Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sonato, Agnese (2014) Nanofabrication and development of surface plasmon resonance platforms for sensing applications. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
6Mb

Abstract (inglese)

In recent decades, surface plasmon resonance has known a growing interest in the realization of miniaturized devices for label-free sensing applications due to the need of increasing the sensitivity of the sensor and limiting the consumption of material.
This work is aimed to the realization of plasmonic nanostructures that can be applied to different sensoristic fields in order to create a starting point for the realization of miniaturized sensors for a wide range of applications. In this context a careful study of geometry and materials suitable for creating the starting plasmonic platforms (i.e. gold sinusoidal gratings) was performed and a characterization method has been optimized. Subsequently a manufacturing strategy that would allow to obtain a large number of versatile substrates in a short time and in a cheap way was designed. Thus by combining interference lithography and soft lithography the required plasmonic substrates were realized and characterized by varying the azimuthal rotation of the grating. The substrates were tested in different application fields: the detection of M. tuberculosis DNA using PNA probes, the detection of cystic fibrosis DNA using DNA probes, the detection of explosive trace and the detection of L. pneumophila bacteria. The reached optimization and control of the sensing experiment and plasmonic surface preparation procedures, and the obtained results, have shown the extreme versatility of the sensors realized with respect to different applications. This goal is to be considered a good starting point for future studies aimed to the miniaturization and engineering of a sensor suitable for different needs and applications spacing from the biomedical field to the security one, passing through food and pollution analysis.

Abstract (italiano)

Negli ultimi decenni la risonanza plasmonica di superficie ha conosciuto un crescente interesse nella realizzazione di dispositivi miniaturizzati per applicazioni sensoristiche label-free dettate dalla necessità di aumentare la sensibilità dei sensori e di limitare il consumo di materiale.
Questo lavoro ha come scopo la realizzazione di nanostrutture plasmoniche che possano essere applicate a diversi campi della sensoristica in modo da creare un punto di partenza per la realizzazione di sensori miniaturizzati per molteplici applicazioni. In primo luogo è stato effettuato uno studio accurato della geometria e dei materiali adatti alla realizzare delle nanostrutture (grating sinusoidali metallici nella fattispecie) ed è stato ottimizzato il metodo di caratterizzazione delle superfici plasmoniche. Successivamente è stata ideata una strategia di fabbricazione che permettesse di ottenere un grande numero di substrati versatili, in poco tempo e con costi limitati. Così combinando litografia interferenziale e soft lithography sono stati realizzati dei substrati plasmonici caratterizzati variando la rotazione azimutale del grating. I substrati sono stati testati in varie applicazioni: la rivelazione di DNA della M. tuberculosis tramite sonde a PNA, la rivelazione di DNA della fibrosi cistica tramite sonde a DNA, la rivelazione di esplosivi in traccia e la rivelazione del batterio L. pneumpohila. L’ottimizzazione delle procedure di sensing e di preparazione della superficie plasmonica, e i risultati ottenuti hanno dimostrato l’estrema versatilità dei sensori realizzati nei confronti di molteplici applicazioni sensoristiche anche molto diverse tra loro. Questo traguardo è da considerarsi un ottimo punto di partenza per studi futuri finalizzati all’ingegnerizzazione e miniaturizzazione di un sensore adattabile a diverse esigenze e applicazioni che spazino dall’area biomedica a quella della sicurezza, passando per l’analisi del cibo e dell’inquinamento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Romanato, Filippo
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:31 Gennaio 2014
Parole chiave (italiano / inglese):SENSORI/SENSORS, PLASMONICA/PLASMONICS, RISONANZA PLASMONICA DI SUPERFICIE/SURFACE PLASMON RESONANCE, DNA/DNA, PNA/PNA, BATTERI/BACTERIA, ESPLOSIVI/EXPLOSIVES, NANOFABBRICAZIONE/NANOFABRICATION, FOTOLITOGRAFIA/PHOTOLITHOGRAPHY, FUNZIONALIZZAZIONE/FUNCTIONALIZATION
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:6744
Depositato il:04 Nov 2014 12:00
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1]International Union of Pure and Applied Chemistry (IUPAC), Pure Appl. Chem. 71 (1999). Cerca con Google

[2] N. Lubbers, D.W.; Opitz, Eine neue pO2-Messonde zur Messung des pCO2 oder pO2 von Gasen und Flussigkeiten, Zeitschrift Fur Naturforsch. C. 30 (1975) 532–533. Cerca con Google

[3] A. Sassolas, B.D. Leca-Bouvier, L.J. Blum, DNA biosensors and microarrays., Chem. Rev. 108 (2008) 109–39. Cerca con Google

[4] W.E. Moerner, New directions in single-molecule imaging and analysis, Proc. Natl. Acad. Sci. 104 (2007) 12596. Cerca con Google

[5] W.G. Cox, V.L. Singer, Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling., Biotechniques. 36 (2004) 114–22. Cerca con Google

[6] X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Sensitive optical biosensors for unlabeled targets: a review., Anal. Chim. Acta. 620 (2008) 8–26. Cerca con Google

[7] J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species., Chem. Rev. 108 (2008) 462–93. Cerca con Google

[8] D. Pines, Collective Energy Losses in Losses, Rev. Mod. Phys. 28 (1956) 184–198. Cerca con Google

[9] U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves), J. Opt. Soc. Am. 31 (1941) 213–222. Cerca con Google

[10] R.H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106 (1957) 874–881. Cerca con Google

[11] R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum., Proc. Phys. Soc. London. 18 (1902) 269–275. Cerca con Google

[12] J. Zenneck, Über die Fortpflanzung ebener elektromagnetischerWellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie, Ann. D. Phys. 23 (1907) 846–866. Cerca con Google

[13] A. Sommerfeld, Über die Fortpflanzung electrodynamischerWellen längs eines Drahtes, Ann. Phys. Und Chemie. 67 (1899) 233–290. Cerca con Google

[14] R.P. Willets, K.A.; Van Duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annu. Rev. Phys. Chem. 58 (2007) 267–297. Cerca con Google

[15] E. Hutter, J.H. Fendler, Exploitation of Localized Surface Plasmon Resonance, Adv. Mater. 16 (2004) 1685–1706. Cerca con Google

[16] S.A. Maier, Plasmonics - Fundamental and Applications, 2007. Cerca con Google

[17] J. Homola, S.S. Yee, G. Gauglitz, Surface plasmon resonance sensors: review, Sensors Actuators B Chem. 54 (1999) 3–15. Cerca con Google

