Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Parisio, Laura (2014) VOLCANISM AND INTRUSIONS OF THE DECCAN TRAPS, INDIA: GEOCHEMISTRY AND GEOCHRONOLOGY OF THE MAGMATIC ROCKS AND PALEOENVIRONMENTAL CONSEQUENCES. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4Mb

Abstract (inglese)

The Deccan Traps are one of the most important Large Igneous Provinces (LIP) in the world, they are mainly constituted by tholeiitic lava flows, now covering almost one sixth of the Indian continent, and reaching the maximum exposed thickness of 1300 m. The emplacement of such quantities of magma and its timing (ca. 66Ma) close to the Cretaceous-Paleogene (K-Pg) boundary, have led several authors to propose a causal link between the formation of the province and the K-Pg boundary mass extinction . Moreover, a distinctive feature of the province is the presence, beside the tholeiites, of several alkaline bodies, associated with the main fault zones of India.
These two important aspects of the Deccan Traps have been investigated in the northern portion of the province by sampling both alkaline and tholeiitic rocks, in order to provide precise timing of emplacement and to constrain the relationship between them through the definition of their mantle source.
40Ar/39Ar step-heating analyses provided two different age peaks that straddle the K-Pg boundary, one with an age comparable with the main phase of Deccan volcanism (ca 66.5 Ma), the other slightly younger (ca. 65.2 Ma), thus confirming the synchrony between the emplacement of the province and the end-Cretaceous mass extinction. Therefore, the input in the atmosphere of huge quantities of gas, produced by the emplacement of the Deccan Traps, could have contributed to the extinction. In particular a crucial role may be provided in this sense by the alkaline magmas, which are likely enriched in volatile elements.
Whole rock analyses showed that the samples span a wide compositional range varying from little-evolved compositions such as picro-basalts to fairly evolved ones such as rhyolite; the large variation is observed in the total alkali content (Na2O+K2O) as well, ranging from the subalakaline basalt field, up to strongly alkaline samples like phonolites. Alkaline rocks appear enriched in the most incompatible elements and present higher La/Yb ratios (19.5-68.8). They are also characterized by negative K anomaly (possibly suggesting the presence of a K-rich residual mantle mineral), and Pb spikes; on average they present patterns similar to those displayed by other alkaline rocks of the Deccan Traps, thus suggesting analogous origin and source.
Sr-Nd isotopes define a large spectrum of compositions, departing from a similar depleted end-member (εNdt ca. +3 and 87Sr/86Srt ca. 0.705) and trending towards low εNdt and relatively low 87Sr/86Srt (-12.96 and 0.71061, respectively), and toward very high 87Sr/86Srt (0.72788) and low εNdt (-12.50). The trend with higher 87Sr/86Srt has been interpreted as the result of Assimilation- Fractional Crystallization (AFC) process, starting from a magma similar to Réunion OIBs or Central Indian Ridge basalts progressively contaminated by rocks from the Indian cratons (Dharwar and Aravalli cratons). The trend towards low εNdt and relatively low 87Sr/86Srt is defined mainly by mafic sulbalkaline rocks from the Phenai Mata intrusion. These rocks are characterized also by very high 207Pb/204Pbt and 208Pb/204Pbt ratios. Given the preliminary 187Os/188Ost compositions (0.1584 to 0.2457), mafic subalkaline rocks assimilated only negligible amounts of crust. Their enriched Sr-Nd-Pb isotopic composition is thus best interpreted as resulting from recycling of ancient sediments in their mantle source. On the contrary, alkaline samples present quite homogeneous isotopic compositions, slightly more enriched than that of nearby carbonatite complexes (e.g. Amba Dongar) and substantially more enriched than Reunion basalts. Therefore, the alkaline rocks are unlikey a product of the Reunion mantle plume, but more probably of the subcontinental lithospheric mantle, as is consistent also with their incompatible trace element contents and patterns.

Abstract (italiano)

I Deccan Traps sono una delle più importanti grandi province magmatiche del mondo, sono principalmente costituiti da colate di lava tholeiitica, attualmente ricoprono circa un sesto del continente Indiano e raggiungono uno spessore massimo di 1300m. La messa in posto di queste grandi quantità di magma avvenuta al limite Cretaceo-Paleogene (K-Pg), ha portato diversi autori a proporre un rapporto di causalità tra la formazione di questa provincia e l’estinzione di massa al limite K-Pg.
Inoltre, una caratteristica dei Deccan Traps è la presenza, oltre alle tholeiiti, di diversi corpi alcalini associati con le principali zone di faglia indiane.
Questi due importanti aspetti dei Deccan traps sono stati studiati nella porzione nordoccidentale della provincia, campionando rocce alcaline e tholeiitiche, al fine di definire un preciso tempo di messa in posto e caratterizzare la relazione tra le diverse litologie, attraverso la determinazione della loro sorgente di mantello.
Le analisi 40Ar/39Ar step-heating hanno restituito due diversi picchi di età a cavallo del limite K-Pg, il primo con un’età comparabile a quella della fase principale del magmatismo Deccan (ca. 66.5Ma), il secondo più giovane (ca. 65.2 Ma), confermando quindi l’effettiva sincronia tra la formazione della provincia e l’estinzione di massa alla fine del Cretaceo. Quindi, l’immissione in atmosfera di grandi quantità di gas, prodotta dalla messa in posto dei Deccan Traps, può aver contribuito all’estinzione. In particolare un ruolo molto importante potrebbe essere stato quello dei magmi alcalini, che verosimilmente sono arricchiti in elementi volatili.
I campioni coprono un ampio range composizionale in termini di elementi maggiori, variando da composizioni poco evolute come i picro-basalti, a evolute come le rioliti; la variabilità è osservata anche nel contenuto di alcali (Na2O+K2O), variando dal campo subalcalino dei basalti a quello di campioni fortemente alcalini come le fonoliti. Le rocce alcaline sono arricchite negli elementi più incompatibili e presentano un rapporto La/Yb più alto (19.5-68.8). sono inoltre caratterizzate da una anomalia negativa in K, (probabilmente dovuta alla presenza di una fase residuale ricca in K nel mantello) e ad una positiva in Pb; in genere presentano pattern simili a quelli di altre rocce alcaline dei Deccan Traps, suggerendo quindi un’origine simile.
Anche i rapporti isotopici di Sr e Nd definiscono un ampio range composizionale, partendo da un end-member impoverito (εNdt ca. +3 and 87Sr/86Srt ca. 0.705), verso composizioni a basso εNdt e relativamente basso 87Sr/86Srt (-12.96 and 0.71061, rispettivamente), e verso composizioni a 87Sr/86Srt (0.72788) molto alto e basso εNdt (-12.50). Il trend a più alto 87Sr/86Srt è stato interpretato come il risultato di un processo di assimilazione e cristallizzazione frazionata (AFC), a partire da un magma simile alle composizioni tipiche di Réunion o del Central Indian Ridge, progressivamente contaminato da rocce dei Cratoni indiani (Dharwar e Aravalli). Il trend verso composizioni a basso εNdt e relativamente basso 87Sr/86Srt è definito principalmente da rocce mafiche subalcaline dell’intrusione di Phenai Mata, queste rocce sono anche caratterizzate da rapporti 207Pb/204Pbt and 208Pb/204Pbt molto alti. Date le prime composizioni isotopiche 187Os/188Ost (da 0.1584 a 0.2457), queste rocce hanno assimilato porzioni trascurabili di crosta. Le loro composizioni Sr-Nd-Pb arricchite sono quindi meglio interpretate come il risultato del contributo nella sorgente di mantello di antichi sedimenti riciclati. Al contrario i campioni alcalini presentano composizioni isotopiche piuttosto omogene, leggermente più arricchite rispetto a quelle dei vicini complessi carbonatitici (p. es. Amba Dongar) e decisamente più arricchiti dei basalti di Réunion. Perciò le rocce alcaline sembrano non essere il prodotto del plume di Réunion, ma più probabilmente del mantello litosferico subcontinentale, come suggerito anche dai contenuti e dai pattern degli elementi in traccia.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Marzoli, Andrea
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):Deccan Traps, geochimica, geocronologia, rocce alcaline, sorgente di mantello, limite Cretaceo-Paleogene/Deccan Traps, geochemistry, geochronology, alkaline rocks, mantle source, Cretaceous-Paleogene boundary
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Area 04 - Scienze della terra > GEO/08 Geochimica e vulcanologia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:6745
Depositato il:28 Apr 2015 17:44
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

