Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bosich, Daniele (2014) Medium Voltage DC integrated power systems for large all electric ships. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
4033Kb

Abstract (inglese)

The Medium Voltage Direct Current (MVDC) distribution represents a promising technology for future shipboard power systems. In such a topic, during the last years, universities and reserch centers have proposed technical solutions to achieve the important targets of MVDC technology, for instance fuel saving, reducing power system weight/space, reconfigurability in case of fault and enhanced power quality. Conversely, the main challenge to face regards voltage control, which has to be capable for guaranteeing the paramount requirement of stability. In regards to this aspect, a possible instability may arise due to the presence of high-bandwidth controlled load converters, modeled as Constant Power Loads (CPLs). Such non-linear loads are seen from the system as negative incremental resistances which are the cause of voltage instability in presence of a perturbation (e.g. load connection, generating system disconnection).
The thesis has been realized in the Laboratory of Grid Connected and Marine Electric Power Generation and Control (EPGC Lab.), at the University of Trieste. The aim is to develop voltage control strategies to solve the CPL issue in a realistic multi-converter MVDC Integrated Power System, which is conveniently designed considering a real cruise line MVAC distribution. In such a system, voltage instability may be engage by different approaches, exploiting plant solutions (addition of dedicated filters, addition of energy storage devices) or control solutions. The latter is followed in this thesis: in this case voltage actuators (DC/DC power converters) are used to compensate for the voltage instability: therefore, on one hand (load side) power converters are responsible for the non-linear loads’ issue but, on the other (generators side), they may be utilized to contribute in its solution, thus ensuring a stable behavior. The stabilizing approach foresees the employment of different control techniques, whose theory is focused in the thesis. Starting from the simplier State Feedback (SF), two techniques are mostly studied in the multi-converter arrangement, i.e the Active Damping (AD) and the Linearization via State Feedback (LSF).
The AD is a control method to transiently increase the filter resistances in order to damp the voltage oscillations: one of the main pros is the simple implementation on digital controllers, whereas the drawback regards its limited stabilizing action. Therefore, strategies based on Active Damping are to be used to stabilize non-critical systems. Conversely, LSF is a well-performing technique to obtain a notable cancellation of the non-linearities related to CPLs, by exploiting the DC/DC converters to apply a proper non-linear control function. Against the notable capability in stabilizing critical systems, great attention is to be paid in control function’s estimation: inaccurate system parameters or errors in controller’ feedbacks may invalidate the LSF approach, determining a partial loop-cancellation, therefore a non-linear resulting power system. Final simulations are aimed in testing AD and LSF, implemented in global and local control strategies: the former strategy has the purpose to solve the instability directly on CPLs, whereas the second one ensures the bus stability.

Abstract (italiano)