[18] F. Romanato, L. Hong, H. Kang, C. Wong, Z. Yun, W. Knoll, Azimuthal dispersion and energy mode condensation of grating-coupled surface plasmon polaritons, Phys. Rev. B. 77 (2008) 245435. Cerca con Google

[19] F. Romanato, K.H. Lee, H.K. Kang, G. Ruffato, C.C. Wong, Sensitivity enhancement in grating coupled surface plasmon resonance by azimuthal control., Opt. Express. 17 (2009) 12145–54. Cerca con Google

[20] F. Romanato, K.H. Lee, G. Ruffato, C.C. Wong, The role of polarization on surface plasmon polariton excitation on metallic gratings in the conical mounting, Appl. Phys. Lett. 96 (2010) 111103. Cerca con Google

[21] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films, 7463 (1998) 5636–5648. Cerca con Google

[22] A. Shalabney, I. Abdulhalim, Sensitivity-enhancement methods for surface plasmon sensors, Laser Photon. Rev. 5 (2011) 571–606. Cerca con Google

[23] A. Lahav, M. Auslender, I. Abdulhalim, Sensitivity enhancement of guided-wave surface-plasmon resonance sensors., Opt. Lett. 33 (2008) 2539–41. Cerca con Google

[24] M. Piliarik, M. Vala, I. Tichý, J. Homola, Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons., Biosens. Bioelectron. 24 (2009) 3430–5. Cerca con Google

[25] R. Karlsson, R.; Stahlberg, Surface-Plasmon Resonance Detection and Multispot Sensing for Direct Monitoring of Interactions Involving Low-Molecular-Weight Analytes and for Determination of Low Affinities, Anal. Biochem. 228 (1995) 274–280. Cerca con Google

[26] J. Breault-Turcot, J.-F. Masson, Nanostructured substrates for portable and miniature SPR biosensors., Anal. Bioanal. Chem. 403 (2012) 1477–84. Cerca con Google

[27] J. Homola, I. Koudela, S.S. Yee, Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison, Sensors Actuators B Chem. 54 (1999) 16–24. Cerca con Google

[28] J. et l. Melendez, A commercial solution for surface plasmon sensing, Sensors and Actuators B-Chemical. 35 (1996) 212–216. Cerca con Google

[29] J. Dostálek, J. Homola, M. Miler, Rich information format surface plasmon resonance biosensor based on array of diffraction gratings, Sensors Actuators B Chem. 107 (2005) 154–161. Cerca con Google

[30] C.J. Alleyne, A.G. Kirk, R.C. McPhedran, N.-A.P. Nicorovici, D. Maystre, Enhanced SPR sensitivity using periodic metallic structures., Opt. Express. 15 (2007) 8163–9. Cerca con Google

[31] S. Moon, Y. Kim, Y. Oh, H. Lee, H.C. Kim, K. Lee, et al., Grating-based surface plasmon resonance detection of core-shell nanoparticle mediated DNA hybridization., Biosens. Bioelectron. 32 (2012) 141–7. Cerca con Google

[32] D. Kim, Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors, Appl. Opt. 44 (2005) 3218–3223. Cerca con Google

[33] F. Romanato, H.K. Kang, K.H. Lee, G. Ruffato, M. Prasciolu, C.C. Wong, Interferential lithography of 1D thin metallic sinusoidal gratings: Accurate control of the profile for azimuthal angular dependent plasmonic effects and applications, Microelectron. Eng. 86 (2009) 573–576. Cerca con Google

[34] F. Ruffato, G.; Zacco, G.; Romanato, Innovative Exploitation of Grating-Coupled Surface Plasmon Resonance for Sensing, in: K.Y. Kim (Ed.), Plasmon. – Princ. Appl., InTechOpen, 2012: pp. 419–444. Cerca con Google

[35] A. Sonato, G. Ruffato, G. Zacco, D. Silvestri, M. Natali, M. Carli, et al., Enhanced sensitivity azimuthally controlled grating-coupled surface plasmon resonance applied to the calibration of thiol-poly(ethylene oxide) grafting, Sensors Actuators B Chem. 181 (2013) 559–566. Cerca con Google

[36] J.C. Love, L. a Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-assembled monolayers of thiolates on metals as a form of nanotechnology., 2005. Cerca con Google

[37] J.C. Love, D.B. Wolfe, R. Haasch, M.L. Chabinyc, K.E. Paul, G.M. Whitesides, et al., Formation and structure of self-assembled monolayers of alkanethiolates on palladium., J. Am. Chem. Soc. 125 (2003) 2597–609. Cerca con Google

[38] C. Ulman, A.; Kang, J. F.; Liao, S.; Jordan, R.; Choi, G. Y.; Zaccaro, J.; Myerson, A. S.; Rafailovich, M.; Sokolov, J.; Fleischer, Self-assembled monolayers of rigid thiols, J. Biotechnol. 74 (2000) 175–188. Cerca con Google

[39] A. Ulman, Formation and Structure of Self-Assembled Monolayers., Chem. Rev. 96 (1996) 1533–1554. Cerca con Google

[40] G. Della Giustina, G. Zacco, E. Zanchetta, M. Gugliemi, F. Romanato, G. Brusatin, Interferential lithography of Bragg gratings on hybrid organic–inorganic sol–gel materials, Microelectron. Eng. 88 (2011) 1923–1926. Cerca con Google

[41] G. Zacco, F. Romanato, A. Sonato, D. Sammito, G. Ruffato, M. Morpurgo, et al., Microelectronic Engineering Sinusoidal plasmonic crystals for bio-detection sensors, Microelectron. Eng. 88 (2011) 1898–1901. Cerca con Google

[42] D. Sammito, G. Zacco, P. Zilio, V. Giorgis, a. Martucci, J. Janusonis, et al., Design and fabrication of a light trapping method for photovoltaic devices based on plasmonic gratings, Microelectron. Eng. 98 (2012) 440–443. Cerca con Google

[43] V. Malyarchuk, F. Hua, N. Mack, V. Velasquez, J. White, R. Nuzzo, et al., High performance plasmonic crystal sensor formed by soft nanoimprint lithography., Opt. Express. 13 (2005) 5669–75. Cerca con Google

[44] J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography, (2005) 50–56. Cerca con Google

[45] M. Salerno, An introduction to Soft Lithography Marco Salerno, (n.d.). Cerca con Google

[46] Y. Xia, G.M. Whitesides, SOFT LITHOGRAPHY, (1998). Cerca con Google

[47] J. a. Shackleford, R. Grote, M. Currie, J.E. Spanier, B. Nabet, Integrated plasmonic lens photodetector, Appl. Phys. Lett. 94 (2009) 083501. Cerca con Google