ALBAREDE, F., LUAIS, B., FITTON, G., SEMET, M., KAMINSKI, E., UPTON, B. G. J., BACHELERY, P., CHEMINEE, J. L., 1997. The geochemical regimes of Piton de la Fournaise Volcano (Reunion) during the last 530000 years. Journal of Petrology, 38, 171-201. Cerca con Google

ALLEGRE, C.J., BIRCK, J.L., CAPMAS, F., COURTILLOT, V., 1999. Age of the Deccan traps using 187Re–187Os systematics. Earth and Planetary Science Letters, 170, 197–204. Cerca con Google

AZMI, R.J., JOSHI, D., TEWARI, B.N., JOSHI, M.N., SRIVASTAVA, S.S., 2008. A synoptic view on the current discordant geo- and biochronological ages of the Vindhyan Supergroup, central India. Journal of Himalayan Geology, 29, 177–191. Cerca con Google

BAKSI, A.K., 2013. The Deccan Trap – Cretaceous–Paleogene boundary connection; new 40Ar/39Ar ages and critical assessment of existing argon data pertinent to this hypothesis. Journal of Asian Earth Sciences, http://dx.doi.org/10.1016/j.jseaes.2013.08.021. Vai! Cerca con Google

BAKSI, A.K., ARCHIBALD, D.A,. FARM, E., 1996. Intercalibration of 40Ar/39Ar dating standards. Chemical Geology, 129, 307-324. Cerca con Google

BAKSI, A.K., 1994. Geochronological studies on whole-rock basalts, Deccan Traps, India: evaluation of the timing of volcanism relative to the K-T boundary. Earth and Planetary Science Letters, 121, 43-56. Cerca con Google

BAKSI, A.K., 1987. Critical evaluation of the age of the Deccan Traps, India: Implications for flood-basalt volcanism and faunal extinctions. Geology, 15,147-150. Cerca con Google

BALAKRISHNAN, S., HANSON, G.N., RAJAMANI, V., 1990. Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar Schist Belt, South India. Contribution to Mineralogy and Petrology, 107, 279-292. Cerca con Google

BANDOPADHYAY, P.C., SENGUPTA, S., 2004. The Paleoproterozoic supracrustal Kolhan Group in Singhbhum Craton, India and the Indo-African supercontinent. Gondwana Research, Japan, 7, 1228–1235. Cerca con Google

BANDYOPADHYAY, B. K., CHATTOPADHYAY, A., KAHN A. S., HUIN, A. K., 2001. Assembly of the Rodinia Supercontinent: evidence from the Sakoli and Sausar Belts in Central India. Gondwana Research, 4, 569-570. Cerca con Google

BASU, A., PATRANABIS-DEB, S., SCHIEBER, J., DHANG, P.C., 2008. Stratigraphic position of the 1000 Ma Sukhda Tuff (Chattisgarh Supergroup, India) and the 500 Ma question. Precambrian Research, 167, 383–388. Cerca con Google

BASU, A. R., RENNE, P. R., DASGUPTA, D.K., TEICHMANN F., POREDA, R.J., 1993. Early and late alkali igneous pulses and a high-3He plume origin for the Deccan flood basalts. Science, 261, 902-906. Cerca con Google

BAXTER, A. N., 1990. Major and trace element variations in basalts from Leg 115. In: Duncan, R. A., Backman, J., Peterson, L. C., et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX: Ocean Drilling Program, pp. 11–21. Cerca con Google

BEANE, J.E., TURNER, C.A., HOOPER, P.R., SUBBARAO, K.V., WALSH, J.N., 1986. Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India. Bulletin of Volcanology, 48, 61-83. Cerca con Google

BELL, K., SIMONETTI, A., 1996. Carbonatite magmatism and plume activity: implications from the Nd, Pb and Sr isotope systematics of Oldoinyo Lengai. Journal of Petrology, 37, 1321–1339. Cerca con Google

BERNARD-GRIFFITHS, J., JAHN, B.M., SEN, S.M., 1987. Sm–Nd isotopes and REE geochemistry of Madras granulites: an introductory statement. Precambrian Research, 37, 343–355. Cerca con Google

BHATTACHARYA, S., CHAUDHARY, A. K.,. SAW, A. K, DAS, P., CHATTERJEE, D., 2012. Mafic granulite xenoliths in the Chilka Lake suite, Eastern Ghats Belt, India: evidence of deep-subduction of residual oceanic crust. Solid Earth Discussions, 4, 1379–1410. Cerca con Google

BHATTACHARYYA, P. K., BHATTACHARYA, H. N., MUKHERJEE, A. D., 1988. The Chitradurga greenstone succession in south India and evolution of the late Archaean basin. Geological Magazine, 125, 5 507-519. Cerca con Google

BOHRSON, W. A., SPERA, F. J., 2001. Energy-constrained open-system magmatic processes II: application of Energy-Constrained Assimilation and Fractional Crystallization (EC-AFC) model to magmatic systems. Journal of Petrology, 42, 1019-1041. Cerca con Google

BOSCH, D., BLICHERT-TOFT, J., MOYNIER, F., NELSON, B.K., TELOUK, P.H., GILLOT, P.Y., ALBAREDE, F., 2008. Pb, Hf and Nd isotope compositions of the two Reunion volcanoes (Indian Ocean): a tale of two smallscale mantle ‘‘blobs’’? Earth and Planetary Science Letters, 265, 748–768. Cerca con Google

BRAUN, I., CENKI-TOK, B., PAQUETTE, J.L., TIEPOLO, L., 2007. Petrology and U–Th–Pb geochronology of the sapphirine–quartz-bearing metapelites from Rajapalayam, Madurai Block, southern India: evidence for polyphase Neoproterozoic highgrade metamorphism. Chemical Geology, 241, 129–147. Cerca con Google

BUICK, I.S., ALLEN, C., PANDIT, M., RUBATTO, D., HERMANN, J., 2006. The Proterozoic magmatic and metamorphic history of the banded gneiss complex, central Rajasthan, India; LA-ICP-MS U/Pb zircon constraints. Precambrian Research, 151, 119–142. Cerca con Google

CANDE, S. C., KENT, D. V., 1992. A New Geomagnetic Polarity Time Scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97, 13917-13951. Cerca con Google

CANDE, S. C., KENT, D. V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100, 6093-6095. Cerca con Google

CARLSON, R.W., IRVING, A.J., 1994. Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd, and Pb isotopic study of ultramafic xenolith from the northwestern Wyoming Craton. Earth and Planetary Science Letters, 126, 457-472. Cerca con Google

CHALAPATHI RAO, N. V., GIBSON, S. A., PYLE D.M., DICKIN, A. P., 2004. Petrogenesis of Proterozoic Lamproites and Kimberlites from the Cuddapah Basin and Dharwar Craton, Southern India. Journal of Petrology, 45, 907-948. Cerca con Google

CHANDRASEKHARAM, D., MAHONEY, J.J., SHETH, H.C., DUNCAN, R.A., 1999. Elemental and Nd-Sr-Pb isotope geochemistry of flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal of Volcanology and Geothermal Research, 93, 111-123. Cerca con Google

