Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Weber, Verena (2014) Plasmonic nanostructures for the realization of sensor based on surface enhanced Raman spectroscopy. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Tesi di Dottorato Verena Weber) - Submitted Version
24Mb

Abstract (english)

The field of Plasmonics deals with interaction processes between an electromagnetic radiation of appropriate wavelength and the conduction electrons of a metal. The induced collective oscillation of the electrons is called Plasmon Resonance. The Localized Surface Plasmon Resonance (LSPR) occur when the excitation involves surface electrons of nanostructures with dimensions less or comparable to the excitation wavelength. The excitation causes a strong enhancement of the local field around the metal nanostructure, which, combined with Raman Spectroscopy, could be very interesting for molecular sensing. The Raman technique is well known for providing a fingerprint spectrum of a given molecule, but has the great limitation of low sensibility. By adsorbing the analyte of interest on a plasmonic substrate in the region of enhanced local field, high detection sensitivity can be reached through Surface Enhanced Raman Spectroscopy (SERS).
The first part of the present work is focused on the synthesis and characterization of gold and silver nanoparticles (Au and Ag NPs) and gold nanoshells (Au NSs) and their exploitation for the realization of SERS substrates, both in colloidal solutions and on solid supports. Different metal nanostructures give the possibility to exploit the LSPR in a wide spectral range, from the Vis to the near IR. Their optical and morphological characterization is carried out with conventional techniques, like TEM, AFM, UV-Vis absorption and Surface Enhanced Raman Spectroscopy, and with a new characterization technique, rarely used in this research field: the Photoacoustic Spectroscopy. It provides information about the absorption contribution to the total extinction of a plasmonic nanostructure. From a rigorous measurement of the SERS enhancement factor and from Photoacoustic Spectroscopy data at different excitation wavelengths, some considerations could be done concerning the relation of far field extinction and near field SERS properties. SERS EF profile measurements on liquid and solid SERS substrates demonstrated the presence of hot spots. The solid SERS substrates were chemically stable, homogeneous and reproducible and showed EF values of about 104-105. In colloidal solution, the EF values were about 103-106, depending on the metal nanostructure. Photoacoustic measurements performed on Au NSs in solution were in agreement with theoretical predictions found in literature.
In the second part of the work, the plasmonic substrates, realized with Au NPs and Au NSs, were used for the realization of label free SERS sensors, to detect toxic aromatic chemical species and biological molecules. A sensor for toxic volatile compounds, based on Au NPs and Au NSs substrates coupled with a porous organic-inorganic hybrid sol-gel matrix, was realized. The matrix was specifically chosen for exhibiting a high-affinity interaction to aromatic hydrocarbons. The enhancement activity of the Au NPs and Au NSs substrates on the sol gel matrix alone was demonstrated. Some problems in the xylene detection process through SERS were probably due to the fast matrix regeneration under the laser radiation. Although, the enhanced SERS efficiency due to the detection design was demonstrated.
Another application was based on the development of a novel label-receptor system, based on the cromophore 4-hydroxyazobenzene-2 carboxylic acid (HABA) and its specific antibody, to be used in bio-analytical applications. The interesting behaviour of the HABA dye relies in changing its tautomeric structure from an azo to a hydrazo form, thanks to the interaction with its antibody. This structural change can be exploited for SERS detection of the label-receptor interaction. Properly synthesized and characterized HABA derivatives were adsorbed onto SERS substrates, further incubated in the antibody solution. The HABA signals were well visible on both Au NSs and Au NPs substrates. No HABA change could be detected through SERS, because the antibodies extracted in vivo from two rabbits, do not cause the quantitative change of the HABA structure.

Abstract (italian)