[48] T. Jia, M. Baba, M. Suzuki, R. a Ganeev, H. Kuroda, J. Qiu, et al., Fabrication of two-dimensional periodic nanostructures by two-beam interference of femtosecond pulses., Opt. Express. 16 (2008) 1874–8. Cerca con Google

[49] M.M. Alkaisi, R.J. Blaikie, S.J. McNab, Nanolithography in the Evanescent Near Field, Adv. Mater. 13 (2001) 877–887. Cerca con Google

[50] G. Chandezon, J.; Maystre, D.; Raoult, A new theoretical method for diffraction gratings and it numerical application, J. Opt. Rev. D’optique. 11 (1980) 235–241. Cerca con Google

[51] A. Sonato, D. Silvestri, G. Ruffato, G. Zacco, F. Romanato, M. Morpurgo, Quantitative control of poly(ethylene oxide) surface antifouling and biodetection through azimuthally enhanced grating coupled-surface plasmon resonance sensing, Appl. Surf. Sci. 286 (2013) 22–30. Cerca con Google

[52] A. Sonato, G. Ruffato, M. Natali, G. Zacco, M. Morpurgo, D. Silvestri, et al., Plasmonic Platforms for Biodetection Devices, 2011 Int. Work. Biophotonics. (2011) 1–3. Cerca con Google

[53] J. Labuda, A.M.O. Brett, G. Evtugyn, M. Fojta, M. Mascini, M. Ozsoz, et al., Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report), Pure Appl. Chem. 82 (2010) 1161–1187. Cerca con Google

[54] C. Briones, M. Moreno, Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development., Anal. Bioanal. Chem. 402 (2012) 3071–89. Cerca con Google

[55] J. Wang, DNA biosensors based on Peptide Nucleic Acid ( PNA ) recognition, 13 (1998) 757–762. Cerca con Google

[56] A. Porcheddu, G. Giacomelli, Peptide nucleic acids (PNAs), a chemical overview., Curr. Med. Chem. 12 (2005) 2561–99. Cerca con Google

[57] N. Prabhakar, K. Arora, S.K. Arya, P.R. Solanki, M. Iwamoto, H. Singh, et al., Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance., Analyst. 133 (2008) 1587–92. Cerca con Google

[58] a Rachkov, S. Patskovsky, a Soldatkin, M. Meunier, Surface plasmon resonance detection of oligonucleotide sequences of the rpoB genes of Mycobacterium tuberculosis., Talanta. 85 (2011) 2094–9. Cerca con Google

[59] B.R. Bloom, C.J.L. Murray, All use subject to JSTOR Terms and Conditions Tuberculosis : Commentary on a Reemergent Killer, 257 (2014) 1055–1064. Cerca con Google

[60] J.M. Musser, Antimicrobial agent resistance in mycobacteria: molecular genetic insights., Clin. Microbiol. Rev. 8 (1995) 496–514. Cerca con Google

[61] WHO/HTM/TB, Anti-tuberculosis drug resistance in the world, 2010. Cerca con Google

[62] G.A. Heifets, L.B.; Cangelosi, Drug susceptibility testing of Mycobacterium tuberculosis: a neglected problem at the turn of the century, Int. J. Tuberc. LUNG Dis. 3 (1999) 564–581. Cerca con Google

[63] M. Duman, E. Piskin, Detection of Mycobacterium tuberculosis complex and Mycobacterium gordonae on the same portable surface plasmon resonance sensor., Biosens. Bioelectron. 26 (2010) 908–12. Cerca con Google

[64] Y. Xie, Z.-G. He, Characterization of physical interaction between replication initiator protein DnaA and replicative helicase from Mycobacterium tuberculosis H37Rv., Biochem. Biokhimii͡a. 74 (2009) 1320–7. Cerca con Google

[65] M. Dettin, D. Silvestri, R. Danesin, E. Cretaio, G. Picariello, E. Casarin, et al., Synthesis and Chromatography-Free Purification of PNA-PEO Conjugates for the Functionalisation of Gold Sensors, (2012) 11026–11045. Cerca con Google

[66] P.E. Nielsen, M. Egholm, R.H. Berg, O. Buchardt, Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide., Science. 254 (1991) 1497–500. Cerca con Google

[67] M. Egholm, P.E. Nielsen, O. Buchardt, Recognition of Guanine and Adenine, (1992) 9677–9678. Cerca con Google

[68] M. Egholm, O. Buchardt, P.E. Nielsen, No Title, 1 (1992) 1895–1897. Cerca con Google

[69] B. Hyrup, M. Egholm, P.E. Nielsen, P. Wittung, B. Nordc, O. Buchardt, Structure-Activity Studies of the Binding of Modified Peptide Nucleic Acids (PNAs) to DNA1, (1994) 7964–7970. Cerca con Google

[70] J. Wang, E. Palecek, P.E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, et al., Peptide Nucleic Acid Probes for Sequence-Specific DNA Biosensors, 7863 (1996) 7667–7670. Cerca con Google

[71] K.K. Jensen, H. Orum, P.E. Nielsen, B. Nordén, Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique., Biochemistry. 36 (1997) 5072–7. Cerca con Google

[72] E. Mateo-martí, C. Pradier, A Novel Type of Nucleic Acid-based Biosensors : the Use of PNA Probes , Associated with Surface Science and Electrochemical Detection Techniques, (2010). Cerca con Google

[73] C. Briones, E. Mateo-Martí, C. Gómez-Navarro, V. Parro, E. Román, J. a. Martín-Gago, Structural and functional characterization of self-assembled monolayers of peptide nucleic acids and its interaction with complementary DNA, J. Mol. Catal. A Chem. 228 (2005) 131–136. Cerca con Google

[74] E. Mateo-Martí, C. Briones, E. Román, E. Briand, C.M. Pradier, J. a Martín-Gago, Self-assembled monolayers of peptide nucleic acids on gold surfaces: a spectroscopic study., Langmuir. 21 (2005) 9510–7. Cerca con Google

[75] C. Briones, E. Mateo-Marti, C. Gómez-Navarro, V. Parro, E. Román, J. Martín-Gago, Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability, Phys. Rev. Lett. 93 (2004) 208103. Cerca con Google

[76] P.E. Nielsen, Peptide nucleic acids: on the road to new gene therapeutic drugs., Pharmacol. Toxicol. 86 (2000) 3–7. Cerca con Google

[77] M. et al. Egholm, PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules, Nature. 365 (1993) 566–568. Cerca con Google

[78] T. Ratilainen, a Holmén, E. Tuite, P.E. Nielsen, B. Nordén, Thermodynamics of sequence-specific binding of PNA to DNA., Biochemistry. 39 (2000) 7781–91. Cerca con Google

[79] L.N.A. Dna, D. Formation, P.M. Mctigue, R.J. Peterson, J.D. Kahn, Sequence-Dependent Thermodynamic Parameters for Locked Nucleic Acid, (2004) 5388–5405. Cerca con Google

[80] K.J. Breslauer, R. Frank, H. Blöcker, L. a Marky, Predicting DNA duplex stability from the base sequence., Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 3746–50. Cerca con Google

[81] P. Eriksson, M; Nielsen, Solution structure of a peptide nucleic acid DNA duplex, Nat. Struct. Biol. 3 (1996) 410–413. Cerca con Google

[82] S.S. Menchise V, De Simone G, Tedeschi T, Corradini R, P.C. Marchelli R, Capasso D, Saviano M, Insights into peptide nucleic acid (PNA) structural features: the crystal structure of a D-lysine-based chiral PNA-DNA duplex, Proc Natl Acad Sci U S A. 100 (2003) 12021–12026. Cerca con Google

[83] T. Endo, K. Kerman, N. Nagatani, Y. Takamura, E. Tamiya, Label-Free Detection of Peptide Nucleic Acid - DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor related to tumor necrosis factor . The nanoparticle layer, 77 (2005) 6976–6984. Cerca con Google

[84] D. a Braasch, D.R. Corey, Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids., Methods. 23 (2001) 97–107. Cerca con Google

[85] B. Hyrup, M. Egholm, O. Buchardt, P.E. Nielsena, A FLEXIBLE AND POSITIVELY CHARGED PNA ANALOGUE WITH AN ETHYLENE-LINKER TO THE NUCLEOBASE : SYNTHESIS AND HYBRIDIZATION PROPERTIES Center for Biomolecular Recognition , Department of Chemistry , University of Copenhagen , Universitetsparken 5 , DK-2100 Cop, 6 (1996) 1083–1088. Cerca con Google

[86] M. et al. DEMIDOV, VV; POTAMAN, VN; FRANKKAMENETSKII, Stability of peptide nucleic acids in human serum and cellular extracts., Biochem. Pharmacol. 48 (1994) 1310 –3. Cerca con Google

[87] U. Koppelhus, P.E. Nielsen, C ellular delivery of peptide nucleic acid ( PNA ), 55 (2003) 267–280. Cerca con Google

[88] A. Ray, B. Nordén, Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future., FASEB J. 14 (2000) 1041–60. Cerca con Google

[89] a W. Peterson, R.J. Heaton, R.M. Georgiadis, The effect of surface probe density on DNA hybridization., Nucleic Acids Res. 29 (2001) 5163–8. Cerca con Google

[90] D. Ozkan, P. Kara, K. Kerman, B. Meric, A. Erdem, F. Jelen, et al., DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label., Bioelectrochemistry. 58 (2002) 119–26. Cerca con Google

[91] D. Ozkan, A. Erdem, P. Kara, K. Kerman, J. Justin Gooding, P.E. Nielsen, et al., Electrochemical detection of hybridization using peptide nucleic acids and methylene blue on self-assembled alkanethiol monolayer modified gold electrodes, Electrochem. Commun. 4 (2002) 796–802. Cerca con Google

[92] S. Tomac, M. Sarkar, T. Ratilainen, P. Wittung, P.E. Nielsen, B. Norde, et al., Ionic Effects on the Stability and Conformation of Peptide Nucleic Acid Complexes, 7863 (1996) 5544–5552. Cerca con Google

[93] T. Ratilainen, A. Holme, E. Tuite, G. Haaima, L. Christensen, P.E. Nielsen, Hybridization of Peptide Nucleic Acid †, 2960 (1998) 12331–12342. Cerca con Google

[94] H. Park, A. Germini, S. Sforza, R. Corradini, R. Marchelli, W. Knoll, Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution., Biointerphases. 2 (2007) 80–8. Cerca con Google

[95] C. Ananthanawat, T. Vilaivan, W. Mekboonsonglarp, V.P. Hoven, Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance., Biosens. Bioelectron. 24 (2009) 3544–9. Cerca con Google

[96] K. Kerman, M. Vestergaard, N. Nagatani, Y. Takamura, E. Tamiya, Electrochemical Genosensor Based on Peptide Nucleic Acid-Mediated PCR and Asymmetric PCR Techniques : Electrostatic Interactions with a Metal Cation with redox-active metal cation cobalt ( III ) hexamine ([ Co-, (2006) 2182–2189. Cerca con Google

[97] F.R. Raymond, H.-A. Ho, R. Peytavi, L. Bissonnette, M. Boissinot, F.J. Picard, et al., Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support., BMC Biotechnol. 5 (2005) 10. Cerca con Google

[98] O. Brandt, J.D. Hoheisel, Peptide nucleic acids on microarrays and other biosensors., Trends Biotechnol. 22 (2004) 617–22. Cerca con Google

[99] H.F. Arlinghaus, M. Schröder, J.C. Feldner, O. Brandt, J.D. Hoheisel, D. Lipinsky, Development of PNA microarrays for gene diagnostics with TOF-SIMS, Appl. Surf. Sci. 231-232 (2004) 392–396. Cerca con Google

[100] P. Wittung-Stafshede, M. Rodahl, B. Kasemo, P. Nielsen, B. Norden, Detection of point mutations in DNA by PNA-based quartz-crystal biosensor, Colloids Surfaces A Physicochem. Eng. Asp. 174 (2000) 269–273. Cerca con Google

[101] J.B. Raoof, R. Ojani, S.M. Golabi, E. Hamidi-Asl, M.S. Hejazi, Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide, Sensors Actuators B Chem. 157 (2011) 195–201. Cerca con Google

[102] K. Hashimoto, Y. Ishimori, Preliminary evaluation of electrochemical PNA array for detection of single base mismatch mutations., Lab Chip. 1 (2001) 61–3. Cerca con Google

[103] R.S. Kane, P. Deschatelets, G.M. Whitesides, N. York, Kosmotropes Form the Basis of Protein-Resistant Surfaces, (2003) 2388–2391. Cerca con Google

[104] K.V. Gobi, H. Iwasaka, N. Miura, Self-assembled PEG monolayer based SPR immunosensor for label-free detection of insulin., Biosens. Bioelectron. 22 (2007) 1382–9. Cerca con Google

[105] Y. Martin, P. Vermette, C. Jh, Low-Fouling Amine-Terminated Poly ( ethylene glycol ) Thin Layers and Effect of Immobilization Conditions on Their Mechanical and Physicochemical Properties, (2006) 8083–8091. Cerca con Google

[106] E.F. Murphy, J.R. Lu, J. Brewer, J. Russell, The Reduced Adsorption of Proteins at the Phosphoryl Choline Incorporated Polymer - Water Interface, 2 (1999) 1313–1322. Cerca con Google

[107] R. Schlapak, P. Pammer, D. Armitage, R. Zhu, P. Hinterdorfer, M. Vaupel, et al., Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays., Langmuir. 22 (2006) 277–85. Cerca con Google

[108] K. Yoshimoto, T. Hirase, J. Madsen, S.P. Armes, Y. Nagasaki, Non-Fouling Character of Poly[2-(methacryloyloxy)ethyl Phosphorylcholine]-Modified Gold Surfaces Fabricated by the “Grafting to” Method: Comparison of its Protein Resistance with Poly(ethylene glycol)-Modified Gold Surfaces., Macromol. Rapid Commun. 30 (2009) 2136–2140. Cerca con Google

[109] M. Heuberger, T. Drobek, N.D. Spencer, Interaction forces and morphology of a protein-resistant poly(ethylene glycol) layer., Biophys. J. 88 (2005) 495–504. Cerca con Google

[110] K. Uchida, H. Otsuka, M. Kaneko, K. Kataoka, Y. Nagasaki, A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption., Anal. Chem. 77 (2005) 1075–80. Cerca con Google

[111] H. Du, P. Chandaroy, S.W. Hui, Grafted poly-(ethylene glycol) on lipid surfaces inhibits protein adsorption and cell adhesion., Biochim. Biophys. Acta. 1326 (1997) 236–48. Cerca con Google

[112] P. Harder, M. Grunze, R. Dahint, D. Heidelberg, Molecular Conformation in Oligo ( ethylene glycol ) -Terminated Self-Assembled Monolayers on Gold and Silver Surfaces Determines Their Ability To Resist Protein Adsorption, 5647 (1998) 426–436. Cerca con Google

[113] S. Sofia, V. Premnath, E. Merrill, Poly(ethylene oxide) Grafted to Silicon Surfaces: Grafting Density and Protein Adsorption., Macromolecules. 31 (1998) 5059–70. Cerca con Google

[114] J. Harris, Poly(ethylene glycol) Chemistry: Biotechnical and Biomedical Applications, New York, 1992. Cerca con Google

[115] S. Harris, J.; Zalipsky, Poly(ethylene glycol): Chemistry and Biological Applications, Washington, DC, 1997. Cerca con Google

[116] J.D. Jeon, S.I.; Andrade, Protein surface interactions in the presence of polyethylene oxide.2. Effect of protein size, J. Colloid Interface Sci. 142 (1991) 159–166. Cerca con Google

[117] J.D. Jeon, S.I.; Lee, J.H.; Andrade, Protein surface interactions in the preence of polyethylene oxide .1. Simplified theory, J. Colloid Interface Sci. 142 (1991) 149–158. Cerca con Google

[118] F.S. Damos, R.C.S. Luz, L.T. Kubota, Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance., Langmuir. 21 (2005) 602–9. Cerca con Google

[119] R.F. Debono, G.D. Loucks, D. Della Manna, U.J. Krull, Self-assembly of short and long-chain n-alkyl thiols onto gold surfaces : A real-time study using surface plasmon resonance techniques, 688 (1996) 677–688. Cerca con Google

[120] L.D. Unsworth, Z. Tun, H. Sheardown, J.L. Brash, Chemisorption of thiolated poly(ethylene oxide) to gold: surface chain densities measured by ellipsometry and neutron reflectometry., J. Colloid Interface Sci. 281 (2005) 112–21. Cerca con Google

[121] K. a. Peterlinz, R. Georgiadis, In Situ Kinetics of Self-Assembly by Surface Plasmon Resonance Spectroscopy, Langmuir. 12 (1996) 4731–4740. Cerca con Google

[122] A. Silvestri, Davide; Sonato, Optimized PEO-PNA/PE surface dressing for SPR sensing application in the detection of Mycobacterium tuberculosis related DNA, (2013). Cerca con Google

[123] A. et al. Silvestri, D. and Sonato, Optimized PEO-PNA/PEO surface dressing for SPR sensing application in the detection of Mycobacterium tuberculosis related DNA, (2013). Cerca con Google

[124] M. Morpurgo, E. a Bayer, M. Wilchek, N-hydroxysuccinimide carbonates and carbamates are useful reactive reagents for coupling ligands to lysines on proteins., J. Biochem. Biophys. Methods. 38 (1999) 17–28. Cerca con Google

[125] M.T. Mccammon, J.S. Gillette, D.P. Thomas, S. V Ramaswamy, E.A. Graviss, B.N. Kreiswirth, et al., Detection of rpoB Mutations Associated with Rifampin Resistance in Mycobacterium tuberculosis Using Denaturing Gradient Gel Electrophoresis, 49 (2005) 2200–2209. Cerca con Google

[126] D.A. Stuart, A.J. Haes, C.R. Yonzon, E.M. Hicks, R.P. Van Duyne, Biological applications of localised surface plasmonic phenomenae, 152 (2005). Cerca con Google

[127] A.I.K. Lao, X. Su, K.M.M. Aung, SPR study of DNA hybridization with DNA and PNA probes under stringent conditions., Biosens. Bioelectron. 24 (2009) 1717–22. Cerca con Google

[128] J.B. Fiche, a Buhot, R. Calemczuk, T. Livache, Temperature effects on DNA chip experiments from surface plasmon resonance imaging: isotherms and melting curves., Biophys. J. 92 (2007) 935–46. Cerca con Google

[129] S. Neidle, The structures of quadruplex nucleic acids and their drug complexes., Curr. Opin. Struct. Biol. 19 (2009) 239–50. Cerca con Google

[130] M. Morpurgo, S. Facchin, M. Pignatto, D. Silvestri, E. Casarin, N. Realdon, Characterization of multifunctional nanosystems based on the avidin-nucleic acid interaction as signal enhancers in immuno-detection., Anal. Chem. 84 (2012) 3433–9. Cerca con Google

[131] S. Busse, V. Scheumann, B. Menges, Sensiti v ity studies for specific binding reactions using the biotin / strepta v idin system by e v anescent optical methods, 17 (2002) 704–710. Cerca con Google

[132] A. Paul, R.M. Watson, P. Lund, Y. Xing, K. Burke, Y. He, et al., Charge Transfer through Single-Stranded Peptide Nucleic Acid Composed of Thymine Nucleotides, J. Phys. Chem. C. 112 (2008) 7233–7240. Cerca con Google