CHATTERJEE, N., BHATTACHARJI, S., 2001. Petrology, geochemistry and tectonic settings of the mafic dykes and sills associated with the evolution of the Proterozoic Cuddapah basin of south India. Proceedings of the Indian Academy of Sciences. Earth and Planetary Science, 110, 433–453. Cerca con Google

CHAUDHURI, A.K., 2003. Stratigraphy and paleogeography of the Godavari Supergroup in the south-central Pranhita-Godavari Valley, south India. Journal of Asian Earth Sciences, 21, 595–611. Cerca con Google

CHAUDHURI, A.K., SAHA, D., DEB, G.K., DEB, S.P., MUKHERJEE, M.K., GHOSH, G., 2002. The Purana basins of southern cratonic province of India; a case for Mesoproterozoic fossil rifts. Gondwana Research, 5, 23–33. Cerca con Google

CHENET, A. L., COURTILLOT, V., FLUTEAU, F., GERARD, M., QUIDELLEUR, X., KHADRI, S. F. R., SUBBARAO, K.V., THORDARSON, T., 2009. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. Journal of Geophysical Research, 114, B06103, doi:10.1029/2008JB005644. Cerca con Google

CHENET, A. L., FLUTEAU, F., COURTILLOT, V., GERARD, M., SUBBARAO, K.V., 2008. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. Journal of Geophysical Research, 113, B04101, doi:10.1029/2006JB004635. Cerca con Google

CHENET, A. L., QUIDELLEUR, X., FLUTEAU, F., COURTILLOT, V., BAJPAI, S., 2007. 40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth and Planetary Science Letters, 263, 1–15. Cerca con Google

CHOUDHARY, A.K., GOPALAN, K., SASTRY, C.A., 1984. Present status of the geochronology of the Precambrian rocks of Rajasthan. Tectonophysics, 105, 131–140. Cerca con Google

CLARK, C., COLLINS, A.S., TIMMS, N.E., KINNY, P.D., CHETTY, T.R.K., SANTOSH, M., 2009. SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research, 16, 27–36. Cerca con Google

COLLIER, J.S., SANSOM, V., ISHIZUKA, O., TAYLOR, R.N., MINSHULL, T.A., WHITMARSH, R.B., 2008. Age of Seychelles–India break-up. Earth and Planetary Science Letters, 272, 264-277. Cerca con Google

COLLINS, A.S., SANTOSH, M., BRAUN, I., CLARK, C., 2007. Age and sedimentary provenance of the southern granulites, S. India: U–Th–Pb SHRIMP secondary ion mass spectrometry. Precambrian Research, 155, 125–138.COURTILLOT, V., RENNE, P. R., 2003. On the ages of flood basalt events. Comptes Rendus Geoscience, 335, 113–140. Cerca con Google

COURTILLOT, V., GALLET, Y., ROCCHIA, R., FERAUD, G., ROBIN, E., HOFMANN, C., BHANDARI, N., GHEVARIYA Z.G., 2000. Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province. Earth and Planetary Science Letters, 182, 137-156. Cerca con Google

COURTILLOT, V., FERAUD, G., MALUSKI, H., VANDAMME, D., MOREAU, M.G., BESSE, J., 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature, 333, 843-846. Cerca con Google

COURTLLLOT, V., BESSE, J., VANDAMME, D., MONTIGNY, R., JAEGER, J.-J., CAPPETTA, H., 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth and Planetary Science Letters, 80, 361-374. Cerca con Google

COX, K. G., HAWKESWORTH, C. J., 1984. Relative Contribution of Crust and Mantle to Flood Basalt Magmatism, Mahabaleshwar Area, Deccan Traps. Phil. Trans. R. Soc. Lond. A, 310, 627-641. Cerca con Google

COX, K. G., HAWKESWORTH, C. J., 1985. Geochemical Stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with Implications for Open System Magmatic Processes. Journal of petrolgy, 24. Part 2, 355-377. Cerca con Google

DAS, K., YOKOYAMA, K., CHAKRABORTY, P.P., SARKAR, A., 2009. Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry. Journal of Geology, 117, 88–102. Cerca con Google

DEB, S.P., 2004. Lithostratigraphy of the Neoproterozoic Chhattisgarh sequence: its bearing on the tectonics and paleogeography. Gondwana Research, 7, 323–337. Cerca con Google

DEB, M., THORPE, R.I., KRSTIC, D., CORFU, F., DAVIS, D.W., 2001. Zircon U–Pb and galena Pb isotopic evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli-Delhi orogenic belt, northwestern India. Precambrian Research, 108, 195–213.DE PAOLO, D. J., 1981. Trace elements and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53, 189-202. Cerca con Google

DESSAI, A. G., DOWNES, H., LOPEZ-MORO, F.-J., LOPEZ-PLAZA, M., 2008. Lower crustal contamination of Deccan Traps magmas: evidence from tholeiitic dykes and granulite xenoliths from western India. Mineral. Petrol., 93, 243-272. Cerca con Google

Dessai, A.G., Markwick, A., Vaselli, O., Downes, H., 2004. Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos, 74, 263-290. Cerca con Google

DESSAI, A. G., VASELLI, O., 1999. Petrology and geochemistry of xenoliths in lamprophyres from the Deccan Traps: implications for the nature of the deep crust boundary in western India. Mineralogical Magazine, 63, 703-722. Cerca con Google

DEVEY, C. W., and STEPHENS, W. E., 1992. Deccan-related magmatism west of the Seychelles-India rift. Geological Society, London, Special Publications, 68, 271-291. Cerca con Google

DEVEY, C.W., and COX, K.G., 1987. Relationships between crustal contamination and crystallization in continental flood basalt magmas with special reference to the Deccan Traps of the Western Ghats, India. Earth and Planetary Science Letters, 84, 59-68. Cerca con Google

DE WIT, M.J., GHOSH, J.G., BOWRING, S., ASHWAL, L.D., 1998. Late Neoproterozoic shear zones in Madagascar, and India: Gondwana ‘‘life-lines”. Journal of African Earth Sciences, 27, 58–67. Cerca con Google

DEY, S., PANDEY, U.K., RAI, A.K., CHAKI, A., 2012. Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the eastern Dharwar craton: Possible implications for late Archaean crustal accretion. Journal of Asian Earth Sciences, 45, 40–56. Cerca con Google

DEY, S., RAI, A.K., CHAKI, A., 2009. Palaeoweathering, composition and tectonics of provenance of the Proterozoic intracratonic Kaladgi–Badami basin, Karnataka, southern India: evidence from sandstone petrography and geochemistry. Journal of Asian Earth Sciences, 34, 703–715. Cerca con Google

DOUGLASS, J., SCHILLING, J.-G., 2000. Systematics of three-component, pseudo-binary mixing lines in 2D isotope ratio space representations and implications for mantle plume-ridge interaction. Chemical Geology, 163, 1-23. Cerca con Google

DUNCAN, R. A., 1990. The volcanic record of the Reunion hotspot. In: Duncan, R. A., Backman, J., Peterson, L. C., (eds) et al. Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX: Ocean Drilling Program, pp. 3–10. Cerca con Google

DUNCAN, R.A., PYLE, D.G., 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature, 333, 841-833. Cerca con Google

ELDHOM, O. AND COFFIN, M.F. (2000). In: Large igneous provinces and plate tectonics. American Geophysical Union, Washington D.C.. 121: 5-6. doi: 10.1029/GM121p0309. Cerca con Google

ERIKSSON, P.G., MAZUMDER, R., CATUNEANU, O., BUMBY, A.J., ILONDO, B.O., 2006. Precambrian continental freeboard and geological evolution: a time perspective. Earth-Science Reviews, 79, 165–204. Cerca con Google

FISK, M. R., UPTON, B. G. J., FORD, C. E., WHITE, W. M., 1988. Geochemical and experimental study of the genesis of magmas of Reunion Island, Indian Ocean. Journal of Geophysical Research, 93, Cerca con Google