La Plasmonica si occupa dell’interazione di una radiazione elettromagnetica di opportuna lunghezza d’onda con gli elettroni di conduzione di un metallo. L’oscillazione collettiva degli elettroni, indotta da questa interazione, è chiamata appunto Risonanza Plasmonica. La risonanza plasmonica di superficie localizzata avviene quando gli elettroni coinvolti sono quelli di superficie di un metallo nanostrutturato con dimensioni minori o comparabili alla lunghezza d’onda di eccitazione. Da questa eccitazione deriva una forte amplificazione del campo elettromagnetico locale, localizzato nelle immediate vicinanze della nanostruttura metallica. Tale amplificazione, unita a una tecnica di rivelazione spettroscopica specifica, quale la spettroscopia Raman, può essere sfruttata per la realizzazione di sensori molecolari. La tecnica Raman è conosciuta come altamente specifica, perché in grado di fornire uno spettro caratteristico della singola molecola, identificandone univocamente la presenza e la costituzione. La sua maggiore limitazione, però, è la bassa sensibilità. Ponendo l’analita in prossimità di un substrato plasmonico, proprio nella regione di forte amplificazione del campo locale, la sensibilità di rivelazione viene fortemente aumentata, dando origine alla spettroscopia Raman amplificata da superfici (SERS).
La prima parte del presente lavoro è focalizzata sulla sintesi e sulla caratterizzazione di nanoparticelle d’argento, d’oro e di nano gusci d’oro (chiamati nanoshell) e sul loro impiego per la realizzazione di substrati SERS, sia in soluzione colloidale che su substrato solido. L’utilizzo di differenti nanostrutture metalliche, dà la possibilità di sfruttare la risonanza plasmonica localizzata di superficie in un’ampia regione spettrale, che si estende dal visibile al vicino infrarosso. La caratterizzazione ottica e morfologica delle nanostrutture è stata effettuata con tecniche convenzionali, come la spettroscopia di assorbimento UV-visibile, il SERS, la microscopia elettronica a trasmissione e la microscopia a forza atomica. Ad esse è stata affiancata anche una tecnica raramente usata nell’ambito della plasmonica: la spettroscopia fotoacustica. Questa può fornire informazioni riguardanti il contributo di assorbimento, all’estinzione totale, di una nanostruttura plasmonica. Da una rigorosa misura dei fattori di amplificazione e delle proprietà di fotoacustica al variare della lunghezza d’onda, possono essere fatte alcune considerazioni riguardanti la possibile relazione tra l’estinzione (proprietà di campo lontano) e l’ amplificazione SERS (proprietà di campo vicino). Le misure dei profili di eccitazione SERS su substrati plasmonici in liquido e su supporto solido, hanno evidenziato la presenza di hot spots, ovvero di zone fortemente amplificate dall’interazione di due o più nanostrutture.
I substrati SERS solidi sono risultati chimicamente stabili, omogenei e riproducibili; essi presentano valori di fattori di amplificazione attorno a 104-105. In soluzione colloidale, i fattori di amplificazione delle nanostrutture hanno raggiunto valori nell’intervallo 103-106, dipendentemente dal tipo di nanostruttura metallica investigata. Le misure di fotoacustica effettuate su soluzioni colloidali di nanoshell d’oro si sono rivelate in accordo con le predizioni teoriche di letteratura.
Nella seconda parte del lavoro, i substrati plasmonici, realizzati principalmente con nanoparticelle e nanoshell d’oro, sono stati impiegati per la realizzazione di sensori SERS per la rivelazione di specie chimiche e biologiche.
É stato realizzato un sensore di composti tossici aromatici volatili, accoppiando un substrato plasmonico con un film poroso di sol gel ibrido organico-inorganico. La componente organica della matrice sol gel è stata appositamente scelta per la sua alta affinità a composti aromatici, quali lo Xilene. È stata dimostrata l’amplificazione dei segnali della matrice da parte della componente plasmonica, ma si sono riscontrati alcuni problemi nella rivelazione delle molecole di analita attraverso il SERS. La difficoltà nella rivelazione è probabilmente dovuta al veloce deadsorbimento dello Xilene dalla matrice a causa del forte riscaldamento locale causato dalla radiazione laser. Nonostante questo, si è comunque dimostrata l’aumentata efficienza del sensore progettato, rispetto ai suoi componenti singoli.
La seconda applicazione studiata ha riguardato la realizzazione di un sistema analita-accettore innovativo, che può essere utilizzato per diverse applicazioni bioanalitiche; esso è basato sull’interazione tra un cromoforo diazobenzenico (HABA) e il suo anticorpo specifico. Alla base dell’applicazione si trova una proprietà interessante del suddetto cromoforo, che è quella di cambiare la sua struttura molecolare, passando da una forma azo alla forma idrazo, dopo aver interagito con il suo anticorpo specifico. Questa variazione nella struttura molecolare può essere sfruttata per la rivelazione dell’avvenuta interazione analita-accettore, mediante SERS. Alcuni derivati di questo cromoforo sono stati sintetizzati e caratterizzati in modo da poter essere adsorbiti su un substrato SERS, che viene successivamente incubato in una soluzione di anticorpo. I segnali SERS della molecola di HABA sono risultati ben visibili sia sui substrati di nanoparticelle che di nanoshell d’oro. Purtroppo non è stato possibile rivelare la variazione strutturale del cromoforo, in quanto gli anticorpi, estratti in vivo da due coniglietti, inducono solo un parziale cambio di struttura, rendendo la rivelazione SERS alquanto difficile.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Signorini, Raffaella
Ph.D. course:Ciclo 26 > Scuole 26 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:30 January 2014
Anno di Pubblicazione:30 January 2014
Key Words:nanoparticelle metalliche/metal nanoparticles, nanoshells metalliche/metal nanoshells, substrati SERS/SERS substrates, Spettroscopia Fotoacustica/Photoacoustic Spectroscopy, sensing chimico/chemical sensing;
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:6793
Depositato il:31 Oct 2014 13:40
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

(1) Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 2000, 19, 409–453. Cerca con Google

(2) Hartland, G. V.; Schatz, G. Virtual Issue: Plasmon Resonances - A Physical Chemistry Perspective. J. Phys. Chem. C 2011, 115, 15121–15123. Cerca con Google

(3) Kamat, P. V. Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007, 111, 2834–2860. Cerca con Google

(4) Oelhafen, P.; Schüler, a. Nanostructured Materials for Solar Energy Conversion. Sol. Energy 2005, 79, 110–121. Cerca con Google

(5) Hägglund, C.; Kasemo, B. Nanoparticle Plasmonics for 2D-Photovoltaics: Mechanisms, Optimization, and Limits. Opt. Express 2009, 17, 11944–11957. Cerca con Google

(6) Chen, F.-C.; Wu, J.-L.; Lee, C.-L.; Hong, Y.; Kuo, C.-H.; Huang, M. H. Plasmonic-Enhanced Polymer Photovoltaic Devices Incorporating Solution-Processable Metal Nanoparticles. Appl. