Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | AccessibilitĂ 

| Crea un account

Grossi, Paola (2008) Plasticità  corticale nella sclerosi multipla all'esordio clinico: studio dell'osservazione dell'azione con risonanza magnetica funzionale. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2175Kb

Abstract (inglese)

Objective: Functional magnetic resonance imaging (fMRI) studies conducted on patients with multiple sclerosis (MS) indicated that execution of motor tasks determines an increased recruitment of some areas of the fronto-parietal circuit associated with grasping and manipulating objects. In addition, neuroimaging research on healthy humans disclosed that a number of fronto-parietal areas involved in hand action execution are also activated during hand action observation. We used fMRI to compare patterns of haemodynamic activity evoked by observation of grasping actions in early relapsing remitting MS (RRMS) patients and in normal controls.
Methods: 12 right-handed early RRMS patients have been recruited. Further, 15 sex- and age-matched right-handed healthy volunteers served as controls. Using a 1.5T scanner, functional images were obtained with a single shot echo-planar T2*-weighted sequence in order to measure blood oxygenation level-dependent contrast throughout the whole brain (32 axial slices, slice thickness 3.5 mm/0.5 mm gap, matrix 64 x 64 voxels, FOV = 224 x 224 mm2, flip angle = 90°, TR = 3 s, TE = 50 ms). During scanning participants were requested to observe static images depicting a human hand either grasping an object (grasping condition) and resting alongside an object (control condition). Experimental conditions were presented in a block design with blocks' duration of 15 s. Functional volumes were pre-processed and analysed using the software SPM5 by realignment and by normalization to the standard space defined by the Montreal Neurological Institute (MNI) template. Lastly, volumes were smoothed using an 8 mm isotropic Gaussian kernel. High-pass filtering was also applied.
Results: Ours results suggest that, among other areas, action observation (grasping condition) evoked an increased activation of both the precentral gyrus, bilaterally and the inferior occipital gyrus, billaterally in MS patients as compared to controls. During the control condition (human hand resting alongside an object), compared to healthy volunteers, patients with MS had more significant activations of the left inferior occipital gyrus. The level for these contrasts was set at p<0.001 (uncorrected; extent threshold of at least 10 contiguous voxels).
Conclusions: These findings suggest that during hand action observation early RRMS patients show an increased activation in regions of the premotor cortex known to be involved in action observation. This may indicate that the "over-activation mechanism" emerged in RRMS patients during action execution tasks may extend to action understanding situations.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Battistin, Leontino
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):Osservazione dell'azione sclerosi multipla
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:676
Depositato il:08 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Allegretta, M., et al., T cells responsive to myelin basic protein in patients with multiple sclerosis. Science, 1990. 247(4943): p. 718-21. Cerca con Google

2. Ebers, G.C., et al., A full genome search in multiple sclerosis. Nat Genet, 1996. 13(4): p. 472-6. Cerca con Google

3. Ebers, G.C. and A.D. Sadovnick, The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol, 1994. 54(1-2): p. 1-17. Cerca con Google

4. Rosati, G., Descriptive epidemiology of multiple sclerosis in Europe in the 1980s: a critical overview. Ann Neurol, 1994. 36 Suppl 2: p. S164-74. Cerca con Google

5. Poser, C.M., The epidemiology of multiple sclerosis: a general overview. Ann Neurol, 1994. 36 Suppl 2: p. S180-93. Cerca con Google

6. Compston, A., The epidemiology of multiple sclerosis: principles, achievements, and recommendations. Ann Neurol, 1994. 36 Suppl 2: p. S211-7. Cerca con Google

7. Ranzato, F., et al., Increasing frequency of multiple sclerosis in Padova, Italy: a 30 year epidemiological survey. Mult Scler, 2003. 9(4): p. 387-92. Cerca con Google

8. Comi, G., et al., A multiparametric MRI study of frontal lobe dementia in multiple sclerosis. J Neurol Sci, 1999. 171(2): p. 135-44. Cerca con Google

9. Huijbregts, S.C., et al., Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology, 2004. 63(2): p. 335-9. Cerca con Google

10. Rao, S.M., et al., Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 1991. 41(5): p. 685-91. Cerca con Google

11. Rao, S.M., et al., Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology, 1991. 41(5): p. 692-6. Cerca con Google

12. Rao, S.M., et al., Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis. Neurology, 1989. 39(2 Pt 1): p. 161-6. Cerca con Google

13. Swirsky-Sacchetti, T., et al., Neuropsychological and structural brain lesions in multiple sclerosis: a regional analysis. Neurology, 1992. 42(7): p. 1291-5. Cerca con Google

14. Rao, S., Cognitive function in patients with multiple sclerosis: impairment and treatment. Int J MS Care, 2004. 1: p. 9-22. Cerca con Google

15. Amato, M.P., et al., Cognitive impairment in early-onset multiple sclerosis. Pattern, predictors, and impact on everyday life in a 4-year follow-up. Arch Neurol, 1995. 52(2): p. 168-72. Cerca con Google

16. Kujala, P., R. Portin, and J. Ruutiainen, The progress of cognitive decline in multiple sclerosis. A controlled 3-year follow-up. Brain, 1997. 120 ( Pt 2): p. 289-97. Cerca con Google

17. M.P. Amato, G.F.S., V. Zipoli, Disturbi cognitivi Aspetti psico-sociali della sclerosi multipla. 2002: Springer Italia. Cerca con Google

18. W. Beatty, D.E.G., N. Monson, et al, Screening for cognitive impairment in multiple sclerosis: an evaluation of the Mini-Mental-State-Examination. Arch Neurol 1990. 47: p. 290-301. Cerca con Google

19. RK Heaton, L.T., L.M Nelson et al, Brief and intermediate-lenght screening of neuropsychological impairment in multiple sclerosis, in Neurobehavioral aspects of multiple sclerosis, RAO, Editor. 1990, Oxford University Press: New York. p. 149-160. Cerca con Google

20. Jacobs, J.W., et al., Screening for organic mental syndromes in the medically ill. Ann Intern Med, 1977. 86(1): p. 40-6. Cerca con Google

21. Fischer, J.S., et al., Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Multiple Sclerosis Collaborative Research Group. Ann Neurol, 2000. 48(6): p. 885-92. Cerca con Google

22. Rao, S.M., Cognitive function studyy group. National multiple sclerosis society. A manual for the brief repeatable battery of neuropsychological test in multiple sclerosis. 1990, New York: National multiple sclerosis society. Cerca con Google

23. Basso, M.R., et al., Screening for cognitive dysfunction in multiple sclerosis. Arch Neurol, 1996. 53(10): p. 980-4. Cerca con Google

24. Mainero, C., et al., fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage, 2004. 21(3): p. 858-67. Cerca con Google

25. Staffen, W., et al., Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain, 2002. 125(Pt 6): p. 1275-82. Cerca con Google

26. Audoin, B., et al., Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp, 2003. 20(2): p. 51-8. Cerca con Google

27. Rocca, M.A. and M. Filippi, Functional MRI in multiple sclerosis. J Neuroimaging, 2007. 17 Suppl 1: p. 36S-41S. Cerca con Google

28. A.E. Thornton, N.R., Memory impairment in multiple sclerosis: a quantitative review. . Neuropsychology, 1997. 11(3): p. 357-366. Cerca con Google

29. I.K. Penner, M.R., L. Kappos, K. Opwies, W. Radu, Analysis of impairment related fuinctional architectrue in MS patients during performance of different attention tasks. . J. Neurol 2003. 250(4): p. 461-472. Cerca con Google

30. L.H. Sweet, S.M.R., M. Primeau, A.R. Mayer, R.A. Cohen Functional magnetic resonance imaging of working memory among multiple sclerosis patients. J Neuroimaging. 14(2): p. 50- 57. Cerca con Google

31. Link, H. and G. Tibbling, Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand J Clin Lab Invest, 1977. 37(5): p. 397-401. Cerca con Google

32. Tourtellotte, W.W., et al., Multiple sclerosis: measurement and validation of central nervous system IgG synthesis rate. Neurology, 1980. 30(3): p. 240-4. Cerca con Google

33. Reiber, H. and K. Felgenhauer, Protein transfer at the blood cerebrospinal fluid barrier and the quantitation of the humoral immune response within the central nervous system. Clin Chim Acta, 1987. 163(3): p. 319-28. Cerca con Google

34. Ohman, S., et al., An improved formula for the judgement of intrathecally produced IgG in the presence of blood brain barrier damage. Clin Chim Acta, 1989. 181(3): p. 265-72. Cerca con Google

35. M Onofri, M.B., AG Censoni, D gambi, Serial recording of VEPs to different stimuli in multiple sclerosis patients. Ital J Neurol Sci 1987. 6: p. 113-119. Cerca con Google

36. A. M. Halliday, W.Y.M., , J Mushin, Delayed vidual evoked response in optic neuritis. Lancet, 1972. 1: p. 982-985. Cerca con Google

37. Poser, C.M., et al., New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol, 1983. 13(3): p. 227-31. Cerca con Google

38. Prineas, J.W., The neuropathology of multiple sclerosis, in Hanbook of clinical neurology J.B. P.J. Vinken, H.L. Klawans, J. C. Kietsier, Editor. 1985, Elsevier Amsterdam. p. 213-217. Cerca con Google