4933–4950. Cerca con Google

FRENCH, J.E., HEAMAN, L.M., CHACKO, T., RIVARD, B., 2008. 1891–1883 Ma southern Bastar craton-Cuddapah mafic igneous events, India: a newly recognized large igneous province. Precambrian Research, 160, 308–322. Cerca con Google

FRIEND, C.R.L., NUTMAN, A.P., 1991. SHRIMP U–Pb Geochronology of the Closepet Granite and Peninsular Gneiss, Karnataka, South India. Journal of the Geological Society of India, 38, 357–368. Cerca con Google

GOPALAN, K., MACDOUGALL, J.D., ROY, A.B., MURALI, A.V., 1990. Sm-Nd evidence for 3.3 Ga old rocks in Rajasthan, northwestern India. Precambrian Research, 48, 287-297. Cerca con Google

GREENOUGH, J. D., HARI, K. R., CHATTERJEE, A. C., SANTOSH, M., 1998. Mildly alkaline basalts from Pavagadh Hill, India: Deccan flood basalts with an asthenospheric origin. Mineralogy and Petrology, 62, 223-245. Cerca con Google

GREGORY, L.C., MEERT, J.G., PRADHAN, V., PANDIT, M.K., TAMRAT, E., MALONE, S.J., 2006. A paleomagnetic and geochronologic study of the Majhgawan Kimberlite, India: implications for the age of the Vindhyan Supergroup. Precambrian Research, 149, 65–75. Cerca con Google

GWALANI, L.G., ROCK, N.M.S., CHANG, W.-J., FERNANDEZ, S., ALLEGRE, C.J., PRINZHOFER, A. 1993. Alkaline rocks and carbonatites of Amba Dongar and adjacent areas, Deccan igneous province, Gujarat, India: 1. Geology, petrography and petrochemistry. Mineralogy and Petrology 47, 219-253. Cerca con Google

HAGGERTY, S. E., BIRKETT, T., 2004. Geological setting and chemistry of kimberlite clan rocks in the Dharwar Craton, India. Lithos, 76, 535-549. Cerca con Google

HARI, K. R., CHALAPATHI RAO, N. V., SWARNKAR, V., 2011. Petrogenesis of Gabbro and Orthopyroxene Gabbro from the Phenai Mata Igneous Complex, Deccan Volcanic Province: Products of Concurrent Assimilation and Fractional Crystallization. Journal of Geological Society of India, 78, 501-509. Cerca con Google

HARRIS, N.B.W., SANTOSH, M., TAYLOR, P.N., 1994. Crustal evolution in southern India: constraints from Nd isotopes. Journal of Geology, 102, 139–150. Cerca con Google

HILDEBRAND, A.R., PENFIELD, G.T., KRING, D.A., PILKINGTON, M., CAMARGO, A., JACOBSEN, S.B., BOYNTON, W.V., 1991. Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology, 19, 867–871. Cerca con Google

HOFMANN, C., FERAUD, G., COURTILLOT, V., 2000. 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan traps. Earth and Planetary Science Letters, 180, 13-27. Cerca con Google

HOOPER, P., WIDDOWSON, M., KELLEY, S., 2010. Tectonic setting and timing of the final Deccan flood basalt eruptions. Geology, 38, 839-842. Cerca con Google

HOOPER, P.R. ( I 990). The timing of crustal extension and the eruption of continental flood basalts. Nature, 345, 246-249. Cerca con Google

HUSSAIN, M.F., MONDALL, M.E.A., AHMAD, T., 2004. Petrological and Geochemical Characteristics of Archean Gneisses and Granitoids from Bastar Craton, Central India - Implication Cerca con Google

for Subduction Related Magmatism. Gondwana Research, 7, 531 -537. Cerca con Google

INGLE, S., WEIS, D., FREY, F. A., 2002. Indian continental crust recovered from Elan Bank, Kerguelen plateau (ODP Leg 183, Site 1137). Journal of Petrology, 43, 1241-1257. Cerca con Google

INGLE, S., WEIS, D., FREY, F. A., J. S., SCOATES, FREY, F. A., 2002. Relationship between the early Kerguelen plume and continental flood basalts of the paleo-Eastern Gondwanan margins. Earth and Planetary Science Letter, 197, 35-50. Cerca con Google

JAYANANDA, M., CHARDON, D., PEUCAT, J.-J., CAPDEVILA, R., 2006. 2.61 Ga potassic granites and crustal reworking in the western Dharwar craton, southern India: Tectonic, geochronologic and geochemical constraints. Precambrian Research, 150, 1-26. Cerca con Google

JAYANANDA, M., MOYEN, J.-F., MARTIN, H., PEUCAT, J.-J., AUVRAY, B., MAHABALESWAR, B., 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research, 99, 225-254. Cerca con Google

JAYANANDA, M., MARTIN, H., J.J., PEUCAT, MAHABALESHWAR, B., 1995. Late Archean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepeth Batholith, southern India. Contribution to Mineralogy and Petrology,119, 314-329. Cerca con Google

JOURDAN, F., RENNE, P. R., 2007. Age calibration of the Fish Canyon sanidine 40Ar/39Ar dating Cerca con Google

standard using primary K–Ar standards. Geochimica et Cosmochimica Acta, 71, 387–402. Cerca con Google

KANEOKA, I., 1980. 40Ar/39Ar dating on volcanic rocks of the Deccan Traps, India. Earth and Planetary Science Letters, 46, 233-243. Cerca con Google

KARMALKAR, N.R., REGE S., GRIFFIN, W.L., O’REILLY, S. Y., 2005. Alkaline magmatism from Kutch, NW India: Implications for plume-lithosphere interaction. Lithos, 81, 101- 119. Cerca con Google

KAUR, P., CHAUDHARI, N., RACZEK, I., KRÖNER, A., HOFMANN, A.W., 2007. Geochemistry, zircon ages and whole-rock Nd isotopic systematic for Paleoproterozoic A-type granitoids in the northern part of the Delhi belt, Rajasthan, NW India: implications for late Paleoproterozoic crustal evolution of the Aravalli craton. Geological Magazine, 144, 361–378. Cerca con Google

KELLER, G., BHOWMICK, P.K., UPADHYAY, H., DAVE, A., REDDY, A.N., JAIPRAKASH, B.C., ADATTE, T., 2011. Deccan Volcanism linked to the Cretaceous-Tertiary Boundary mass extinction: new evidence from ONGC wells in the Krishna-Godavari Basin. Journal Geological Society of India, 78, 399-428. Cerca con Google

KELLER, G., ADATTE, T., BAJPAI, S., MOHABEY, D.M., WIDDOWSON, M., KHOSLA, A,. SHARMA, R., KHOSLA, S.C., GERTSCH, B., FLEITMANN, D., SAHN, A., 2009. K–T transition in Deccan Traps of central India marks major marine seaway across India. Earth and Planetary Science Letters, 282, 10-23. Cerca con Google

KELLER, G., ADATTE, T., GARDIN , S., BARTOLINI, A., BAJPAI, S., 2008. Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna–Godavari Basin, SE India. Earth and Planetary Science Letters, 268, 293-311. Cerca con Google

KERR, A. C., KEMPTON, P. D., THOMPSON, R. N., 1995. Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, N. W. Scotland. Contribution to Mineralogy and Petrology, 119, 142-154. Cerca con Google

KNIGHT, K. B., RENNE, P. R., HALKETT, A., WHITE, N., 2003. 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps. Earth and Planetary Science Letters, 208, 85-99. Cerca con Google

KRISHNAMURTY, P., COX, K.J. 1980. A potassium-rich alkali suite from the Deccan Traps, Rajpipla, India. Contribution to mineralogy and Petrology, 73, 179-189. Cerca con Google

KROGSTAD, E. J., HANSON, G. N., RAJAMANI, V., 1995. Sources of continental magmatism adjacent to the late Archean Kolar Suture Zone, south India: distinct isotopic and elemental signatures of two late Archean magmatic series. Contribution to mineralogy and Petrology, 122, 159-173. Cerca con Google

KUMAR, A., HEAMAN, L.M., MANIKYAMBA, C., 2007. Mesoproterozoic kimberlites in south India: a possible link to 1.1 Ga global magmatism. Precambrian Research, 154, 192–204. Cerca con Google

LI, L., KELLER, G., 1998. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP sites 525A and 21. Marine Micropaleontology, 33, 55-86. Cerca con Google

LIGHTFOOT, P. C., HAWKESWORTH, C. J., DEVEY, C. W., ROGERS, N. W., VAN CALSTEREN, P. W. C., 1990. Source and Differentiation of Deccan Trap Lavas: Implications of Geochemical and Mineral Chemical Variations. Journal of Petrology, 31, 1165-1200. Cerca con Google

LIGHTFOOT, P., HAWKESWORTH, C., 1988. Origin of Deccan Traps lavas: evidence from combined trace elements and Sr-, Nd- and Pb-isotope studies. Earth and Planetary Science Letters, 91, 89-104. Cerca con Google

LIGHTFOOT, P., HAWKESWORTH, C., SETHNA, S.F., 1987. Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence. Contribution to Mineralogy and Petrology, 95, 44-54. Cerca con Google

MAHESHWARI, A., SIAL, A.N., GUHEY, R., FERREIRA, V.P., 2005. C-isotope composition of carbonates from the Indravati Basin, India: implications for regional stratigraphic correlation. Gondwana Research, 8, 603–610.MAHONEY, J.J., DUNCAN, R.A., KHAN, W., GNOS, E., MCCORMICK, G.R., 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters, 203, 295-310. Cerca con Google

MAHONEY J.J., DUNCAN, R.A., KHAN, W., GNOS, E., MCCORMICK, G.R., 2002. Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Re¤union hotspot and Cerca con Google

Deccan Traps. Earth and Planetary Science Letters, 203, 295-310. Cerca con Google

MAHONEY; J. J., SHETH, H. C., CHANDRASEKHARAM, D., PENG, Z. X., 2000. Geochemistry of Flood Basalts of the Toranmal Section, Northern Deccan Traps, India: Implications for Regional Deccan Stratigraphy. Journal of Petrology, 41, 1099-1120. Cerca con Google

MAHONEY, J.J. 1988. Deccan Traps. 151-194. In: J.D. MACDOUGALL (ed.). Continental Flood Basalt. Kluwer Academic Publishers. Cerca con Google

MAHONEY, J. J., MACDOUGALL, J.D., LUGMAIR,G.W., GOPALAN, K., KRISHNAMURTHY, P., 1985. Origin of contemporaneous tholeiitic and K-rich alkalic lavas: case study from the northern Deccan Plateau, India. Earth and Planetary Science Letters, 72, 39-53. Cerca con Google

MAHONEY, J. J., MACDOUGALL, J.D., LUGMAIR,G.W., MURALI, A.V., SANKAR DAS, M., GOPALAN, K., 1982. Origin of the Deccan Trap flows at Mahabaleshwar inferred from Nd and Sr isotopic and chemical evidence. Earth and Planetary Science Letters, 60, 41-60. Cerca con Google

MALONE, S.J., MEERT, J.G., BANERJEE, D.M., PANDIT, M.K., TAMRAT, E., KAMENOV, G.D., PRADHAN, V.R., SOHL, L.E., 2008. Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana basins? Precambrian Research, 164, 137–159.MAZUMDER, R., 2005. Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications; sedimentary systems and sequence stratigraphy related to Precambrian sea level change; a special issue dedicated to Pradip K. Bose. Sedimentary Geology. 176, 167–193. Cerca con Google

MARATHE, S.S., KULKARUI, S.R., KARMANKAR, B.M., GUPTE, R.B., 1981. Variation in the nature of Deccan Trap volcanicity of western Maharashtra in time and space. Memoir Geological Society of India, 3, 117-127. Cerca con Google

MCDONOUGH, W.F., SUN, S.-S, 1995. The composition of the Earth. Chemical Geology, 120, 223-253. Cerca con Google

MEEN, J. K., ROGERS, J. J.W., FULLAGAR, P. D., 1992. Lead isotopic compositions of the Western Dharwar Craton, southern India: Evidence for distinct Middle Archean terranes in a Late Archean craton. Geochimica et Cosmochimica Acta,56, 2455-2470. Cerca con Google

MEERT, J. G., PANDIT, M. K., PRADHAN, V. R., BANKS, J., SIRIANNI, R., STROUD, M., NEWSTEAD, B., GIFFORD, J., 2010. Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences, 39 483–515. Cerca con Google

MELLUSO, L., MAHONEY, J. J., DALLAI, L., 2006. Mantle sources and crustal input as recorded in high-Mg Deccan Traps basalts of Gujarat (India). Lithos, 89, 259-274. Cerca con Google

MELLUSO, L., SETHNA, S.F., D’ANTONIO, M., JAVERI, P., BENNIO, L., 2002. Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan volcanic province, Mumbai area (India). Mineralogy and Petrology, 74, 323-342. Cerca con Google

MELLUSO, L., BECCALUVA, L., BROTZU, P., GRENANIN, A., GUPTA, A.K., MORBIDELLI, L., TRAVERSA, G., 1995. Constraints on the mantle sources of the Deccan Traps from the petrology Cerca con Google

and geochemistry of the basalts of Gujarat State (Western India). Journal of Petrology, 36, 1393-1432. Cerca con Google

MILLER, K. G., KOMINZ, M. A., BROWNING, J. V., WRIGHT, J. D., MOUNTAIN, G. S., KATZ, M. E., SUGARMAN, P.J., CRAMER, B. S., CHRISTIE-BLICK, N., PEKA, S.F., 2005. The Phanerozoic Record of Global Sea-Level Change. Science, 310, 1293-1298. Cerca con Google

MIN, K., MUNDIL, R., RENNE, P. R., LUDWIG, K.R., 2000. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1 Ga rhyolite. Geochimica et Cosmochimica Acta, 64, 73–98. Cerca con Google

MISRA, S., 2006. Precambrian chronostratigraphic growth of Singhbhum-Orissa craton, Eastern Indian shield: an alternative model. Journal of the Geological Society of India, 67, 356–378. Cerca con Google

MITCHELL, C., and WIDDOWSON, M., 1991. A geological map of the southern Deccan Traps, India and its structural implications. Journal of the Geological Society, London, 148, 495-505. Cerca con Google

MOLINA, E., ALEGRET, L., ARENILLAS, I., ARZ, J.A., GALLALA, N., HARDENBOL, J., VON SALIS, K., STEURBAUT, E., VANDENBERGHE, N., ZAGHBIB-TURKI, D., 2006. The global boundary stratotype and point for the base of the Dania Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia- Original definition and revision. Episode, 29, 263-273. Cerca con Google

MONDAL, M.E.A., GOSWAMI, J.N., DEOMURARI, M.P., SHARMA, K.K., 2002. Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand Massif, northern India: implications for crustal evolution of the Bundelkhand–Aravalli supercontinent. Precambrian Research, 117, 85–100. Cerca con Google

MONDAL, S.K., FREI, R., RIPLEY, E.M., 2007. Os isotope systematics of mesoarchean chromitite-PGE deposits in the Singhbhum Craton (India): implications for the evolution of lithospheric mantle. Chemical Geology, 244, 391–408. Cerca con Google

MORGAN, W.J., 1981. Hotspot Tracks and the opening of the Atlantic and Indian Oceans. In: C.Emiliani (Ed) The Sea, v.7, Wiley, New York, pp.443-487. Cerca con Google

MURTHY, Y.G.K., 1995. Proterozoic mafic dykes in southern Peninsular India; a review. Memoir Geological Society of India, 33, 81–98. Cerca con Google

