcento, fino alla confluenza col Fiume Isonzo al fine della messa in sicurezza del territorio (OPI CD2/430.064). Relazione idraulica”. Regione Autonoma Friuli - Venezia Giulia. Protezione Civile della Regione. Documento No. 0383TOR040701. Cerca con Google

12. BETA Studio srl.(2006e) “Progetto preliminare per il ripristino dell'officiosità idraulica del torrente Torre mediante modellazione idraulica dell'asta del torrente torre dalla diga di Crosis, in comune di Tarcento, fino alla confluenza col Fiume Isonzo al fine della messa in sicurezza del territorio (OPI CD2/430.064). Studio morfologico”. Regione Autonoma Friuli - Venezia Giulia. Protezione Civile della Regione. Documento No. 0383TOR040801. Cerca con Google

13. Blanckaert, K. (2001) “Discussion on `Bend-flow simulation using 2D depth-averaged model,' by H. C. Lien et al." Journal of Hydraulic Engineering, 127(2), 167-170. Cerca con Google

14. Blanckaert, K., & De Vriend, H. J. (2003) “Non-linear modelling of mean flow redistribution in curved open channels." Water Resour. Res., 39(12), 1375. Cerca con Google

15. Blanckaert, K., & De Vriend, H. J. (2004) "Secondary flow in sharp open-channel bends." J. Fluid Mech., 498, 353-380. Cerca con Google

16. Blanckaert, K., & Graf, W. H. (2001) “Mean flow and turbulence in an open-channel bend." Journal of Hydraulic Engineering, 127(10), 835-847. Cerca con Google

17. Blondeaux P., Seminara G. (1985) “A Unified Bar-bend Theory of River Meanders”. J. Fluid Mechanics, 157, 449-479. Cerca con Google

18. Bradley, C., & Smith, D. G. (1984) “Meandering channel response to altered flow regime: Milk River, Alberta and Montana." Water Resour. Res., 20(12), 1913-1920. Cerca con Google

19. Brath A., Di Baldassarre G. (2006). Effetti del grado di dettaglio dell’informazione topografica nella simulazione numerica bidimensionale. L’Acqua, (1), 25-30. Cerca con Google

20. Bravo- Espinosa, M; Osterkamp, W. R. & Lopes, V. L. (2003) “Bedload Transport in alluvial channels”. Journal of Hydraulic Engineering, 129(10), 7830-795. Cerca con Google

21. Bridge, J. S., & Jarvis, J. (1976) “Flow and sedimentary processes in the meandering river South Esk, Glen Cova, Scotland,” Earth Surface Processes, 1, 303-336. Cerca con Google

22. Buhman, D. L., Gates, T. K., & Watson, C. C. (2002) “Stochastic variability of fluvial hydraulic geometry: Mississippi and Red Rivers." Journal of Hydraulic Engineering, 128(4), 426-437. Cerca con Google

23. Parole chiave *Inserisci delle parole chiave (specifiche, non di carattere geneCampbell, L. McEwan, I., Nikora, V., Pokrajac, D., Gallagher, M., & Manes, C. (2005) “Bed?Load effects on hydrodymics of rough?bed open?channel flows." Journal of Hydraulic Engineering, 131(7), 576 - 585. Cerca con Google

24. Cao, Z., Day, R., & Egashira, S. (2002) “Coupled and decoupled numerical modelling of flow and morphological evolution in alluvial rivers”. Journal of Hydraulic Engineering, 128(3), 306-321. Cerca con Google

25. Capart, H.; Eldho, T. I.; BHUang, S. Y.; Ypung, D. L. & Zech, Y. (2003) “Treatment of natural geometry in finite volume river computations”. Journal of Hydraulic Engineering, 129(5), 385-393. Cerca con Google

26. Carollo, F. G., Ferro, V. & Termini, D. (2005) “Flow resistance law in channels with flexible submerged vegetation”. Journal of Hydraulic Engineering, 131 (7), 554 - 564. Cerca con Google

27. Casa A., Benito G., Thorndycraft V.R., Rico M. (2005). “Efectos de las fuentes cartográficas en los resultados de la modelación hidráulica de crecidas”. Ingeniería del Agua, 12(4), 309-320. Cerca con Google

28. Chang, S. Y., & Yen, C. L. (2002) “Simulation of Bed load Dispersion Process”. Journal of Hydraulic Engineering, 128 (3), 331- 342. Cerca con Google

29. Cheng, K. C., Lin, R.-C., & Ou, J.-W. (1976) “Fully developed laminar flow in curved rectangular channels”. J. Fluids Eng., 98(1), 41-48. Cerca con Google

30. Chien, N. & Wan, Z. H. (1983) “Mechanics of sediment movement”. Science Publications Beijing. (in cinese). In: NCCHE (2001) Cerca con Google

31. Chitale, S. V. (2003) “Modelling for width adjustment in alluvial rivers." Journal of Hydraulic Engineering, 129(5), 404-407. Cerca con Google

32. Chiu, C. L., Jin, W., & Chen, Y. C. (2000) “Mathematical models of distribution of sediment concentration”. Journal of Hydraulic Engineering, 126(1), 16-23. Cerca con Google

33. Chow, V.T. (1973) “Open - Channel Hydraulics”. Mc Graw - Hill International Editions. Cerca con Google

34. Colby, B. R. (1964) “Practical computations of bed - material discharge”. Journal of the Hydraulics Division, American Society of Civil Engineers, 90, No. HY2, 217-246. Cerca con Google

35. Coleman, J. M. (1969) “Brahmaputra River: Channel processes and sedimentation”. Sedimentary Geology, 3, 129-239. Cerca con Google

36. Coleman, N. L. (1970) “Flume Studies of the Sediment Transfer Coefficient.”Water Resources Research,. 6 (3), 801-809. In: Fiorillo (2005) Cerca con Google

37. Coleman, N. L. (1981) “Velocity profiles with suspended sediment.”Int. Ass. Hydr. Res., J. Hydr. Res., 19(3), 211-229. In: Fiorillo (2005) Cerca con Google

38. Coleman, N. L. (1986) “Effects of Suspended Sediment on the Open-Channel Velocity Distribution.”Water Resources Research, 22 (10), 1377-1384. In: Fiorillo (2005) Cerca con Google