La distribuzione in media tensione continua (Medium Voltage Direct Current, MVDC) rappresenta una tecnologia promettente per i sistemi elettrici navali del futuro. A tal riguardo, negli ultimi anni, università e centri di ricerca hanno proposto soluzioni tecniche tali da raggiungere gli obiettivi propri della tecnologia MVDC: fra gli altri, risparmio di carburante, riduzione del peso/ingombro dell’impianto elettrico, riconfigurabilità a fronte di guasti e miglioramento della power quality. D’altra parte, la più grande sfida da affrontare riguarda la regolazione della tensione che deve risultare in grado di garantire il requisito fondamentale della stabilità. Relativamente a questo aspetto, una possibile instabilità si manifesta in presenza di convertitori di carico a banda elevata, modellizzabili come carichi a potenza costante (Constant Power Loads, CPLs). Tali carichi non-lineari vengono visti dal sistema come resistenze incrementali negative, le quali rappresentano la causa dell’instabilità della tensione a fronte di un disturbo (per esempio connessione di carico, disconnessione di un sistema di genenerazione).
La tesi è stata realizzata presso il Laboratorio Grid Connected and Marine Electric Power Generation and Control (EPGC Lab.), presso l’Università degli Studi di Trieste. Lo scopo è quello di sviluppare strategie per il controllo della tensione in grado di risolvere la questione CPL, considerando un possibile impianto elettrico integrato (multi-convertitore) in MVDC, convenientemente progettato a partire dalla distribuzione reale MVAC di una nave da crociera. Nel sistema visto, l’instabilità di tensione può essere affrontata secondo diversi approcci, sfruttando soluzioni impiantistiche (aggiunta di filtraggio dedicato, aggiunta di energy storage) oppure soluzioni controllistiche. Il secondo approccio è quello seguito nella presente tesi: gli attuatori di tensione (convertitori DC/DC) vengono usati in questo caso per compensare l’instabilità di tensione. Quindi, da una parte (lato carico) i convertitori sono responsabili del problema dei carichi non-lineari, dall’altro (lato generatori) possono essere utilizzati per contribuire alla sua soluzione, garantendo un comportamento stabile. L’approccio stabilizzante previsto prevede l’utilizzo di diverse tecniche di controllo, analizzate nella tesi dal punto di vista teorico. A partire dalla tecnica semplice State Feedback (SF), altre due tecniche sono state studiate per il caso di sistema multi-converter, ovvero l’Active Damping (AD) e il Linearization via State Feedback (LSF).
L’AD è un metodo di controllo per incrementare transitorialmente la resistenza dei filtri, in modo tale da smorzare le oscillazioni di tensione: uno dei principali vantaggi è quello relativo alla semplice ingegnerizzazione su controllori digitali, mentre lo svantaggio riguarda la limitata azione stabilizzante. Pertanto, strategie basate sull’AD devono considerarsi valide per stabilizzare sistemi non critici. D’altra parte, LSF è una tecnica molto valida per ottenere una buona cancellazione delle non-linearità dei CPL, per mezzo dell’azione di convertitori DC/DC in grado di applicare un’opportuna funzione di controllo non-lineare. A fronte di una notevole capacità nello stabilizzare sistemi critici, grande attenzione va posta nella stima della funzione di controllo: conoscenza inaccurata dei parametri o errori nei feedback ai controllori possono invalidare l’approccio LSF, causando una parziale cancellazione, quindi un sistema risultante non-lineare. Le simulazioni finali hanno lo scopo di testare le tecniche AD e LSF, implementate in strategie di controllo locale e globale: la prima strategia ha lo scopo di risolvere l’instabilità direttamente sui CPL, mentre la seconda assicura la stabilità del bus.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sulligoi, Giorgio
Correlatore:Giadrossi, Giovanni
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:30 Gennaio 2014
Anno di Pubblicazione:30 Gennaio 2014
Parole chiave (italiano / inglese):MVDC, CPL, voltage control, multi-converter, shipboard power system, stability, DC/DC converter, Active Damping, Linearization via State Feedback
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/32 Convertitori, macchine e azionamenti elettrici
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/33 Sistemi elettrici per l'energia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6763
Depositato il:03 Nov 2014 13:48
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G. Sulligoi, “All Electric Ships: Present and Future after 20 Years of Research and Technical Achievements”, EERR Electrical Engineering Research Report, vol. 1, no. 27, December 2011. Cerca con Google

[2] J. S. Thongam, M. Tarbouchi, A. F. Okou, D. Bouchard and R. Beguenane, “All-Electric Ships-A review of the Present State of the Art”, IEEE Ecological Vehicles and Renewable Energies Conference (EVER) 2013, pp. 1-8, March 27-30, 2013, Monaco. Cerca con Google

[3] S. D. Sudhoff, “Currents of Change”, IEEE Power and Energy Magazine, vol. 9, no. 4, pp. 30-37, July-August 2011. Cerca con Google

[4] R. Hepburn, “Why a Naval Architect Likes an Electric Ship”, IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) 2008, pp. 591-593, June 11-13, 2008, Ischia (Italy). Cerca con Google

[5] V. Arcidiacono, R. Menis, G. Sulligoi, “Improving Power Quality in All Electric Ships Using a Voltage and VAR Integrated Regulator”, IEEE Electric Ship Technologies Symposium (ESTS) 2007, pp. 322-327, May 21-23, 2007, Arlington (VA), USA. Cerca con Google

[6] D. Bosich, M. Filippo, D. Giulivo, G. Sulligoi, A. Tessarolo. “Thruster motor start-up transient in an all-electric cruise-liner: Numerical simulation and experimental assessment”, IEEE International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) 2012, pp. 1-5, October 16-18, 2012, Bologna (Italy). Cerca con Google

[7] J. V. Meer, A. Bendre, S. Krstic and D. Divan, “Improved ship power system - generation, distribution, and fault control for electric propulsion and ship service”, IEEE Electric Ship Technologies Symposium (ESTS) 2005, pp. 284-291, July 25-27, 2005, Philadelphia (PA), USA. Cerca con Google

[8] S. Castellan, S. Quaia, P. Scialla, G. Sulligoi, “All-electric Mega-Yachts: Integrated power system operation and its interaction with propulsion converters”, IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) 2006, pp. 317-322, May 23-26, 2006, Taormina (Italy). Cerca con Google

[9] V. Bucci, A. Marinò, S. Castellan, G. Sulligoi, “Innovative design concepts for the yachting market: expedition yachts and electric propulsion”, 5th International Congress of Maritime Technological Innovations and Research, November 21-23, 2007, Barcelona (Spain). Cerca con Google

[10] G. Sulligoi, S. Castellan, M. Aizza, D. Bosich, L. Piva, G. Lipardi, “Active front-end for shaft power generation and voltage control in FREMM frigates integrated power system: Modeling and validation”, IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) 2012, pp. 452-457, June 20-22, 2012, Sorrento (Italy). Cerca con Google

[11] G. Sulligoi, D. Bosich, T. Mazzuca, L. Piva, “The FREMM simulator: A new software tool to study electro-mechanic dynamics of the shipboard integrated power system”, IEEE International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS) 2012, pp. 1-5, October 16-18, 2012, Bologna (Italy). Cerca con Google

[12] G. Sulligoi, D. Bosich, A. Vicenzutti, L. Piva, G. Lipardi, T. Mazzuca, “Studies of electromechanical transients in FREMM frigates integrated power system using a time-domain simulator”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 429-433, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

[13] IEEE Std. 1709-2010, “IEEE Recommended Practice for 1 kV to 35 kV Medium-Voltage DC Power Systems on Ships”, IEEE Industry Applications Society, Petroleum & Chemical Industry Committee, November 2010. Cerca con Google

[14] S. B. Leeb, J. L. Kirtley, Jr., W. Wichakool, Z. Remscrim, C. N. Tidd, J. A. Goshorn, K. Thomas, R. W. Cox and R. Chaney, “How Much DC Power Is Necessary?”, American Society of Naval Engineers, 2010. Cerca con Google

[15] N. Doerry and J. Amy, “Functional decomposition of a medium voltage DC integrated power system”, ASNE Shipbuilding in Support of the Global War on Terrorism Conference, April 14-17, 2008, Biloxi (MS), USA. Cerca con Google

[16] N. Doerry and K. McCoy, “Next Generation Integrated Power System, NGIPS Technology Development Roadmap”, Naval Sea Systems Command, 2007. Cerca con Google

[17] N. Doerry and J. Amy, “Implementing Quality of Service in Shipboard Power System Design”, IEEE Electric Ship Technologies Symposium (ESTS) 2011, pp. 1-8, April 10-13, 2011, Alexandria (VA), USA. Cerca con Google

[18] IEEE Std. 1826-2012, “IEEE Standard for Power Electronics Open System Interfaces in Zonal Electrical Distribution Systems Rated Above 100 kW”, IEEE Industry Applications Society, Petroleum & Chemical Industry Committee, June 2012. Cerca con Google

[19] G. Sulligoi, “Stato dell’arte e ricerca nelle applicazioni elettriche navali”, AEIT magazine, no. 3, pp. 6-11, March 2009. Cerca con Google

[20] T. Ericsen, “The ship power electronic revolution: Issues and answers”, IEEE Petroleum and Chemical Industry Technical Conference (PCIC) 2008, pp. 1-11, September 22-24, 2008, Cincinnati (OH), USA. Cerca con Google

[21] Y. Khersonsky, “New IEEE Standards for Ships”, IEEE Electric Ship Technologies Symposium (ESTS) 2011, pp. 424-429, April 10-13, 2011, Alexandria (VA), USA. Cerca con Google

[22] T. Ericsen, N. Hingorani and Y. Khersonsky, “Power Electronics and Future Marine Electrical Systems”, IEEE Transactions on Industry Applications, vol. 42, no. 1, pp. 155-163, January/February 2006. Cerca con Google

[23] T. Ericsen, “The Second Electronic Revolution (It’s All About Control)”, IEEE Transactions on Industry Applications, vol. 46, no. 5, September/October 2010. Cerca con Google

[24] P. Kundur et al., “Definition and Classification of Power System Stability”, IEEE Transactions on Power Systems, vol. 19, no. 2, May 2004. Cerca con Google

[25] E. Zivi, “Design of robust shipboard power automation systems”, Annual Reviews in Control, Elsevier, vol. 29, pp. 261–272, 2005. Cerca con Google

[26] C. G. Hodge, J. O. Flower, A. Macalindin, “DC power system stability”, IEEE Electric Ship Technologies Symposium (ESTS) 2009, pp. 433-439, April 20-22, 2009, Baltimore (MD), USA. Cerca con Google

[27] V. Arcidiacono, A. Monti and G. Sulligoi, “Generation control system for improving design and stability of medium-voltage DC power systems on ships”, IET Electrical Systems in Transportation, vol. 2, no. 3, pp. 158-167, September 2012. Cerca con Google

[28] M. Belkhayat, R. Cooley, A. Witulski, “Large Signal Stability Criteria For Distributed Systems with Constant Power Loads”, 26th IEEE Annual Power Electronics Specialists Conference 1995, vol. 2, pp. 1333-1338, June 18-22, 1995, Atlanta (GA), USA. Cerca con Google

[29] S. D. Sudhoff, D. H. Schmucker, R. A. Youngs, H. J. Hegner, “Stability analysis of DC distribution systems using admittance space constraints”, The Institute of Marine Engineers, All Electric Ship Symposium 1998, September 29-30, 1998, London (UK). Cerca con Google

[30] S. D. Sudhoff, S. F. Glover, “Three-Dimensional Stability Analysis of DC Power Electronics Based Systems”, 31st IEEE Annual Power Electronics Specialists Conference (PESC) 2000, vol. 1, pp. 101-106, June 18-23, 2000, Galway (Ireland). Cerca con Google

[31] S. D. Sudhoff, S. F. Glover, P. T. Lamm, D. H. Schmucker and D. E. Delisle, “Admittance Space Stability Analysis of Power Electronic Systems”, IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 3, pp. 965-973, July 2000. Cerca con Google

[32] S. D. Sudhoff and J. M. Crider, “Advancements in Generalized Immittance Based Stability Analysis of DC Power Electronics Based Distribution Systems”, IEEE Electric Ship Technologies Symposium (ESTS) 2011, pp. 207-212, April 10-13, 2011, Alexandria (VA), USA. Cerca con Google

[33] A. Riccobono and E. Santi, “Stability analysis of an all-electric ship MVDC Power Distribution System using a novel Passivity-Based Stability Criterion”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 411-419, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

[34] C. H. Rivetta, A. Emadi, G. A. Williamson, R. Jayabalan and B. Fahimi, “Analysis and Control of a Buck DC-DC Converter Operating With Constant Power Load in Sea and Undersea Vehicles”, IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 559-572, March/April 2006. Cerca con Google

[35] A. Emadi, A. Khaligh, C. H. Rivetta and G. A. Williamson, “Constant Power Loads and Negative Impedance Instability in Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives”, IEEE Transactions on Vehicular Technology, vol. 55, no. 4, July 2006. Cerca con Google

[36] A. Kwasinski and C. N. Onwuchekwa, “Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads”, IEEE Transactions on Power Electronics, vol. 26, no. 3, March 2011. Cerca con Google

[37] P. Bolzern, R. Scattolini and N. Schiavoni, “Fondamenti di Controlli Automatici”, McGraw-Hill, 2003. Cerca con Google

[38] H. K. Khalil, “Nonlinear systems”, Prentice-Hall, Inc., 2002. Cerca con Google

[39] C. Tunc and E. Tunc, “On the asymptotic behavior of solutions of certain second-order differential equations”, Journal of the Franklin Institute, El Sevier, 344, pp. 391-398, February 2006. Cerca con Google

[40] C. J. Sullivan, S. D. Sudhoff, E. L. Zivi and S. H. Żak, “Methods of Optimal Lyapunov Function Generation with Application to Power Electronic Converters and Systems”, IEEE Electric Ship Technologies Symposium (ESTS) 2007, pp. 267-274, May 21-23, 2007, Arlington (VA), USA. Cerca con Google

[41] S. F. Glover and S. D. Sudhoff, “An experimentally validated nonlinear stabilizing control for power electronics based power systems”, Society of Automotive Engineers, 981255, 1997. Cerca con Google

[42] S. D. Sudhoff, K. A. Corzine, S. F. Glover, H. J .Hegner and H. N. Robey, Jr., “DC link stabilized field oriented control of electric propulsion systems”, IEEE Transactions on Energy Conversion, vol. 13, no. 1, March 1998. Cerca con Google

[43] R. Marconato, “Electric power systems”, CEI, Italian Electrotechnical Committee, 2002-2004. Cerca con Google

[44] IEEE Std. 421.5-2005, “IEEE Recommended Practice for Excitation System Models for Power System Stability Studies”, IEEE Power and Energy Society, August 2002. Cerca con Google

[45] N. Mohan, T. M. Undeland and W. P. Robbins, “Power electronics: converters, applications and design", John Wiley & Sons, Inc., 1995. Cerca con Google

[46] F. Saccomanno, “Electric Power Systems: Analysis and Control”, IEEE Press Series on Power Engineering, 2003. Cerca con Google

[47] B. P. Loop, S. D. Sudhoff, S. H. Zak and E. L. Zivi, “Estimating regions of asymptotic stability of power electronics systems using genetic algorithms”, IEEE Transactions on Control Systems Technology, vol. 18, no. 5, pp. 1011-1022, September 2010. Cerca con Google

[48] A. M. Rahimi and A. Emadi, “Active damping in DC/DC power electronic converters: a novel method to overcome the problems of constant power loads”, IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1428–1439, May 2009. Cerca con Google

[49] D. Bosich and G. Sulligoi, “Voltage control on a refitted luxury yacht using hybrid electric propulsion and LVDC distribution”, IEEE Ecological Vehicles and Renewable Energies Conference (EVER) 2013, pp. 1-6, March 27-30, 2013, Monaco. Cerca con Google

[50] J. G. Ciezki and R.W. Ashton, “The Design of Stabilizing Controls for Shipboard DC-to-DC Buck Choppers Using Feedback Linearization Techniques”, 29th Annual IEEE Power Electronics Specialists Conference (PESC) 1998, vol. 1, pp. 335-341, May 17-22, 1998, Fukuoka (Japan). Cerca con Google

[51] J. G. Ciezki and R.W. Ashton, “The application of feedback linearization techniques to the stabilization of DC-to-DC converters with constant power loads”, IEEE International Symposium on Circuits and Systems (ISCAS) 1998, vol. 3, pp. 526-529, May 31-June 3, 1998, Monterey (CA), USA. Cerca con Google

[52] A. M. Rahimi, G. A. Williamson and A. Emadi, “Loop cancellation technique: a novel nonlinear feedback to overcome the destabilizing effect of constant-power loads”, IEEE Transactions on Vehicular Technology, vol. 59, no. 2, pp. 650-661, February 2010. Cerca con Google

[53] G. Sulligoi, D. Bosich, L. Zhu, M. Cupelli and A. Monti, “Linearizing control of shipboard multi-machine MVDC power systems feeding constant power loads”, IEEE Energy Conversion Congress and Exposition (ECCE) 2012, pp. 691-697, September 15-20, 2012, Raleigh (NC), USA. Cerca con Google

[54] W. S. Levine, “Control system advanced methods”, CRC Press, 2011. Cerca con Google

[55] G. Sulligoi, D. Bosich and G. Giadrossi, "Linearizing voltage control of MVDC power systems feeding constant power loads: stability analysis under saturation”, IEEE Power and Energy Society (PES) General Meeting 2013, pp. 1-5, Jul. 21-25, 2013, Vancouver (BC), Canada. Cerca con Google