NAGANJANEYULU, K., SANTOSH, M., 2010. The Cambrian collisional suture of Gondwana in southern India: a geophysical approach. Journal of Geodynamics.doi:10.1016/j.jog.2009.12.01. Cerca con Google

NAQVI, S.M., MANIKYAMBA, C., GNANESHWAR, R.T., SUBBA-RAO, D.V., RAM MOHAN, M., SRINIVASA SARMA, D., 2002. Geochemical and isotopic constraints of late Archaean fossil plume for the evolution of the volcanic rocks of the Sandur Greenstone belt. Journal of the Geological Society of India, 60, 27–56. Cerca con Google

NAQVI, S.M., ROGERS, J.J.W., 1987. Precambrian Geology of India. Oxford University Press Inc.. 223 p. Cerca con Google

NOBRE SILVA, I. G., WEIS, D., SCOATES, J. S., BARLING, J., The Ninetyeast Ridge and its Relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the Indian Ocean. Journal of Petrology, 54, 1177-1210. Cerca con Google

NOHDA, S., KANEOKA, I., HANYU, T., XU, S., UTO, K., 2005. Systematic Variation of Sr-, Nd- and Pb-Isotopes with Time in Lavas of Mauritius, Reunion Hotspot. Journal of Petrology, 46, 505-522. Cerca con Google

NUTMAN, A.P., EHLERS, K., 1998. Evidence for multiple Palaeoproterozoic thermal events and magmatism adjacent to the Broken Hill Pb–Zn–Ag orebody, Australia. Precambrian Research, 90, 203–238. Cerca con Google

NUTMAN, A.P., CHADWICK, B., KRISHNA RAO, B., VASUDEV, V.N., 1996. SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur schist belt, Karnataka. Journal of the Geological Society of India, 47, 153–164. Cerca con Google

PANDE, K., PATTANAYAK, S.K., SUBBARAO, K.V., NAVANEETHAKRISHNAN, P., VENKATESAN, T. R., 2004. 40Ar/39Ar age of a lava flow from the Bhimashankar Formation, Giravali Ghat, Deccan Traps. Proceedings of the Indian academy of Sciences (Earth and Planetary Sciences), 113, 755-758. Cerca con Google

PANDE, K., 2002. Age and duration of the Deccan Traps, India: a review of radiometricand paleomagnetic constraints. Proceedings of the Indian academy of Sciences (Earth and Planetary Sciences), 111, 115-123. Cerca con Google

PANDIT, M.K., CARTER, L.M., ASHWAL, L.D., TUCKER, R.D., TORSVIK, T.H., JAMTVEIT, B., BHUSHAN, S.K., 2003. Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton, NW India. Journal of Asian Earth Sciences, 22, 363–381. Cerca con Google

PARANTHAMAN, S., 2005. Geology and geochemistry of Archaean Ghattihosahalli mafic–ultramafic complex, Chitradurga, Karnataka. Journal of the Geological Society of India, 66, 653–657. Cerca con Google

PATRANABIS-DEB, S., BICKFORD, M.E., HILL, B., CHAUDHARI, A.K., BASU, A., 2007. SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require up to 500 Ma adjustments in Indian Proterozoic stratigraphy. Journal of Geology, 115, 407–416. Cerca con Google

PAUL, D. K., RAY, A., DAS, B., PATIL, S. K., BISWAS, S.K., 2008. Petrology, geochemistry and paleomagnetism of the earliest magmatic rocks of Deccan Volcanic Province, Kutch, Northwest India. Lithos, 102, 237–259. Cerca con Google

PENG, Z. X., MAHONEY, J. J., HOOPER, P. R., MACDOUGALL, J.D., KRISHNAMURTY, P., 1998. Basalts of the northeastern Deccan Traps, India: Isotopic and elemental geochemistry and relation to southwestern Deccan stratigraphy. Journal of Geophysical Research, 103, 29843-29865. Cerca con Google

PENG, Z. X., MAHONEY, J. J., 1995. Drillhole lavas from the northwestern Deccan Traps, and the evolution of Réunion hotspot mantle. Earth and Planetary Science Letters, 134, 169-185. Cerca con Google

PENG, Z. X., MAHONEY, J. J., HOOPER, P., HARRIS, C., BEANE, J. 1994. A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan Traps. Geochimica e Cosmochimica Acta, 58, 267-288. Cerca con Google

PEUCAT, J.J., JAYANANDA, M., CHARDONC, D., CAPDEVILA, R., FANNING, C. M., PAQUETTE, L.S, 2013. The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean Cerca con Google

granulitic domains. Precambrian Research, 227, 4–28. Cerca con Google

PEUCAT, J. J., VIDAL, P., BERNARD-GRIFFITHS, J., CONDIE, K. C., 1989. Sr, Nd, and Pb Isotopic Systematics in the Archean Low- to High-Grade Transition Zone of Southern India: Syn-Accretion vs. Post-Accretion Granulites. Journal of Geology, 97, 537-549. Cerca con Google

PLANK, T., LANGMUIR, C. H., 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 145, 325–394. Cerca con Google

PLANK, T., 2005. Constraints from Th/La on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46, 921-944. Cerca con Google

PRADHAN, V.R., PANDIT, M.K., MEERT, J.G., 2008. A cautionary note of the age of the paleomagnetic pole obtained from the Harohalli dyke swarms, Dharwar craton, southern India. In: Srivastava, R.K., Sivaji, Ch., Chalapati Rao, N.V. (Eds.), Indian Dykes: Geochemistry, Geophysics, and Geochronology. Narosa Publishing Ltd., New Delhi, India, pp. 339–352. Cerca con Google

PRICE, R.C., KENNEDY, A.K., SNEERINGER, M.R., FREY, F.A., 1986. Geochemistry of basalts from the West Indian Triple Junction: implication for the generation and evolution of Indian Ocean Ridge basalts. Earth and Planetary Science Letters, 78, 379-396. Cerca con Google

RAITH, M.M., SRIKANTAPPA, C., BUHL, D., KOEHLER, H., 1999. The Nilgiri enderbites, South India; nature and age constraints on protolith formation, high-grade metamorphism and cooling history. Precambrian Research, 98, 129–150. Cerca con Google

RAIA RAO C., S., SAHASRABUNDHE, Y.S., DESHMUKH, S.S., RAMAN, R., 1978. Distribution, structure and petrography of the Deccan Trap, India. Rep. Geol. Survey Ind., 43 pp. Cerca con Google

RAMAKRISHNAN, M., VAIDYANADHAN, R., 2008. Geology of India: volume 1. Geological Society of India, 994 p. Cerca con Google

RAO, V.V., PRASAD, R.B., 2006. Structure and evolution of the Cauvery Shear Zone system, southern Granulite Terrain, India: evidence from deep seismic and other geophysical studies. Gondwana Research, 10, 29–40. Cerca con Google

RAO, J.M., 2004. The wide-spread 2 Ga dyke activity in the Indian shield-evidences from Bundelkhand mafic dyke swarm, Central India and their tectonic implications. Gondwana Research, 7, 1219–1228. Cerca con Google

RAVIZZA, G., PEUCKER-EHRENBRINK, B., 2003. Chemostratigraphic evidence of Deccan volcanism from the marine Osmium isotope record. Science, 302, 1392-1395. Cerca con Google

RAY, R., SHUKLA, A. D., SHETH, H. C., RAY, J. S., DURAISWAMI, R. A., VANDERKLUYSEN, L., RAUTELA, C. S., MALLIK, J., 2008. Highly heterogeneous Precambrian basement under the central Deccan Traps, India: Direct evidence from xenoliths in dykes. Gondwana Research, 13, 375-385. Cerca con Google

RAY, J. S., SHUKLA, P. N., 2004. Trace element geochemistry of Amba Dongar carbonatite complex, India: Evidence for fractional crystallization and silicate-carbonate melt immiscibility. Proceedings of the Indian academy of Sciences (Earth and Planetary Sciences), 113, 519–531. Cerca con Google