39. Cowder, D. W. & Diplas, P. (2000) “Using two -dimensional hydrodynamic models at scales of ecological importance” J. Hydrology 230, 172-191. Cerca con Google

40. Cui, Y., & Parker, G. (2005) “Numerical model of sediment pulses and sediment supply disturbances in mountain rivers”. Journal of Hydraulic Engineering, 131(8), 646-656. Cerca con Google

41. Cunge, J.A., Holly, F.M., Verwey, A. (1980) Practical Aspects of Computational River Hydraulics, Pitman, London. Cerca con Google

42. D’Alpaos, L., Martini, P., Carniello, L. (2003) Two dimensional modelling of flood flows and of suspended sediment transport: the case of Brenta River. European Geophysical Society. Geophysical Research Abstracts, Vol. 5, 11398. Cerca con Google

43. Da Deppo, L., Datei C., Salandin P. (2000) “Sistemazione dei corsi d’acqua”. Università degli studi di Padova, Dip. Ingegneria Idraulica, Marittima e Geotecnica, Terza Edizione Libreria Cortina, pag.205. Cerca con Google

44. Darby, S. E. & Thorne, C. (1996) “Development and testing of riverbank -stability analysis”. Journal of Hydraulic Engineering, 122(8), 443-454. Cerca con Google

45. Darby, S. E. (2005) “Refined hydraulic geometry data for British gravel-bed rivers”. Journal of Hydraulic Engineering, 131(1), 60-64. Cerca con Google

46. De Vriend, H. J. (1977) “A mathematical model of steady flow in curved shallow channels." J. Hydraul. Res., 15(1), 37-54. Cerca con Google

47. De Vriend, H. J. (1981) “Velocity redistribution in curved rectangular channels." J. Fluid Mech., 107, 423-439. Cerca con Google

48. Demuren, A. O. (1989) “Calculation in sediment transport in meandering channels.” Proc., 23rd IAHR Congress, International Association for Hydraulic Research, Delft, The Netherlands. In: Ruther, N. & Olsen N. R. B. (2005). Cerca con Google

49. Demuren, A. O. (1991) “Development of a mathematical model for sediment transport in meandering rivers.” Rep. 693, Institute for Hydromechanics, University of Karlsruhe, Karlsruhe, Germany. In: Ruther, N. & Olsen N. R. B. (2005). Cerca con Google

50. Demuren, A. O., & Rodi, W. (1986) “Calculation of flow and pollutant dispersion in meandering channels.” J. Fluid Mech., 172, 63-92. In: Ruther, N. & Olsen N. R. B. (2005). Cerca con Google

51. DHI (Danish Hydraulic Institute), Water & Environmental. (2003) “MIKE 21C, River hydrodinamics and morphology, user guide”. Morphological model of a trench (Tutorial). Cerca con Google

52. DHI (Danish Hydraulic Institute), Water & Environmental. (2004) “MIKE 21 HD, Flow model, hydrodinamic module, user guide”. Cerca con Google

53. DHI (Danish Hydraulic Institute), Water & Environmental. (2005) “MIKE 21C, scientific documentation”. Cerca con Google

54. Di Silvio (2002) Discussion of “Probabilistic form of Exner equation of sediment continuity for mixtures with no active layer” Parker, G., C. Paola, and Leclair, S. Journal of Hydraulic Engineering, 128(8), 798-801. Cerca con Google

55. Dietrich, E. W. (1982) “Settling velocity of natural particles”. Water Resources Research, 18(6), 1626-1982. Cerca con Google

56. Dietrich, W. E. & Smith, J. D. (1984) “Bed load transport in a river meander,” Water Resources Research, 20(10), 1355-1380. Cerca con Google

57. Du Boys, P. F. D. (1879) “Etude du Régime et de l'Action exercée par les Eaux sur un Lit à Fond de Graviers indéfiniment affouillable". ('Study of Flow Regime and Force exerted on a Gravel Bed of infinite Depth.') Ann. Ponts et Chaussées, Paris, France, série 5, vol. 19, pp. 141-195 (in French). In: Mao, L. (2004). Cerca con Google

58. Duan, J. G., Wang, S. S. Y., & Jia, Y. (2001) “The application of the enhanced CCHE2D model to study the alluvial channel migration processes." J. Hydraul. Res., 39(5), 469-480. Cerca con Google

59. Duan, J.G., & Julien, P.Y. (2005) “Numerical simulation of the inception of channel meandering." Special Issue on Qualifying Rates of Geomorphic Processes of Earth Surface Processes and Landforms, in press. Cerca con Google

60. Einstein, H. A. (1942) “Formulas for the Transportation of Bed Load,” Transactions, American Society of Engineers, Vol 107, Paper No. 2140, 561-573. Cerca con Google

61. Einstein, H. A. (1950) “The Bed-Load Function for Sediment Transportation in Open Channel Flows”. Technical Bulletin No. 1026, U.S. Department of Agriculture, Soil Conservation Service, Washington, DC. Cerca con Google

62. Engelund, F. & Fredsà¸e, J. (1976) “A sediment transport model for straight alluvial channels”. Nordic hydrology, 7, 293-306 Cerca con Google

63. Engelund, F. & Hansen, E. (1967) “A monograph on sediment transport in alluvial streams", Teknisk Forlag, Danish Technological University, Copenhagen, Denmark. In: DHI(2005). Cerca con Google

64. Engelund, F. (1966) “Hydraulic resistance of alluvial streams”. J. Hydraul. Div. Am. Soc. Civ. Eng., 92, 315-326, 1966. In: Fiorillo (2005). Cerca con Google

65. Engelund, F. (1974) “Flow and bed topography in channel bends." J. Hydraul. Div., Am. Soc. Civ. Eng., 100(11), 1631-1648. Cerca con Google

66. Engelund, F. and Fredsoe, J. (1982) Hydraulic theory of alluvial rivers, Advances in Hydro Science, Vol.13, 187-215. Cerca con Google

67. Fagherazzi, S., Gabet, E. Furbish D, J. (2004) “The effect of bidimensional flow on tidal channel planforms”. Earth Surface Processes and Landforms, 29, 295-309. Cerca con Google

68. Falcon Ascanio, M., & Kennedy, J. F. (1983) “Flow in alluvial-river curves." J. Fluid Mech., 133, 1-16. Cerca con Google

69. Fang, H. & Rodi, W. (2003) “3D calculations of flow and suspended sediment transport in the neighbourhood of the dam for the Three Gorges Project Reservoir in the Yangtze River, J. Hydraulic Research, 41:4, 379-394. Cerca con Google

70. Fang, H. W. (2000) “Three- dimensional calculations of flow and bed - load transport in the Elbe river”. Report No. 763. Institute for Hydromechaniscs, University of Karlsruhe, Germany. In: NCCHE (2001). Cerca con Google

71. Finnie, J., Donnell, B., Letter, J., & Bernard, R. S. (1999) “Secondary flow correction for depth-averaged flow calculations." J. Eng. Mech., 125(7), 848-863. Cerca con Google

72. Fiorillo, G. (2005) Note del corso d’idraulica fluviale. Università degli Studi di Padova. Dipartimento di Idraulica. Cerca con Google

73. Frank E., Montoya-Cardona M.M., Fattorelli S. (2007). Effects of topographic data resolution and spatial model resolution on a bi-dimensional hydro-morphological model. Fourth International Conference on River Basin Management, Kos, Greece, 23 - 25 Maggio 2007. Cerca con Google

74. FredsÀ¸e, J. (1979) Unsteady flow in straight alluvial streams; modifications of individual dunes, J. Fluid Mech.,Vol. 91, 497-512. In: DHI (2005). Cerca con Google

75. Galappatti, R. (1983) “A depth-integrated model for suspended sediment transport” in Communications in Hydraulics, University of Technology, Delft, Netherlands, 83-87. In: DHI (2005). Cerca con Google

76. Garcia, M. (1994) “Depositional turbidity currents laden with poorly sorted sediment: Journal of Hydraulic Engineering, 120(11), 1240-1263. Cerca con Google

77. Garcia, M. H. & Parker, G. (1991) Entrainment of bed sediment into suspension. Journal of Hydraulic Engineering, 117(4), 414-435. Cerca con Google

78. Gessler, D, Hall, B., Spasojevic, M., Holly, F., Pourtaheri, H, Raphelt, N. (1999) Application of a 3D mobile bed, hydrodynamic model, J. Hydraulic Engineering, ASCE, 125, 737-749. Cerca con Google

79. Gomez, B., R. L. Naff & Hubbell, D. W. (1989) “Temporal variations in bedload transport rates associated with the migration of bedforms”. Earth Surface Processes and Landforms, 14: 135-156. Cerca con Google

80. Graf, W.H. (1998) “Fluvial Hydraulics: Flow and Transport Processes in Channels of Simple Geometry”. In collaboration with M.S. Altinakar, John Wiley and Sons, England. Cerca con Google

81. Guerrero, M., & Lamberti, A. (2004) “Modelli a fondo mobile nella progettazione di gradi opere fluviali. L’ACQUA, 3, 9- 26. Cerca con Google

82. Haile A.T., Rientjes T.H.M. (2005) “Effects of LiDAR DEM resolution in flood modelling: a model sensitivity study for the city of Tegucigalpa, Honduras”. Workshop “Laser scanning 2005” Enshede, Netherlands, 168-173. Cerca con Google

83. Han, Q. W.(1980) “A Study on the non-equilibrum transportation of suspended load”. Proceedings of the First International Symposium on River Sediemntation, Beijing, China. In: NCCHE (2001) Cerca con Google

84. Hanif C., M. (1993) “Open channel flow”. Prentice Hall. Cerca con Google

85. Hardy, R. J., Bates, P. D., and Anderson, M. G. (2000) “Development of a reach scale two dimensional finite element model for floodplain sediment deposition.”Proc. Inst. Civ. Eng., Waters. Maritime Energ., 142, 141-156. . In: Zanichelli et al (2004). Cerca con Google

86. Harris, C. K. & Wiberg, P. L. (2002) Across-shelf sediment transport: interactions between suspended sediment and bed sediment. Journal of Geophysical Research. Cerca con Google

87. Heinzer, T., Sebhat, M., Feinberg, B., & Kerper, D. (2000) “The use of the GIS to manage LIDAR elevation data and facilitate integration with the MIKE 21 2D hydraulic model in a flood inundation decision support system”. ESRI Users Conference, San Diego, June. Cerca con Google

88. Hey, R. (1989) “Bar form resistance in gravel-bed rivers,” Journal of Hydraulic Engineering, 114(12): 1498-1508. Cerca con Google

89. Hey, R. D., & Thorne, C. R. (1986) “Stable channels with mobile gravel beds”. Journal of Hydraulic Engineering, 112(8), 671-689. Cerca con Google

90. Hille, P., Vehrenkamp, R., & Schulz-Dubois, E. O. (1985) “The development and structure of primary and secondary flow in a curved square duct”. J. Fluid Mech., 151, 219-241. Cerca con Google

91. Holly, F. M., & J. L. Rahuel, (1990) “New numerical/physical framework for mobile bed modeling”. Journal of Hydraulic Research, 28(5), 545-564. Cerca con Google

92. Hooke, J. M. (1980). "Magnitude and distribution of rates of river bank erosion." Earth Surf. Processes, 5, 143-157. Cerca con Google

93. Horritt M.S., Bates P.D. (2001) “Effects of spatial resolution on a raster based model of flood flow”. J. of Hydrology 253, 239-249. Cerca con Google

94. Hsieh, T. Y., & Yang, J. C. (2003) “Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation”. Journal of Hydraulic Engineering, 129(8), 597-612. Cerca con Google

95. rale) che descrivano il contenutoHsieh, T.Y. & Yang, J.C. (2003) “Investigation on the suitability of two?dimensional depth?averaged models for bend flow simulation”. Journal of Hydraulic Engineering, 129(8), 597-612. Cerca con Google

96. Huang S.L. (2007) “Effects of using different sediment transport formulae and methods of computing Manning’s roughness coefficient on numerical modelling of sediment transport. J. Hydr. Res., IAHR, 45(3), 347-356. Cerca con Google

97. Hydrologic Engineering Center (1997). UNET, One-Dimensional Unsteady Flow Through a Full Network of Open Channels, User’s Manual, U.S. Army Corps of Engineers, Davis, CA. Cerca con Google

98. Ikeda, I., Parker, G., & Sawai, K. (1981) “Bend theory of river meanders. Part I. Linear development”, J. Fluid. Mech., 112, 363-377. Cerca con Google