[56] V. Arcidiacono, S. Castellan, R. Menis and G. Sulligoi, “Integrated Voltage and Reactive Power Control for All Electric Ship Power Systems”, IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM) 2006, pp. 878-882, May 23-36, 2006, Taormina (Italy). Cerca con Google

[57] A. Vicenzutti, D. Bosich and G. Sulligoi, “MVDC Power System Voltage Control through Feedback Linearization Technique: application to different Shipboard Power Conversion Architectures”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 303-307, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

[58] G. Sulligoi, A. Tessarolo, V. Benucci, M. Baret, A. Rebora and A. Taffone, “Modeling, Simulation, and Experimental Validation of a Generation System for Medium-Voltage DC Integrated Power Systems”, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1304-1310, July/August 2010. Cerca con Google

[59] G. Sulligoi, A. Tessarolo, V. Benucci, A. M. Trapani, M. Baret, F. Luise, “Design, Implementation and Testing of a Ship-Board Medium-Voltage DC Generation System Based on a Ultra-High Speed 12-Phase Alternator”, IEEE Electric Ship Technologies Symposium (ESTS) 2011, pp. 388-395, April 10-13, 2011, Alexandria (VA), USA. Cerca con Google

[60] M. Aizza, D. Bosich, S. Castellan, R. Menis, G. Sulligoi and A. Tessarolo, “Coordinated speed and voltage regulation of a DC POWER generation system based on a woundfield split-phase generator supplying multiple rectifiers”, 6th IET International Conference on Power Electronics, Machines and Drives (PEMD) 2012, pp. 1-6, March 27-29, 2012, Bristol (UK). Cerca con Google

[61] A. Tessarolo, “Experimental performance assessent of multiphase alternators supplying multiple AC/DC power converters”, 5th IET International Conference on Power Electronics, Machines and Drives (PEMD) 2010, pp. 1-6, April 19-21, 2010, Bristol (UK). Cerca con Google

[62] A. Tessarolo, “Benefits of increasing the number of stator phases in terms of winding construction technology in high-power electric machines”, 5th IET International Conference on Power Electronics, Machines and Drives (PEMD) 2010, pp. 1-6, April 19-21, 2010, Bristol (UK). Cerca con Google

[63] I. Kondratiev and R. A. Dougal, “Synergetic control strategies for shipboard DC power distribution systems”, American Control Conference 2007, pp. 4744-4749, July 9-13, 2007, New York City (NY), USA. Cerca con Google

[64] I. Kondratiev and R. A. Dougal, “Invariant based ship DC power system design”, IEEE Electric Ship Technologies Symposium (ESTS) 2011, pp. 15-20, April 10-13, 2011, Alexandria (VA), USA. Cerca con Google

[65] G. Sulligoi, D. Bosich, V. Arcidiacono and G. Giadrossi, “Considerations on the design of voltage control for multi-machine MVDC power systems on large ships”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 314–319, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

[66] V. Arcidiacono, E. Ferrari, R. Marconato, J. D. Ghali and D. Grandez, “Evaluation and Improvement of Electromechanical Oscillation Damping By Means of Eigenvalue-Eigenvector Analysis. Practical Results in the Central Peru Power System”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-99 , no. 2, pp. 769-778, March 1980. Cerca con Google

[67] G. Sulligoi, D. Bosich, G. Giadrossi, L. Zhu, M. Cupelli and A. Monti, “Multi-Converter Medium Voltage DC Power Systems on Ships: Constant-Power Loads Instability Solution using Linearization via State Feedback Control”, IEEE Transactions on Smart Grid, submitted. Cerca con Google

[68] L. Zhu, J. Liu, M. Cupelli and A. Monti, “Decentralized linear quadratic gaussian control of multi-generator MVDC shipboard power system with constant power loads”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 308-313, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

[69] F. Barati, D. Li and R. A. Dougal, “Voltage regulation in medium voltage DC systems”, IEEE Electric Ship Technologies Symposium (ESTS) 2013, pp. 372-378, April 22-24, 2013, Arlington (VA), USA. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record