RENNE, P. R., DEINO, A. L., HILGEN, F. J., KUIPER, K. F., MARK, D. F., MITCHELL, W. S., MORGAN, L. E., MUNDIL, R., SMIT, J., 2013. Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. Science, 339, 684-687. Cerca con Google

RENNE, P. R., MUNDIL, R., BALCO, G., MIN, K., LUDWIG, K. R., 2011. Response to the comment by B. H. Shwarz et al. on “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon Sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by P. R. Renne (2010). Geochimica et Cosmochimica Acta, 75, 5097–5100. Cerca con Google

RENNE, P. R., MUNDIL, R., BALCO, G., MIN, K., LUDWIG, K. R., 2010. Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon Sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74, 5349–5367. Cerca con Google

RENNE, P. R., SWISHER, C. C., DEINO, A. L., KARNER, D. B., OWENS, T. L., DEPAOLO, D. J., 1998. Intercalibration of standards, absolute ages and uncertainties in 40Ar/ 39Ar dating. Chemical Geology, 145, 117- 152. Cerca con Google

ROY, A., KAGAMI, H., YOSHIDA, M., ROY, A., BANDYOPADHYAY, B.K., CHATTOPADHYAY, A., 2006. Rb/Sr and Sm/Nd dating of different metamorphic events from the Sausar mobile belt, central India; implications for Proterozoic crustal evolution. Journal of Asian Earth Sciences, 26, 61–76. Cerca con Google

ROY, A.B., KRÖNER, A., BHATTACHARYA, P.K., RATHORE, S., 2005. Metamorphic evolution and zircon geochronology of early Proterozoic granulites in the Aravalli Mountains of northwestern India. Geological Magazine, 142, 287–302. Cerca con Google

ROY, A.B., 2003. Geological and geophysical manifestations of the Reunion plume-indian lithosphere interactions - evidence from Northwest India. Gondwana Research, 6, 487-500. Cerca con Google

RUDNICK, R., GAO, S., 2003. Composition of the continental crust. In: Carlson, R.W., Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry: The Crust. Elsevier, pp. 1–64. Cerca con Google

RUDNICK, R., FOUNTAIN, D. M. (1995). Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics, 33, 267–309. Cerca con Google

SALTERS, V.J.M., SACHI-KOCHER, A., 2010. An ancient metasomatic source for the Walvis Ridge basalts. Chemical Geology, 273, 151-167. Cerca con Google

SANO, T., FUJII, T., DESHMUKH, S.S., FUKUOKA, T., ARAMAKI, S., 2001. Differentiation processes of Deccan Trap basalts: contribution from geochemistry and experimental petrology. Journal of Petrology, 42, 2175-2195. Cerca con Google

SANTOSH, M., COLLINS, A.S., TAMASHIRO, I., KOSHIMOTO, S., TSUTSUMI, Y., YOKOYAMA, K., 2006. The timing of ultrahigh-temperature metamorphism in southern India: U–Th–Pb electron microprobe ages from zircon and monazite in sapphirinebearing granulites. Gondwana Research, 10, 128–155. Cerca con Google

SANTOSH, M., KATORI, R., YOSHIKURA, S., HIGASHI, S., SALIM, A.K., 2002. Pink sapphire from southern Kerala, S. India; implications on India–Madagascar correlation within Gondwana assembly. Gondwana Research, 5, 894–901. Cerca con Google

SCHIANO, P., DAVID, K., VLASTELIC, I., GANNOUN, A., KLEIN, M., NAURET, F., BONNAND, P., 2012. Osmium isotope systematics of historical lavas from Piton de la Fournaise (Reunion Island, Indian Ocean). Contribution to Mineralogy and Petrology, DOI 10.1007/s00410-012-0774-0. Cerca con Google

SCHULTE et al., 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science, 327, 1214-1218. DOI: 10.1126/science.1177265 Cerca con Google

SCHWARZ, W. H., KOSSERT, K., TRIELOFF, M., HOPP, J., 2011. Comment on the “Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon Sanidine standard, and improved accuracy for 40Ar/39Ar geochronology” by Paul R. Renne et al. (2010). Geochimica et Cosmochimica Acta, 75, 5094–5096. Cerca con Google

SELF, S., WIDDOWSON, M., THORDARSON, T., JAY, A.E., 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 248, 518-532. Cerca con Google

SELF, S., BLAKE, S., SHARMA, K., WIDDOWSON, M., SEPHTON, S. 2008. Sulfur and chlorine in late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654-1657. Cerca con Google

SEN, G., BIZIMIS, M., DAS, R., PAUL D. K., RAY, A., BISWAS, S., 2009. Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters, 277, 101–111. Cerca con Google

SHETH, H.C., CHOUDHARY, A. K., BHATTACHARYYA, S., CUCCINIELLO C., LAISHRAM, R., GURAV, T., 2011. The Chogat-Chamardi subvolcanic complex, Saurashtra, northwestern Deccan Traps: geology, petrochemistry, and petrogenetic evolution. Journal of Asian Earth Sciences, 41, 307-324. Cerca con Google

SHETH, H.C., MELLUSO, L. 2008. The Mount Pavagadh volcanic suite, Deccan Traps: geochemical stratigraphy and magmatic evolution. Journal of Asian Earth Sciences 32, 5-21. Cerca con Google

SHETH, H.C., 2005. Were the Deccan Flood basalts derived in part from ancient oceanic crust within the Indian continental lithosphere? Gondwana Research, 8, 109-127. Cerca con Google

SHETH, H.C., 2005b. From Deccan to Réunion: No trace of a mantle plume. in Foulger, G.R., Natland, J.H., Presnall, D.C., and Anderson, D.L., eds., Plates, plumes, and paradigms: Geological Society of America Special Paper, 388, 477–501. Cerca con Google

SHETH, H.C., MAHONEY, J. J., CHANDRASEKHARAM, D., 2004. Geochemical stratigraphy of Deccan flood basalts of the Bijasan Ghat section, Satpura Range, India. Journal of Asian Earth Sciences, 23, 127–139. Cerca con Google

SHETH, H.C., PANDE, K., BHUTANI, R., 2001. 40Ar/39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism. Geophysical Research Letters, 28, 3513-3516. Cerca con Google

SHETH, H.C., CHANDRASEKHARAM, D., 1997. Early alkaline magmatism in the Deccan traps: implications for plume incubation and lithospheric rifting. Physics of the Earth and Planetary Interiors, 104, 371-376. Cerca con Google

SIMONETTI, A., BELL, K., VILADKAR, S.G. 1995. Isotopic data from the Amba Dongar Carbonatite Complex, west-central India: Evidence for an enriched mantle source. Chemical Geology (Isotope Geoscience Section) 122, 185-198. Cerca con Google

SIMONETTI, A., GOLDSTEIN, S. L., SCHMIDBERGER, S. S., VILADKAR , S. G., 1998. Geochemical and Nd, Pb, and Sr Isotope Data from Deccan Alkaline Complexes— Inferences for Mantle Sources and Plume-Lithosphere Interaction, Journal of petrolgy, 39 (11-12), 1847-1864. Cerca con Google

SPERA, F. J., BOHRSON, W. A., 2001. Energy-constrained open-system magmatic processes I: general model and Energy-Constrained Assimilation and Fractional Crystallization (EC-AFC) formulation. Journal of Petrology, 42, 999-1018. Cerca con Google

SRIVASTAVA, R. K., ELLAM, R. M., GAUTAM, G. C.,2009. Sr–Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India. Mineralogy and Petrology, 96, 71-79. Cerca con Google

SRIVASTAVA, R.K., HEAMAN, L. M., SINHA, A. K., SHIHUA, S., 2005. Emplacement age and isotope geochemistry of Sung Valley alkaline-carbonatite complex, Shillong plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos, 81, 33- 54. Cerca con Google