99. Ikeda, S. (1989) “Sediment transport and sorting at bends,” Water Resources Monograph 12, River Meandering, American Geophysical Union, 103-126. Cerca con Google

100. Ikeda, S., Yamasaka, M. & Chiyoda, M. (1987) “Bed topography and sorting in bends,” Journal of Hydraulic Engineering, 113(2),190-205. Cerca con Google

101. Jia, Y., & Wang, S. S. Y. (1999) “Numerical model for channel flow and morphological change studies." Journal of Hydraulic Engineering, 125(9), 924-933. Cerca con Google

102. Jia, Y., Kitamura, T., & Wang, S. S. Y. (2001) “Simulation of scour process in plunging pool of loose bed-material." Journal of Hydraulic Engineering, 127(3), 219-229. Cerca con Google

103. Jia, Y., Scott, S., Xu, Y., Huang, S, & Wang, S. S. Y. (2005) “Three - Dimensional numerical simulation and analysis of flows around a sumerged weir in a channel Bendway”. Journal of Hydraulic Engineering, 131(8), 682-693. Cerca con Google

104. Jin, Y. C., & Steffler, P. M. (1993) “Predicting flow in curved open channels by depth-averaged model." Journal of Hydraulic Engineering, 119(1), 109-124. Cerca con Google

105. Johannesson, H., & Parker, G. (1989a) “Secondary flow in mildly sinuous channel." Journal of Hydraulic Engineering, 115(3), 289-308. Cerca con Google

106. Johannesson, H., & Parker, G. (1989b) “Velocity redistribution in meandering rivers." Journal of Hydraulic Engineering, 115(8), 1019-1039. Cerca con Google

107. Julien, P. Y., & Wargadalam, J. (1995). “Alluvial channel geometry: Theory and applications." Journal of Hydraulic Engineering, 121(4), 312-325. Cerca con Google

108. Kalkwijk, J. P. Th., & de Vriend, H. J. (1980) “Computation of the flow in shallow river bends." J. Hydraul. Res., IAHR 18(4), 327-342. Cerca con Google

109. Kassem, A. A., & Chaudhry, M. H. (1998) “Comparison of coupled and semicoupled numerical models for alluvial channels." Journal of Hydraulic Engineering, 124(8), 794-802. Cerca con Google

110. Kassem, A. A., & Chaudhry, M. H. (2002) “Numerical modelling of bed evolution in channel bends." Journal of Hydraulic Engineering, 128(5), 507-514. Cerca con Google

111. Kikkawa, H., Ikeda, S., & Kitagawa, A. (1976) “Flow and bed topography in curved open channels." J. Hydraul. Div., Am. Soc. Civ. Eng., 102(9), 1327-1342. Cerca con Google

112. Kim, H.-Y., Kim, J. H. & Kang, B. H. (2004) Meandering instability of a rivulet. J. Fluid Mech. (2004), vol. 498, 245-256. Cerca con Google

113. King, I. P., & Norton, W. R. (1978) “Recent application of RMA’s finite element models for two dimensional hydrodynamics and water quality.”Finite elements in water resources II, Pentech, London, 2.81-2.99. In: Zanichelli et al (2004). Cerca con Google

114. Kostic, S., Parker, G. & Marr, J. (2002) Role of turbidity currents in setting the forest slope of clinoforms prograding into standing fresh water, Journal of Sedimentary Research, 72(3), 353-362. Cerca con Google

115. Kuhnle, R. A. & Southard, J. B. (1988) “Bedload transport fluctuations in a gravel bed laboratory channel,” Water Resources Research, 24: 247-260. In: Parker ASCE Manual 54. Cerca con Google

116. Lai, Y. G., Weber, L. J., & Patel, V. C. (2003) “Nonhydrostatic three-dimensional model for hydraulic flow simulation, I: Formulation and verification”. Journal of Hydraulic Engineering, 129(3), 196-205. Cerca con Google

117. Lane S.N., Richards K.S. (1998). High resolution, two-dimensional spatial modelling of flow processes in a multi-thread channel. Hydrological Processes, 12, pp. 1279-1298. Cerca con Google

118. Lane, E.W. & Kalinske, A.A. (1941) “Engineering calculations of suspended sediments”, Trans. AGU 22: 603-607. In: Fiorillo (2005) Cerca con Google

119. Lane, S. N. & Richards, K. S. (1998) “High resolution, two-dimensional spatial modelling of flow processes in a multi-thread channel”. Hydrol. Process. 12, 1279’±1298 Cerca con Google

120. Lane, S. N. (1998) “Hydraulic modelling in hydrology and geomorphology: A review of high resolution approaches” Hydrol. Process. 12, 1131±1150. Cerca con Google

121. Lauer, J. W. & Parker, G. (2004) “Modelling channel - floodplain Co - evolution in sand bed streams”. Proceedings, ASCE World Water and Environmental Resources Congress, Salt Lake City, June 27-July 1, 10. Cerca con Google

122. Laursen, E. M. (1958) “Total sediment load of streams”. Journal of the Hydraulics Division, American Society of Civil Engineers, 84 (HY1), 1530-1, to 1530-36. Cerca con Google

123. Lawler, D. M. (1993) “The measurement of river bank erosion and lateral channel change: A review." Earth Surf. Processes Landforms, 18, 777-821. Cerca con Google

124. Lee, K. T., & Liu, Y. L. (2004) “Systematic investigation of time scale in movable-bed model”. Journal of the Chinese Institute of Engineers, Vol. 27, No. 3, 315-321. Cerca con Google

125. Lenzi, M. A., D’Agostino V. e Sonda, D. (2000) “Ricostruzione morfologica e recupero ambientale dei torrenti”. Prima edizione. Bios. Consenza, Italia, 208. Cerca con Google

126. Lenzi, M. A., V. D’Agostino, F. Comiti, G. R. Scussel, U. De Col., & G. Asti, (2000b) “Bedload transport data from Rio Cordon torrent: comparison with sediment transport equations and field data from other Alpine streams,” In Special Issue, Dynamics of Water and Sediments in Mountain Basins, Quaderni di Idronomia Montana, Editoriale Bios, Italy. Cerca con Google

127. Leopold, L.B., & Maddock, T. Jr. (1953) “The hydraulic geometry of stream channels and some physiographic implications." U.S. Geol. Surv. Prof. Pap., 252. Cerca con Google