[133] Bhat_2005_Polymer Grafting.pdf, (n.d.). Cerca con Google

[134] Z. Ma, G. Zhang, X. Zhai, L. Jin, X. Tang, M. Yang, et al., Fractal crystal growth of poly(ethylene oxide) crystals from its amorphous monolayers, Polymer (Guildf). 49 (2008) 1629–1634. Cerca con Google

[135] X. Zhu, Y. Jun, D.R. Staarup, R.C. Major, S. Danielson, V. Boiadjiev, et al., Grafting of High-Density Poly ( Ethylene Glycol ) Monolayers on Si ( 111 ), 2778 (2001) 7798–7803. Cerca con Google

[136] S. Tokumitsu, A. Liebich, S. Herrwerth, W. Eck, M. Himmelhaus, M. Grunze, Grafting of Alkanethiol-Terminated Poly ( ethylene glycol ) on Gold, (2002) 8862–8870. Cerca con Google

[137] T. Mcpherson, A. Kidane, I. Szleifer, K. Park, W. Lafayette, Prevention of Protein Adsorption by Tethered Poly ( ethylene oxide ) Layers : Experiments and Single-Chain Mean-Field Analysis, 7463 (1998) 176–186. Cerca con Google

[138] D.L. Allara, M. Hill, R.G. Nuzzo, T.B. Laboratories, Spontaneously Organized Molecular Assemblies. 2. Quantitative Infrared Spectroscopic Determination of Equilibrium Structures of Solution-Adsorbed, (1985) 52–66. Cerca con Google

[139] Y.T. Kim, R.L. McCarley, A.J. Bard, Observation of n-octadecanethiol multilayer formation from solution onto gold, Langmuir. 9 (1993) 1941–1944. Cerca con Google

[140] T.W. Schneider, D.A. Buttry, Electrochemical Quartz Crystal Microbalance Studies of Adsorption and Desorption of Self-Assembled Monolayers of Alkyl Thiols on Gold, 17 (1993) 12391–12397. Cerca con Google

[141] A. Surface, D.L. Allara, M. Hill, R.G. Nuzzo, T.B. Laboratories, Spontaneously Organized Molecular Assemblies. 1. Formation, Dynamics, and Physical Properties of, (1985) 45–52. Cerca con Google

[142] E.B.T.Y. Tao, J. Evall, Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold’, 335 (1989) 321–335. Cerca con Google

[143] L.L. Rouhana, M.D. Moussallem, J.B. Schlenoff, Adsorption of short-chain thiols and disulfides onto gold under defined mass transport conditions: coverage, kinetics, and mechanism., J. Am. Chem. Soc. 133 (2011) 16080–91. Cerca con Google

[144] W. Pan, C.J. Durning, N.J. Turro, Kinetics of Alkanethiol Adsorption on Gold, Langmuir. 12 (1996) 4469–4473. Cerca con Google

[145] K. Hu, A.J. Bard, In Situ Monitoring of Kinetics of Charged Thiol Adsorption on Gold Using an Atomic Force Microscope, 7463 (1998) 4790–4794. Cerca con Google

[146] D.S. Karpovich, G.J. Blanchard, Direct Measurement of the Adsorption Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface, (1994) 3315–3322. Cerca con Google

[147] C.D. Bain, H.A. Biebuyck, G.M. Whitesides, Comparison of Self -Assembled Monolayers on Gold: Coadsorption of Thiols and Disulfides1, (1989) 723–727. Cerca con Google

[148] M. Surfaces, P.E. Laibinis, G.M. Whitesides, D.L. Allara, Comparison of the Structures and Wetting Properties of Self-Assembled Monolayers of, (1991) 7152–7167. Cerca con Google

[149] a. Halperin, Polymer Brushes that Resist Adsorption of Model Proteins: Design Parameters, Langmuir. 15 (1999) 2525–2533. Cerca con Google

[150] Y. Liu, M.K. Shipton, J. Ryan, E.D. Kaufman, S. Franzen, D.L. Feldheim, Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers., Anal. Chem. 79 (2007) 2221–9. Cerca con Google

[151] B.R. Pistillo, L. Detomaso, E. Sardella, P. Favia, R. d’Agostino, RF-Plasma Deposition and Surface Characterization of Stable (COOH)-Rich Thin Films from CyclicL-Lactide, Plasma Process. Polym. 4 (2007) S817–S820. Cerca con Google

[152] K.T. Chong, X. Su, E.J.D. Lee, S.J.O. Shea, Polyethylene- co -acrylic Acid as Coating for Biosensor Application : A Quartz Crystal Microbalance Study, (2002) 9932–9936. Cerca con Google

[153] S. Sano, K. Kato, Y. Ikada, Introduction of functional groups onto the surface of polyethylene for protein immobilization., Biomaterials. 14 (1993) 817–22. Cerca con Google

[154] E.T. Kang, K.L. Tan, K. Kato, Y. Uyama, Y. Ikada, Surface Modification and Functionalization of Polytetrafluoroethylene Films, 9297 (1996) 6872–6879. Cerca con Google

[155] D.Y. Cherny, B.P. Belotserkovskii, M.D. Frank-kamenetskii, M. Egholm, O.L.E. Buchardtf, R.H. Berg, et al., DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA, 90 (1993) 1667–1670. Cerca con Google

[156] N. Zhang, D.H. Appella, Colorimetric detection of anthrax DNA with a Peptide nucleic acid sandwich-hybridization assay., J. Am. Chem. Soc. 129 (2007) 8424–5. Cerca con Google

[157] J. Liu, S. Tian, L. Tiefenauer, P.E. Nielsen, W. Knoll, P.S. Institut, Simultaneously Amplified Electrochemical and Surface Plasmon Optical Detection of DNA Hybridization Based on Ferrocene - Streptavidin Conjugates Stv ) conjugates for the simultaneously amplified electro- target hybridization to peptide nucleic acid-modifi, 77 (2005) 2756–2761. Cerca con Google

[158] L.-Q. Chu, R. Förch, W. Knoll, Surface-plasmon-enhanced fluorescence spectroscopy for DNA detection using fluorescently labeled PNA as “DNA indicator”., Angew. Chem. Int. Ed. Engl. 46 (2007) 4944–7. Cerca con Google

[159] R. D’Agata, R. Corradini, C. Ferretti, L. Zanoli, M. Gatti, R. Marchelli, et al., Ultrasensitive detection of non-amplified genomic DNA by nanoparticle-enhanced surface plasmon resonance imaging., Biosens. Bioelectron. 25 (2010) 2095–100. Cerca con Google