STEIGER, R.H., JAGER, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36, 359-362. Cerca con Google

STOREY, M., MAHONEY,J.J., SAUNDERS,A.D., DUNCAN,R.A., KELLEY, S.P., COFFIN, M.F., 1995. Timing of hot spot related volcanism and the breakup of Madagascar from India. Science, 267, 852-855. Cerca con Google

STRACKE, S., BIZIMIS, M., SALTERS, V. J. M., 2003. Recycling oceanic crust: quantitative constraints. Geochemistry Geophysics Geosystems, 4, doi:10.1029/2001GC000223. Cerca con Google

SUBBA RAO, D.V., NAQVI, S.M., 1999. Archaean komatiites from the older schist belt of Kalyadi in Western Dharwar Craton, Karnataka. Journal of the Geological Society of India, 53, 347–354. Cerca con Google

SUBRAHMANYA, K.R., 1998. Tectono-magmatic evolution of the west coast of India. Gondwana Research, l, 319-327. Cerca con Google

SUKHESWALA R.N., SETHNA S. F. 1973. Oversaturated and undersaturated differentiates in the tholeiitic igneous complex of Phenai Mata, Baroda District, Gujarat State, India. N. Jb. Miner. Abh. 118, 2, 159-176. Cerca con Google

SUN, S.-S. & MCDONOUGH, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42, 313-345. Cerca con Google

TATSUMI, Y., NOHDA, S., 1990. Geochemical stratification in the upper mantle: evidence from Leg 115 basalts in the Indian Ocean. In: Duncan, R. A., Backman, J., Peterson, L. C., et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX: Ocean Drilling Program, pp. 63–69. Cerca con Google

TAYLOR, P.N., CHADWICK, B., MOORBATH, S., RAMAKRISHNAN, M., VISWANATHA, M.N., 1984. Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks amd the Chitradurga Granite with special reference to the late Archean Evolution of the Karnataka Craton, Southern India. Precambrian Research, 23, 349-375. Cerca con Google

TOBISCH, O. T., COLLERSON, K.D., BHATTACHARYYA, T., MUKHOPADHYAY, D., 1994. Structural relationships and Sr-Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India: implications for the evolution of the Aravalli craton. Precambrian Research, 65, 19-339. Cerca con Google

TODAL, A., EDHOLM, O., 1998. Continental margin off Western India and Deccan Large Igneous Province. Marine Geophysical Researches, 20, 273–291. Cerca con Google

TORSVIK, T.H., CARTER, L.M., ASHWAL, L.D., BHUSHAN, S.K., PANDIT, M.K., JAMTVEIT, B., 2001. Rodinia refined or obscured: paleomagnetism of the Malani Igneous Suite (NW India). Precambrian Research, 108, 319–333. Cerca con Google

VANDAMME, D., COURTILLOT, V., 1992. Paleomagnetic constraints on the structure of the Deccan traps. Physics of the Earth and Planetary Interiors, 74, 241-261. Cerca con Google

VANDAMME, D., COURTILLOT, V., BESSE, J., MONTIGNY, R., 1991. Paleomagnetism and age determinations of the Deccan Traps (India): result for a Nagpur –Bombay traverse and review of earlier work. Reviews of Geophysics, 29, 159-190. Cerca con Google

VANDERKLUYSEN, L., MAHONEY, J. J., HOOPER, P.R., SHETH, H.C., RAY, R., 2010. The Feeder System of the DeccanTraps (India): Insights from Dike Geochemistry. Journal of Petrology, 0, 1-29. Cerca con Google

VENKATESAN, T. R., PANDE, K., GHEVARIYA, Z.G., 1996. 40Ar/39Ar ages of Anjar Traps, western Deccan province (India) and its relation to the Cretaceous-Tertiary Boundary events. Current Science, 70, 990-996. Cerca con Google

VENKATESAN, T. R., PANDE, K., GOPALAN, K., 1993. Did Deccan volcanism pre-date the Cretaceous/Tertiary transition? Earth and Planetary Science Letters, 19, 181-189. Cerca con Google

VILADKAR, S.G., and SCHIDLOWSKI, M., 2000. Carbon and Oxygen Isotope Geochemistry of the Amba Dongar Carbonatite Complex, Gujarat, India. Gondwana Research, 3, 415-424. Cerca con Google

VOLPE, A.M, MACDOUGALL, J.D., 1990. Geochemistry and isotopic characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: implications for riofting in the Proterozoic. Precambrian Research, 48. 167-191. Cerca con Google

WEAVER, B. L., 1980. Rare-Earth Element Geochemistry of Madras Granulites. Contribution to Mineralogy and Petrology, 71, 271-279. Cerca con Google

WEIS, D., INGLE, S., DAMASCENO, D., FREY, F. A., NICOLAYSEN, K.,BARLING, J., 2001. Leg 183 Shipboard Scientific PartyOrigin of continental components in Indian Ocean basalts: Evidence from Elan Bank (Kerguelen Plateau, ODP Leg183, Site 1137). Geology, 29,147-150. Cerca con Google

WHITE, W. M., CHEATHAM, M. M., DUNCAN, R. A., 1990. Isotope geochemistry of Leg 115 basalts and inferences on the history of the Reunion mantle plume. In: Duncan, R. A., Backman, J., Peterson, Cerca con Google

L. C., et al. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, 115. College Station, TX: Ocean Drilling Program, pp. 53–61. Cerca con Google

WIDDOWSON, M., PRINGLE, M.S., FERNANDEZ, O.A., 2000. A post K-T boundary (early Paleocene) age for Deccan-type feeder dykes, Goa, India. Journal of Petrology, 41, 1177-1194. Cerca con Google

WIEDENBECK, M., GOSWAMI, J.N., ROY, A.B., 1996. Stabilization of the Aravalli Craton of northwestern India at 2.5 Ga: an ion microprobe zircon study. Chemical Geology, 129, 325–340. Cerca con Google

WIGNALL, P.B., 2001. Large igneous provinces and mass extinctions. Earth-Science Reviews, 53, 1–33. Cerca con Google

WILF, P., JOHNSON, K. R., HUBER, B.T., 2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous–Paleogene boundary. Proceedings of the National Academy of Sciences, 100, 599–604. Cerca con Google

WILLBOLD, M. and STRACKE, S., 2006. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochemistry Geophysics Geosystems, 7, doi:10.1029/2005GC001005. Cerca con Google

WILSON, G.P., 2005. Mammalian Faunal Dynamics During the Last 1.8 Million Years of the Cretaceous in Garfield County, Montana. Journal of Mammalian Evolution, 12, 53-76. Cerca con Google

WINDLEY, B.F., RAZAFINIPARANY, A., RAZAKAMANANA, T., ACKERMAND, D., 1994. Tectonic framework of the Precambrian of Madagascar and its Gondwana connections: a review and reappraisal. Geologisches Rundschau, 83, 642–659. Cerca con Google

WORKMAN, R. K., HART, S. R., 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231, 53- 72. Cerca con Google

ZACHARIAH, J.K., RAJAMANI, V., HANSON, G. N., 1997. Petrogenesis and source characteristics of metatholeiites from the Archean Ramagiri schist belt, eastern part of Dharwar craton, India. Contribution to Mineralogy and Petrology, 129, 87-104. Cerca con Google

ZACHARIAH, J.K., HANSON, G.N., RAJAMANI, V., 1995. Postcrystallization disturbance in the neodymium and lead isotope systems of metabasalts from the Ramagiri schist belt, southern India. Geochimica et Cosmochimica Acta, 59, 3189–3203. Cerca con Google

ZEGER, T., WHITE, S., DE KEIJZER, M., DIRKS, P., 1996. Extensional structures during deposition of the 3460 Ma Warrawoona Group in the eastern Pilbara Craton, Western Australia. Precambrian Research, 80, 89–105. Cerca con Google

ZINDLER, A., HART, S., 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., 14, 493-571. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record