128. Leschziner, M. A., & Rodi, W. (1979) “Calculation of strongly curved open channel flow." J. Hydraul. Div., Am. Soc. Civ. Eng., 105 (10), 1297-1314. Cerca con Google

129. Lien, H. C., Hsieh, T. Y., Yang, Y. C., & Yeh, K. C. (1999) “Bend-flow simulation using 2D depth-averaged model." Journal of Hydraulic Engineering, 125(10), 1097-1108. Cerca con Google

130. Lin B. L. & Falconer, R. (1996) “Numerical modeling of three-dimensional suspended sediment for estuarine and coastal waters”. J. Hydraulic Research, 34:1, 435-455. Cerca con Google

131. Lisle, T. E. (1987) “Overview: Channel morphology and sediment transport in steepland streams”. Erosion and sedimentation in the pacific Rim (Proceedings of Corvallis Sympisium, August), IAHS Publ No. 165, 287-296 Cerca con Google

132. Mao L., (2004) Analisi comparativa del trasporto solido di corsi torrentizi in diversi ambiti geografici. Tesi di Dottorato, UniversitÀ di Padova, Dipartimento TESAF, Italia, 307. Cerca con Google

133. Marks K., Bates P. (2000) Integration of high-resolution topographic data with floodplain flow models. Hydrological Processes, 14, 2109-2122. Cerca con Google

134. McLean, S. R. (1991) “Depth-integrated suspended-load calculations”. Journal of Hydraulic Engineering, 117(11): 1440-1458. Cerca con Google

135. McLean, S. R. (1992) “On the calculation of suspended load for non-cohesive sediments”. Journal of Geophysical Research, 97(C4), 1-14. Cerca con Google

136. Meselhe E. A. & Sotiropoulos F. (1999) “Three-dimensional numerical model for open-channels with free-surface variations”. J. Hydraulic Research, 38:2, 115-121. Cerca con Google

137. Meyer-Peter, E., & R. MÀ¼ller (1948) “Formulas for bed-load transport,” Proceedings, 2nd Congress International Association for Hydraulic Research, Stockholm, Sweden, 39-64. In Cerca con Google

138. Molls, T., & Chaudhry, M. H. (1995) “Depth-averaged open-channel flow model”. Journal of Hydraulic Engineering, 121(6), 453-465. Cerca con Google

139. Morvan, H., Pender, G., Wright, N. G., & Ervine, D. A. (2002). “Three-dimensional hydrodynamics of meandering compound channels." Journal of Hydraulic Engineering, 128(7), 674-682. Cerca con Google

140. Mosselman, E. (2004) Discussion of “Numerical modelling of bed evolution in channel bends." Kassem, A. A., & Chaudhry, M. H. (2002). Journal of Hydraulic Engineering, 130(1), 82-83. Cerca con Google

141. Nanson, G. C., & Hickin, E. J. (1986). “A statistical analysis of bank erosion and channel migration in western Canada." Geol. Soc. Am. Bull., 97, 497-504. Cerca con Google

142. NCCHE, National Center For Computational Hydroscience and Engineering. (2001) CCHE2D Sediment transport model (version 2.1). Technical report No. NCCHE-TR-2001-3. The University of Mississippi, USA. Cerca con Google

143. Odgaard, A. J. (1981). “Transverse bed slope in alluvial channel bends." J. Hydraul. Div., Am. Soc. Civ. Eng., 107(12), 1677-1694. Cerca con Google

144. Odgaard, A. J., & Kennedy, J. F. (1983). “River-bend bank protection by submerged vanes." Journal of Hydraulic Engineering, 109(8), 1161-1173. Cerca con Google

145. Odgaard, J. A., & Bergs, M. A. (1988). “Flow processes in a curved alluvial channel." Water Resour. Res., 24(1), 45-56. Cerca con Google

146. Olesen, K.W. (1987) Bed topography in shallow river bends, Faculty of Civil Eng., Delft Univ. Tech., Report 87-1. In: DHI (2005). Cerca con Google

147. Olsen, N. R. B. (2003a) “Three-dimensional CFD modeling of self-forming meandering channel." Journal of Hydraulic Engineering, 129(5), 366-372. Cerca con Google

148. Olsen, N.R. (2003b) “3D CFD modeling of self-forming meandering channel”, J. Hydraulic Engineering, ASCE, 129:5, 366-372. Cerca con Google

149. Ozcan, M., & Gokce, T. (2002) “Numerical model (MIKE21) Applications in outfall design: case studies from Turkey”. 2ND International Conference on Maine Wate Water Discharges, MWWD -I Stabul, Sept, 16¸ 20. Cerca con Google

150. Papanicolaou, A. & Hilldale, R. (2002) “Turbulence characteristics in gradual channel transition”. Journal of Hydraulic Engineering, 128(9), 948-960. Cerca con Google

151. Parker, G. (1979) “Hydraulic geometry of active gravel rivers” J. Hydraul. Div., Am. Soc. Civ. Eng., 105(9), 1185-1201. Cerca con Google

152. Parker, G. (2004) “The uses of sediment transport sand morphodynamic modelling in stream restoration”. Proceedings, ASCE World Water and Environmental Resources Congress, Salt Lake City, June 27-July 1, 10. Cerca con Google

153. Parker, G., & C. M. Toro-Escobar, (2002) “Equal mobility of gravel in streams: the remains of the day,” Water Resources Research, 38(11), 1264. Cerca con Google

154. Parker, G., & E. D. Andrews, (1985) “Sorting of bed load sediment by flow in meander bends,” Water Resources Research, 21(9): 1361-1373. Cerca con Google

155. Parker, G., (1978) “Self-formed rivers with equilibrium banks and mobile bed: Part II, the gravel river, “Journal of Fluid Mechanics, 89(1), 127-148. Cerca con Google

156. Parker, G., (1978) “Self-formed rivers with stable banks and mobile bed: Part I, the sand-silt river,” Journal of Fluid Mechanics, 89(1), 109-126. Cerca con Google

157. Parker, G., C. Paola, & Leclair, S., (2000) “Probabilistic form of Exner equation of sediment continuity for mixtures with no active layer,” Journal of Hydraulic Engineering, 126(11): 818-826. Cerca con Google