39. Barkhof, F., et al., Relapsing-remitting multiple sclerosis: sequential enhanced MR imaging vs clinical findings in determining disease activity. AJR Am J Roentgenol, 1992. 159(5): p. 1041-7. Cerca con Google

40. Isaac, C., et al., Multiple sclerosis: a serial study using MRI in relapsing patients. Neurology, 1988. 38(10): p. 1511-5. Cerca con Google

41. Willoughby, E.W., et al., Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann Neurol, 1989. 25(1): p. 43-9. Cerca con Google

42. Harris, J.O., et al., Serial gadolinium-enhanced magnetic resonance imaging scans in patients with early, relapsing-remitting multiple sclerosis: implications for clinical trials and natural history. Ann Neurol, 1991. 29(5): p. 548-55. Cerca con Google

43. Thompson, A.J., et al., Serial gadolinium-enhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology, 1992. 42(1): p. 60-3. Cerca con Google

44. McDonald, W.I., et al., Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol, 2001. 50(1): p. 121-7. Cerca con Google

45. Chris H. Polman, S.C.R., Gilles Edan, MD, Massimo Filippi,, et al., Diagnostic Criteria for Multiple Sclerosis:2005 Revisions to the “McDonald Criteria”. Ann Neurol, 2005. 58: p. 840-846. Cerca con Google

46. Barkhof, F., et al., Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain, 1997. 120 ( Pt 11): p. 2059-69. Cerca con Google

47. Tintore, M., et al., Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis. AJNR Am J Neuroradiol, 2000. 21(4): p. 702-6. Cerca con Google

48. Fazekas, F., et al., Criteria for an increased specificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology, 1988. 38(12): p. 1822-5. Cerca con Google

49. Paty, D.W., et al., MRI in the diagnosis of MS: a prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology, 1988. 38(2): p. 180-5. Cerca con Google

50. Filippi, M., M.A. Rocca, and G. Comi, The use of quantitative magneticresonance- based techniques to monitor the evolution of multiple sclerosis. Lancet Neurol, 2003. 2(6): p. 337-46. Cerca con Google

51. Rocca, M.A., et al., Cortical adaptation in patients with MS: a crosssectional functional MRI study of disease phenotypes. Lancet Neurol, 2005. 4(10): p. 618-26. Cerca con Google

52. Filippi, M. and M.A. Rocca, Disturbed function and plasticity in multiple sclerosis as gleaned from functional magnetic resonance imaging. Curr Opin Neurol, 2003. 16(3): p. 275-82. Cerca con Google

53. Filippi, M. and M.A. Rocca, Cortical reorganisation in patients with MS. J Neurol Neurosurg Psychiatry, 2004. 75(8): p. 1087-9. Cerca con Google

54. Reddy, H., et al., Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain, 2000. 123 ( Pt 11): p. 2314-20. Cerca con Google

55. Werring, D.J., et al., Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry, 2000. 68(4): p. 441-9. Cerca con Google

56. Filippi, M., et al., A functional MRI study of cortical activations associated with object manipulation in patients with MS. Neuroimage, 2004. 21(3): p. 1147-54. Cerca con Google

57. Parry, A.M., et al., Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. Brain, 2003. 126(Pt 12): p. 2750-60. Cerca con Google

58. Filippi, M., et al., Functional magnetic resonance imaging correlates of fatigue in multiple sclerosis. Neuroimage, 2002. 15(3): p. 559-67. Cerca con Google

59. Rocca, M.A., et al., A functional magnetic resonance imaging study of patients with secondary progressive multiple sclerosis. Neuroimage, 2003. 19(4): p. 1770-7. Cerca con Google

60. Pantano, P., et al., A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain, 2005. 128(Pt 9): p. 2146-53. Cerca con Google

61. Filippi, M., et al., Correlations between structural CNS damage and functional MRI changes in primary progressive MS. Neuroimage, 2002. 15(3): p. 537-46. Cerca con Google

62. Pantano, P., et al., Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage, 2002. 17(4): p. 1837-43. Cerca con Google

63. Pantano, P., et al., Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain, 2002. 125(Pt 7): p. 1607-15. Cerca con Google

64. Binkofski, F., et al., A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci, 1999. 11(9): p. 3276-86. Cerca con Google

65. Buccino, G., et al., Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci, 2001. 13(2): p. 400- 4. Cerca con Google

66. Rizzolatti, G., L. Fogassi, and V. Gallese, Parietal cortex: from sight to action. Curr Opin Neurobiol, 1997. 7(4): p. 562-7. Cerca con Google