[160] R. D’Agata, R. Corradini, G. Grasso, R. Marchelli, G. Spoto, Ultrasensitive detection of DNA by PNA and nanoparticle-enhanced surface plasmon resonance imaging., Chembiochem. 9 (2008) 2067–70. Cerca con Google

[161] A.L. Boat, T.; Welsh, M.; Beaudet, Cystic fibrosis, 1989. Cerca con Google

[162] D.H. Andersen, Cystic fibrosis of the pancreas and its relation to celiac disease: a clinical and pathological study, Am. J. Dis. Child. 56 (1938) 344–399. Cerca con Google

[163] A. Kerem, B.S.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.;Cox ,T.K.; Chakravarti, Identification of the cystic fibrosis gene: genetic analysis, Science (80-. ). 245 (1989) 1073–1080. Cerca con Google

[164] H. Nasef, V. Beni, C.K. O’Sullivan, Methylene blue as an electrochemical indicator for DF508 cystic fibrosis mutation detection., Anal. Bioanal. Chem. 396 (2010) 1423–32. Cerca con Google

[165] S. et al. Rendine, Genetic history of cystic fibrosis mutations in Italy. I. Regional distribution, Ann. Humman Genet. 61 (1997) 411–424. Cerca con Google

[166] L. Picci, M. Cameran, O. Marangon, D. Marzenta, S. Ferrari, A.C. Frigo, et al., A 10-year large-scale cystic fibrosis carrier screening in the Italian population., J. Cyst. Fibros. 9 (2010) 29–35. Cerca con Google

[167] G. Feriotto, M. Lucci, N. Bianchi, C. Mischiati, R. Gambari, Detection of the ∆ F508 ( F508del ) Mutation of the Cystic Fibrosis Gene by Surface Plasmon Resonance and Biosensor Technology, 400 (1999) 390–400. Cerca con Google

[168] N. Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnhein, Enzymatic amplification of Beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science (80-. ). 230 (1985) 1350–1354. Cerca con Google

[169] C.T. Ballabio, A.; Gibbs, R.A.; Caskey, PCR test for cystic fibrosis deletion, Nature. 343 (n.d.). Cerca con Google

[170] L.-C. Ng, Y.S.; Pace, R.; Richard M.V.; Kobayashi, K.; Kerem, B.; Tsui, B. AL., Methods for analysis of multiple cystic fibrosis mutations, Hum. Genet. 87 (1991) 613–617. Cerca con Google

[171] R.C.. D. Richards, B.; Skoletsky, J.; Shuber, A.P.; Balfour, R.; Stern, K.W. H.L.; Parad, R.B.; Witt, D.; Klinger, Multiplex PCR amplification from the CFTR gene using DNA prepared from buccal brushes/swabs, Hum. Mol. Genet. 2 (1993) 159–163. Cerca con Google

[172] J. Chehab, F.F.; Wall, Detection of multiple cystic fibrosis mutations by reverse dot blot hybridization: a technology for carrier screening, Hum. Genet. 89 (1992) 163–168. Cerca con Google

[173] R.P. Rommens, J.M.; Kerem, B.; Greer, W.; Chang, P.;, Tsui L-C, Rapid non radioactive detection of the major cystic fibrosis mutation, Hum. Gnetics. 46 (1990) 395–396. Cerca con Google

[174] C.C. Grade, K.; Grunewald, I.; Graupner, I.; Beherens, F.;, Identification of three novel mutations in the CFTR gene using temperature-optimized non-radioactive conditions for SSCP analysis, Hum. Genet. 94 (1994) 154–158. Cerca con Google

[175] T. Orita, M.; Iwahana, H.; Kanazawa, H.; Hayashi, K.; Sekiya, Dtection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms, Natl Acad Sci USA. 86 (1989) 2766–2770. Cerca con Google

[176] C. Ferec, C.; Audrezet, M.P.; Mercier, B.; Guillermit, H.; Moullier, P.; Quere, I.; Verlingue, Detection of over 98% cystic fibrosis mutations in a Celtic population, Nat. Genet. 1 (1992) 188–191. Cerca con Google

[177] Y. Shoshani, T.; Augarten, A.; Gazit, E.; Bashan, N.; Yahav, Y.; Rivlin, K.B. Tal A, Seret H, Yaar L, Kerem E, Association of a nonsense mutation (W1282X), the most common mutation in the Ashkenazi Jewish Cystic Fibrosis patients in Israel, with presentation of severe disease, Am. J. Hum. Genet. 50 (1992) 222–228. Cerca con Google

[178] J. Chehab, F.F.; Wall, Detection of multiple cystic fibrosis mutations by reverse dot blot hybridization: a technology for carrier screening, Hum. Genet. 89 (1992) 163–168. Cerca con Google

[179] G. Feriotto, a Ferlini, a Ravani, E. Calzolari, C. Mischiati, N. Bianchi, et al., Biosensor technology for real-time detection of the cystic fibrosis W1282X mutation in CFTR., Hum. Mutat. 18 (2001) 70–81. Cerca con Google

[180] G. Feriotto, R. Corradini, S. Sforza, N. Bianchi, C. Mischiati, R. Marchelli, et al., Peptide nucleic acids and biosensor technology for real-time detection of the cystic fibrosis W1282X mutation by surface plasmon resonance., Lab. Invest. 81 (2001) 1415–27. Cerca con Google

[181] R. Corradini, G. Feriotto, S. Sforza, R. Marchelli, R. Gambari, Enhanced recognition of cystic fibrosis W1282X DNA point mutation by chiral peptide nucleic acid probes by a surface plasmon resonance biosensor., J. Mol. Recognit. 17 (2004) 76–84. Cerca con Google

[182] D. Murphy, G. Redmond, Optical detection and discrimination of cystic fibrosis-related genetic mutations using oligonucleotide-nanoparticle conjugates., Anal. Bioanal. Chem. 381 (2005) 1122–9. Cerca con Google

[183] P.-A. Nilsson, P.; Persson, B.; Larsson, A.; Uhlen, M.; Nygren, Detection of mutations in PCR products from clinical samples by surface plasmon resonance, J. Mol. Recognit. 10 (1997) 7–17. Cerca con Google

[184] F. Lucarelli, G. Marrazza, M. Mascini, Design of an optimal allele-specific oligonucleotide probe for the efficient discrimination of a thermodynamically stable (G x T) mismatch., Anal. Chim. Acta. 603 (2007) 82–6. Cerca con Google

[185] G. Castaldo, E. Rippa, G. Sebastio, V. Raia, P. Ercolini, G. de Ritis, et al., Molecular epidemiology of cystic fibrosis mutations and haplotypes in southern Italy evaluated with an improved semiautomated robotic procedure., J. Med. Genet. 33 (1996) 475–9. Cerca con Google