158. Phillips B.C, & Sutherland, A. J. (1989) “Spatial lag effects in bed load sediment transport”. Journal of Hydraulic Research, IAHR, 27(1),115-133. In: Wu, W. (2001) Cerca con Google

159. Querzoli, G. (2003) “Dispense di meccanica dei fluidi”. UniversitÀ di Cagliari . FacoltÀ di Ingegneria. Dipartimento di Ingegneria del Territorio. Adelphi. Cerca con Google

160. Rahuel, J. L. & Holly, F. M. (1989) “Modelling of riverbed evolution for bedload sediment mixtures”. Journal of Hydraulic Engineering, ASCE, 115 (11), 1521-1542. In: Wu, W. (2001). Cerca con Google

161. Rastogi, A. K., & Rodi, W. (1978) “Predictions of heat and mass transfer in open channels.”J. Hydraul. Div., Am. Soc. Civ. Eng., 104 (HY3), 397-420. In: Zanichelli et al. (2004) Cerca con Google

162. Ribberink. J. S. (1987) Mathematical Modelling of One-dimensional Morphological Changes in Rivers with Non-uniform Sediment, Ph.D. thesis, Delft University of Technology, 200 p. In: Parker ASCE Manual 54. Cerca con Google

163. Richardson, W. R. (2002). “Simplified model for assessing meander bend migration rates." Journal of Hydraulic Engineering, 128(12), 1094-1097. Cerca con Google

164. Rodi, W. (1993) Turbulence models and their application in hydraulics—A state of the art review, International Association for Hydraulic Research. In: Zanichelli et al. (2004). Cerca con Google

165. del documento.Embargo fino alLa data dopo la quale il documento sarà disponibile. Dopo quRodriguez, J.F, Bombardelli, F. A., GarcÀ­a, M, Frothingham, K., Rhoads, B. L., & Abad, J. (2004) “High?resolution numerical simulation of flow through a highly Sinuous River reach”. Water resources Management (18): 177-199. Cerca con Google

166. Rozowskii, I, L. (1957) “Flow of water in bends of open channels”. English traslation: Israel Progr. For scientific Trasla. Jerusalem. In: DHI (2004) Cerca con Google

167. Rubey, W. W. (1933) “Settling velocities of gravel, sand, and silt particles”. American Journal of Science, 5th Series 25 (148), 325-338. In: USACE (2002) Cerca con Google

168. esta data, tutti i file associati Ruther, N. & Olsen N. R. B. (2005) “Theree?dimensional modelling of sediment trasport in a narrow 90° channel bend. Journal of Hydraulic Engineering ASCE 131(10), 917-920. Cerca con Google

169. Schoklitsch, A. (1914) “Àœber Schleppkraft un Geschiebebewegung”, Engelmann, Leipzige, Germany (in German). In: Mao, L. (2004). Cerca con Google

170. Schoklitsch, A., (1934) “Der Geschiebetrieb und die Geschiebefracht”, Wasserkraft und Wasserwirtschaft, Vol. 29, No. 4, 37-43. In: Mao, L. (2004). Cerca con Google

171. Segreteria Tecnica dell’AutoritÀ di Bacino (2004) Progetto di Piano Stralcio per l’Assetto Idrogeologico dei bacini idrografici dei fiumi ISONZO, TAGLIAMENTO, PIAVE, BRENTA-BACCHIGLIONE Legge n. 267/98 e Legge n. 365/00. Cerca con Google

172. Seker, D.Z., Kaya, S., Musaoglu, N., Kabdasli, S., Yuasa, A., &Duran, Z. (2005) “Investigation of meandering in Filyos River by means of satellite sensor data”. Hydrol. Process. 19, 1497-1508. Cerca con Google

173. Sekine, M. & Parker, G. (1992), Bed load transport on transverse slope I, J. Hydraulic Engineering, ASCE, 118:4, 513-535. Cerca con Google

174. Seminara G., Tubino M. (1992) “Weakly nonlinear theory of regular meanders”. Journal of Fluid Mechanics (244), 257. Cerca con Google

175. Shields, A., (1936) “Application of Similarity Principles and Turbulence Research to Bed-Load Movement”. California Institute of Technology, Pasadena (translated from German). In: Mao, L (2004) Cerca con Google

176. Shimizu, Y., & Itakura, T. (1989). "Calculation of bed variation in alluvial channels." J. Hydraul. Div., Am. Soc. Civ. Eng., 115(3), 367-384. Cerca con Google

177. Shiono, K., & Knight, D. W. (1991) “Turbulent open-channel flows with variable depth across the channel”. J. Fluid Mech., 222, 617- 646. In: Zanichelli et al. (2004). Cerca con Google

178. Shukry, A. (1950). "Flow around bends in an open flume." Trans., Am. Soc. Civ. Eng., 115, 751-788. Cerca con Google

179. Shumuk, Y., Zabil, D., Ward, P. R. B., Millar, R. G., Kjjelds, J. T., & Henry, R. (2000) “Updating the design flood profile for the Fraser River gravel reach with the MIKE 11 Hydrodynamic model”. CWRA 53rd Annual Conference, 21- 23 June, Saskatoon, Saskatchewan. Cerca con Google

180. Shumuk, Y., Zabil, D., Ward, P. R.B., Millar, R., Kjelds, J. T. & Henry (2000) “Updating the design flood profile for the Fraser River Gravel reach with the MIKE 11 hydrodynamic Model”. CWRA. Cerca con Google

181. Simon, A., Thomas, R. E., Curini, A., & Shields, F. D. Jr. (2002). "Case study: Channel stability of the Missouri River, Eastern Montana." Journal of Hydraulic Engineering, 128(10), 880-890. Cerca con Google

182. Simons, D. B., & Albertson, M. L. (1963). "Uniform water conveyance channels in alluvial material." Trans. Am. Soc. Civ. Eng., 128(1), 65-107. Cerca con Google

183. Singh, C. B., & Ghosh, L. K. (2000) Discussion of Application of a 3D mobile bed, hydrodynamic model, by Gessler, D, et. Al. (1999) J. Hydraulic Engineering, ASCE, 126, 858-860. Cerca con Google

184. Smart, G. M. & M. N. R. JÀ¤eggi, 1983, “Sediment transport on steep slopes,” Mitteilungen 64 der Versuchsanstalt fÀ¼r Wasserbau, Hydrologie und Glaziologie, ETH Zurich, 19-76. In: Mao, L. (2004). Cerca con Google