67. Cohen, Y.E. and R.A. Andersen, A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci, 2002. 3(7): p. 553- 62. Cerca con Google

68. Matelli, M., et al., Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol, 1986. 251(3): p. 281-98. Cerca con Google

69. di Pellegrino, G., et al., Understanding motor events: a neurophysiological study. Exp Brain Res, 1992. 91(1): p. 176-80. Cerca con Google

70. Rizzolatti, G., et al., Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 1996. 3(2): p. 131-41. Cerca con Google

71. Petrides, M. and D.N. Pandya, Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol, 1984. 228(1): p. 105-16. Cerca con Google

72. Hyvarinen, J., S. Carlson, and L. Hyvarinen, Early visual deprivation alters modality of neuronal responses in area 19 of monkey cortex. Neurosci Lett, 1981. 26(3): p. 239-43. Cerca con Google

73. Keysers, C. and D.I. Perrett, Demystifying social cognition: a Hebbian perspective. Trends Cogn Sci, 2004. 8(11): p. 501-7. Cerca con Google

74. Perrett, Understanding the visual appearance and consequence of hand actions. , in Vision and action. The control of grasping, M.A. Goodale, Editor. 1990, Ablex Publishing: Norwood, New Jersey. p. 163-180. Cerca con Google

75. Allison, T., A. Puce, and G. McCarthy, Social perception from visual cues: role of the STS region. Trends Cogn Sci, 2000. 4(7): p. 267-278. Cerca con Google

76. Perrett, D.I., et al., Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol, 1989. 146: p. 87-113. Cerca con Google

77. Jellema, T., et al., Neural representation for the perception of the intentionality of actions. Brain Cogn, 2000. 44(2): p. 280-302. Cerca con Google

78. Rizzolatti, G., et al., Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp Brain Res, 1988. 71(3): p. 491-507. Cerca con Google

79. V. Gallese, L.F., L. Fadiga, G, Rizzolatti, Action representation and the inferior parietal lobule, in Common mechanisms in perception and action: attention and performance. 2002, Oxford University Press: New York. p. 247-266. Cerca con Google

80. Raos, V., M.N. Evangeliou, and H.E. Savaki, Observation of action: grasping with the mind's hand. Neuroimage, 2004. 23(1): p. 193-201. Cerca con Google

81. Fadiga, L., et al., Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol, 1995. 73(6): p. 2608-11. Cerca con Google

82. Grafton, S.T., et al., Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res, 1996. 112(1): p. 103-11. Cerca con Google

83. Rizzolatti, G., et al., Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res, 1996. 111(2): p. 246- 52. Cerca con Google

84. Johnson-Frey, S.H., et al., Actions or hand-object interactions? Human inferior frontal cortex and action observation. Neuron, 2003. 39(6): p. 1053- 8. Cerca con Google

85. Shmuelof, L. and E. Zohary, Dissociation between ventral and dorsal fMRI activation during object and action recognition. Neuron, 2005. 47(3): p. 457- 70. Cerca con Google

86. Hari, R., et al., Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci U S A, 1998. 95(25): p. 15061-5. Cerca con Google

87. Nishitani, N. and R. Hari, Temporal dynamics of cortical representation for action. Proc Natl Acad Sci U S A, 2000. 97(2): p. 913-8. Cerca con Google

88. Cochin, S., et al., Perception of motion and qEEG activity in human adults. Electroencephalogr Clin Neurophysiol, 1998. 107(4): p. 287-95. Cerca con Google

89. Strafella, A.P. and T. Paus, Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport, 2000. 11(10): p. 2289-92. Cerca con Google

90. Baldissera, F., et al., Modulation of spinal excitability during observation of hand actions in humans. Eur J Neurosci, 2001. 13(1): p. 190-4. Cerca con Google

91. Patuzzo, S., A. Fiaschi, and P. Manganotti, Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-selfaction observation. Neuropsychologia, 2003. 41(9): p. 1272-8. Cerca con Google

92. Bonda, E., et al., Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci, 1996. 16(11): p. 3737-44. Cerca con Google

93. Pelphrey, K.A., et al., Functional anatomy of biological motion perception in posterior temporal cortex: an FMRI study of eye, mouth and hand movements. Cereb Cortex, 2005. 15(12): p. 1866-76. Cerca con Google

94. Avikainen, S., N. Forss, and R. Hari, Modulated activation of the human SI and SII cortices during observation of hand actions. Neuroimage, 2002. 15(3): p. 640-6. Cerca con Google

95. Calabrese, M., et al., Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol, 2007. Cerca con Google

96. Calabrese, M., et al., Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol, 2007. 64(10): p. 1416-22. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record