[186] G. Castaldo, a Fuccio, C. Cazeneuve, L. Picci, D. Salvatore, V. Raia, et al., Detection of five rare cystic fibrosis mutations peculiar to Southern Italy: implications in screening for the disease and phenotype characterization for patients with homozygote mutations., Clin. Chem. 45 (1999) 957–62. Cerca con Google

[187] Oligonucleotide property calculator - http://www.basic.northwestern.edu/biotools/oligocalc.html, (n.d.). Vai! Cerca con Google

[188] L.M. Dorozhkin, V.A. Nefedov, A.G. Sabelnikov, V.G. Sevastjanov, Detection of trace amounts of explosives and / or explosive related compounds on various surfaces by a new sensing technique / material, 99 (2004) 568–570. Cerca con Google

[189] 2012- Current trends in explosive detection techniques.pdf, (n.d.). Cerca con Google

[190] L. Senesac, T.G. Thundat, Nanosensors for trace explosive detection, 11 (2008) 28–36. Cerca con Google

[191] P.A. Pella, Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT and EGDN, J. Chem. Thermodyn. 9 (1977) 301–305. Cerca con Google

[192] K.G. Furton, L.J. Myers, The scientific foundation and efficacy of the use of canines as chemical detectors for explosives., Talanta. 54 (2001) 487–500. Cerca con Google

[193] M.B. Pushkarsky, I.G. Dunayevskiy, M. Prasanna, A.G. Tsekoun, R. Go, C.K.N. Patel, High-sensitivity detection of TNT, (2006). Cerca con Google

[194] A.R. Krause, C. Van Neste, L. Senesac, T. Thundat, E. Finot, Trace explosive detection using photothermal deflection spectroscopy, J. Appl. Phys. 103 (2008) 094906. Cerca con Google

[195] L.. Pinnaduwage, T. Thundat, J.. Hawk, D.. Hedden, P.. Britt, E.. Houser, et al., Detection of 2,4-dinitrotoluene using microcantilever sensors, Sensors Actuators B Chem. 99 (2004) 223–229. Cerca con Google

[196] A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Cantilever-like micromechanical sensors, Reports Prog. Phys. 74 (2011) 036101. Cerca con Google

[197] J. Janni, B.D. Gilbert, R.W. Field, J.I. Steinfeld, Infrared absorption of explosive molecule vapors, 53 (1997) 1375–1381. Cerca con Google

[198] Dual-SAM functionalization on integrated cantilevers for specific trace-explosive sensing and non-specific adsorption suppression, Nanotechnology. 18 (2007). Cerca con Google

[199] C. Alexander, H.S. Andersson, L.I. Andersson, R.J. Ansell, N. Kirsch, I. a Nicholls, et al., Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003., J. Mol. Recognit. 19 (2006) 106–80. Cerca con Google

[200] G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, et al., Molecularly imprinted polymers: present and future prospective., Int. J. Mol. Sci. 12 (2011) 5908–45. Cerca con Google

[201] G. Guan, B. Liu, Z. Wang, Z. Zhang, Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors, Sensors. 8 (2008) 8291–8320. Cerca con Google

[202] E.L. Holthoff, D.N. Stratis-Cullum, M.E. Hankus, A nanosensor for TNT detection based on molecularly imprinted polymers and surface enhanced Raman scattering., Sensors (Basel). 11 (2011) 2700–14. Cerca con Google

[203] B.M. Riskin, R. Tel-vered, I. Willner, Imprinted Au-Nanoparticle Composites for the Ultrasensitive Surface Plasmon Resonance Detection of, (2010) 1387–1391. Cerca con Google

[204] I. Kondepudi , D.; Prigogine, Modern Thermodynamics, 1998. Cerca con Google

[205] S. Stephenson, R.; Malanowski, Handbook of the thermodynamics of organic compounds, New York, 1987. Cerca con Google

[206] A.P. Gershanik, Y. Zeiri, Sublimation Rate of TNT Microcrystals in Air, (2010) 12403–12410. Cerca con Google

[207] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, 16 (1918) 1361–1403. Cerca con Google

[208] D. Duong D.; Do, Adsorption Analysis: Equilibria and Kinetics, 1998. Cerca con Google

[209] O.M. Jakšić, Ž.D. Čupić, Z.S. Jakšić, D. V. Randjelović, L.Z. Kolar-Anić, Monolayer gas adsorption in plasmonic sensors: Comparative analysis of kinetic models, Russ. J. Phys. Chem. A. 87 (2013) 2134–2139. Cerca con Google

[210] D.A. Prescott, L.M.; Harley, J.P.; Klein, Microbiology, Third, 1996. Cerca con Google

[211] WHO Library Cataloguing-in-Publication Data, Legionella and the prevention of legionellosis, World Health Organization, 2007. Cerca con Google

[212] P.S. Fraser, D W; Tsai, T R; Orenstein, W; Parkin, W E; Beecham, H J; Sharrar, R G; Harris, J; Mallison, G F; Martin, S M; McDade, J E; Shepard, C C; Brachman, Legionnaires’ disease: description of an epidemic of pneumonia, N. Engl. J. Med. 297 (1977) 1189–97. Cerca con Google

[213] D.L. Enrico, M.G. Manera, G. Montagna, F. Cimaglia, M. Chiesa, P. Poltronieri, et al., SPR based immunosensor for detection of Legionella pneumophila in water samples, Opt. Commun. 294 (2013) 420–426. Cerca con Google

[214] B. Oh, Y. Kim, W. Lee, Y. Min, W. Hong, J. Choi, Immunosensor for detection of Legionella pneumophila using surface plasmon resonance, 18 (2003) 605–611. Cerca con Google

[215] H. Lin, Y. Tsao, W. Tsai, Y. Yang, T. Yan, B. Sheu, Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED, 138 (2007) 299–305. Cerca con Google

[216] D.S. Regione Piemonte, Raccomandazioni per la sorveglianza, la prevenzione e il controllo delle polmoniti da Legionella nelle strutture sanitarie piemontesi pubbliche e private, 2005. Cerca con Google

[217] I. J.A. Woollam Co., Ellipsometry solutions, n.d. Cerca con Google

[218] H. Fujiwara, Spectroscopic Ellipsometry – Principles and Applications, 2007. Cerca con Google

[219] M. Bass, Handbook of Optics, second, 1995. Cerca con Google

[220] Z.L. Yao, N.; Wang, Handbook of Microscopy for Nanotechnology, 2005. Cerca con Google

[221] B. Bhushan, Handbook of Nanotechnology, 2004. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record