185. Struiksma, N. (1985). "Prediction of 2D bed topography in rivers." Journal of Hydraulic Engineering, 111(8), 1169-1182. Cerca con Google

186. Struiksma, N., Olsen, K. W., Flokstra, C., & De Vriend, H. J. (1985). "Bed deformation in curved alluvial channels." J. Hydraul. Res., 23(1), 57-79. Cerca con Google

187. Sumer B.M., Chua, L. H.C., Cheng, N.S., & Fredse, J. (2002). "Influence of turbulence on bed load sediment transport". Journal of Hydraulic Engineering, 129(8): 585-596. Cerca con Google

188. Surian, N. (1999). "Channel changes due to river regulation: The case of the Piave River, Italy." Earth Surf. Processes Landforms, 24, 1135-1151. Cerca con Google

189. Talmon, A.M.; Struiksma, N.; van Mierlo, M.C.L.M. (1995) “Laboratory Measurements of theDirection of Sediment Transport on Transverse Alluvial-bed Slopes”, Journ. of Hydraulic Res., 33 (4). Cerca con Google

190. Thomas, William A. 1982. “Mathematical Modelling of Sediment Movement,” Gravel Bed Rivers, R. D. Hey, Cerca con Google

191. Thuc (1991) “TWO dimensional morphological computations near hydraulic structures”. Doctoral dissertation. Asian Institute of Technology, Bangkok, Thailand. In: Wu, W. (2001). Cerca con Google

192. Toffaleti, F. B. (1968) “Technical Report No.5. A procedure for computation of total river sand discharge and detailed distribution, bed to surface”. Committe in channel stabilization, U.S. Army Corps of Engineers. In: USACE (2002) Cerca con Google

193. Tunnicliffe, J., Gottesfeld, A. S., & Mohamed, M. (2000) “High resolution measurement of bedload transport”. Hydrol. Process. 14, 2631 - 2643. Cerca con Google

194. U.S. Army Engineer Hydrologic Engineering Center (USAEHEC). 1990. “HEC-2, Water-Surface Profiles User’s Manual,” Davis, CA. Cerca con Google

195. U.S. Army Engineer Hydrologic Engineering Center (USAEHEC). 1993. “HEC-6 Scour and Deposition in River and Reservoirs: User’s Manual,” Davis, CA. Cerca con Google

196. U.S. DEPARTMENT OF AGRICOLTURE, (1929): “Technical Bullettin n° 129, November” Cerca con Google

197. U.S. DEPARTMENT OF AGRICOLTURE, (1934): “Technical Bullettin n° 652, February” Cerca con Google

198. USACE, Hydrologic Engineering Center, (2002) HEC-RAS, River Analysis System Hydraulics Reference Manual version 3.1.Report number CPD-69. Cerca con Google

199. USACE, Hydrologic Engineering Center, (2006) HEC-RAS, River Analysis System Hydraulics User’s Manual version 4.0. Report number CPD-68. Cerca con Google

200. USGS, United States Geological Survey Water-supply, G.J. Arcement, Jr. & V.R. Schneider (1984) Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains Documento WSP2339. Cerca con Google

201. Van Bendegom, L. (1947). “Some flow considerations on river morphology and river improvements.” De Ingenieur, 59 (4), B1-B11 in Dutch. In: DHI (2005) Cerca con Google

202. Van Rijn, L. C. (1984) “Sediment transport, part III: bed forms and alluvial roughness”. J. Hydr. Engrg., ASCE, 110(12), 1733-1754. Cerca con Google

203. Van Rijn, L. C. (1984) Sediment transport, Part II: Suspended load transport. Journal of Hydraulic Engineering, 110(11):1613{1641. 6 Cerca con Google

204. Van Rijn, L. C. (1987) “Mathematical modelling of morphological processes in the case of suspended sediment transport”. Delft Hydraulics Communication No. 382. In: Zeng, J., et.al. (2005) Cerca con Google

205. Van Rijn, L. C. (1993) “Principles of sediment transport in rivers, estuaries, coastal seas and oceans”. International Institute for Infrastructural, Hydraulic, and Environmental Engineering, Delft Netherlands. In: USACE (2002). Cerca con Google

206. Vanoni, V. A. (1975) Sedimentation Engineering. American Society of Civil Engineers, New York N.Y. Cerca con Google

207. Vogel, K. R., A. van Niekerk, R. Slingerland, & J. S. Bridge, (1992) “Routing of heterogeneous sediments over movable bed: model verification,” Journal of Hydraulic Engineering, 118(2): 263-279. Journal of Hydraulic Engineering, 130(3), 199-207. Cerca con Google

208. Walker, D. R., Millar, R. G., & Newbury, P. E. (2004) “Energy profiles across constructed riffles” Cerca con Google

209. Wang, Z. Y. (1999) “Experimental study on scour rate and river bed inertia”. J. of Hydraulic Research, IAHR, 37 (1), 17-37. In: Wu, W. (2001). Cerca con Google

210. Wang, Z.B. (1989) Mathematical Modelling of morphological processes in estuaries, Report No. 89-1, Faculty of Eng., Delft Univ. Tech., The Netherlands. In: DHI(2005). Cerca con Google

211. Wathen, S. J., R. I. Ferguson, T. B. Hoey, & A. Werrity, (1995) “Unequal mobility of gravel and sand in weakly bimodal river sediments,” Water Resources Research, 31(8): 2087-2096. Cerca con Google

212. Wei, Z. L. (1999) Private communication. In: Wu, W. (2001). Cerca con Google

213. Wellington N. W. (1978) “A sediment- routing model for alluvial streams”. Master Engineering Science Dissertation. University of Melbourne. Australia. In: Wu, W. (2001). Cerca con Google

214. Wilson, C. A. M. E., Boxall, J. B., Guymer, I., & Olsen, N. R. B. (2003). "Validation of a three-dimensional numerical code in the simulation of pseudo-natural meandering flows." Journal of Hydraulic Engineering, 129(10), 758-768. Cerca con Google

215. Winterbottom, S. J. (2000). "Medium and short-term channel planform changes on the Rivers Tay and Tummel, Scotland." Geomorphology, 34, 195-208. Cerca con Google

216. Wong: M. & Parker, G. (2005) The bed load transport relation of Meyer -Peter and Müller overpredicts by a factor of two. Manuscript Number HY/2004/023810, Draf Asce Jhe. Cerca con Google

217. Wormleaton, P.R., Hey, R. D., Sellin, R. H. J., Bryant, T., Loveless, J. & Catmur, S. E. (2005) “Behavoir of meandering overbank channels with graded sand beds”. Journal of Hydraulic Engineering, 131(8), 665-681. Cerca con Google

218. con questo documento saranno accessibili pubblicamente.Esempio: 2Wren, D. G., Bennett, B. D., Barkdoll, B. D & Kuhnle, R. A. (2005)” Variability in suspended?sediment concentration over mobile sand beds”. Journal of Hydraulic Engineering, 131(8), 733-736. Cerca con Google

219. Wright, S. & G. Parker, (2004), “Flow resistance and suspended load in sand-bed rivers: simplified stratification model,” Journal of Hydraulic Engineering, 130(8), 796-805. Cerca con Google

220. Wu, B., Molinas, A., & Julien, P. (2004) “Bed - Material Load computations for Nonuniform sediemnts" Journal of Hydraulic Engineering, 130(10), 1002-1012. Cerca con Google

221. Wu, B., Wang, G., Ma, J., & Zhang, R. (2005) “Case study: River Traing and its effects on fluvial processes in the Lower Yellow River, China." Journal of Hydraulic Engineering, 131(2), 85-96. Cerca con Google

222. Wu, W. & Li, Y. (1992) “One and two- dimensional nesting model for river flow andsedimentation”. Proceedings 5th International Symposium on River Sedimentation, Karlsruhe, Germany. In: Wu, W. (2001). Cerca con Google

223. Wu, W. & Vieira, D. A. (2000) “One-dimensional channel network model CCHE1D Version 2.0, Technical manual”. Technical report No. NCCHE-TR-2000-1, National center for Computational Hydroscience and Engineering, The University of Mississippi. Cerca con Google

224. Wu, W. & Wang, S. S. Y. (1999) “Movable bed roughness in alluvial rivers”. Journal of Hydraulic Engineering, 125(12), 1309-1312. Cerca con Google

225. Wu, W. (2001) “CCHE2D: Sediment transport model (Version 2.1) Technical report No. NCCHE-TR2001-3, National Center for Computational Hydroscience and Engineering, University of Mississippi. Cerca con Google

226. Wu, W. M., Rodi, W., & Wenka, T. (2000) “3D numerical modelling of flow and sediment transport in open channels." Journal of Hydraulic Engineering, 126(1), 4-15. Cerca con Google

227. 006 - tutti i file saranno disponibili dal primo GennWu, W., Shields, D., Bennett, S., & Wang, S. (2005) “A depth?averaged?two?dimensional model for flow, sediment trasport, and bed topography in curved channels with riparian vegetation”. Water Resources Research, 41, W030015. Cerca con Google

228. Xu, J. (1996) “Wandering braided river channel pattern developed under quasi-equilibrium: an example from the Hanjiang River, China." J. Hydrol., 181, 85-103. Cerca con Google

229. Xu, J. (1997). "Study of sedimentation zones in a large sand-bed braided river: an example from the Hanjiang River of China." Geomorphology, 21, 153-165. Cerca con Google

230. Yalin, M. S. (1972) “Mechanics of sediment transport.” Pergamon Press, Inc., New York, New York, U.S.A. In: Wu, W. (2001). Cerca con Google

231. Yang, C.T. (1973) “Incipient motion and sediment transport”. J. of Hydraulics Division, ASCE, 99(HY10), pp.1679-1704. Cerca con Google

232. Yang, C.T. (1979) “Unit stream power equations for total load”. J. of Hydrology, 40, 123-138. Cerca con Google

233. Yang, C.T. (1984) “Unit stream power equation for gravel”. J. of Hydrology, 40, 123-138. Cerca con Google

234. Yang, C.T.; Trevino, M. A. & Simoes, F. J. M. (1998) “User manual for GSTARS 2.0 (Generalized Stream Tube Model for Alluvial River Simulation version 2.0)”. Sedimentation and River Hydraulics Group, Technical Service Center, Bureau of Reclamation, U. S. Department of the Interior, Denver, Colorado, USA. In: Wu, W. (2001) Cerca con Google

235. Ye, J., & McCorquodale, J. A. (1997). "Depth-averaged hydrodynamic model in curvilinear collocated grid." Journal of Hydraulic Engineering, 123(5), 380-388. Cerca con Google

236. Yeh, K. C., & Kennedy, J. F. (1993). "Moment model of nonuniform channel-bend flow. I. Fixed beds." Journal of Hydraulic Engineering, 119(7), 776-795. Cerca con Google

237. Younus, M., & Chaudhry, M. H. (1994). "A depth-averaged K- model for the computation of free-surface flow." J. Hydraul. Res., 32(3), 415-443. Cerca con Google

238. Yulistiyanto, B., Zech, Y., & Graf, W. H. (1998). "Flow around a cylinder: Shallow-water modeling with diffusion-dispersion." Journal of Hydraulic Engineering, 124(4), 419-429. Cerca con Google

239. Zanichelli, G., Caroni, E., Fiorotto, V. (2004) “River bifurcation analysis by physical and numerical modelling”. Journal of Hydraulic Engineering, 130(4), 237-242 Cerca con Google

240. Zeng, J., Constantinnescu, G., & Weber, L. (2005) "A fully 3D non hydrostatic model for prediction of flow, sediment transport and bed morphology in open channels". Conference Proceeding, September. Cerca con Google

241. Zhang Y. (2006) “CCHE2D user’s manual, Version 3.0”. National Center for Computational Hydroscience and Engineering, Technical report No. NCCHE-TR-2006-02. The University of Mississippi, USA. Cerca con Google

242. Zhang, Y. (2005) “CCHE2D Mesh Generator Selectrs’Manual”Version 2.50.” NCCHE Technical Report. NCCHE-TR-2005-01. Cerca con Google

243. Zhang, Y. (2005) “CCHE2D-GUI Quick Start Guide.” NCCHE Technical Report. NCCHE-TR-2005-04. Cerca con Google

244. Zimmermann, C., & Kennedy, J. F. (1978). "Transverse bed slope in curved alluvial streams." J. Hydraul. Div., Am. Soc. Civ. Eng., 104(1), 33-48. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record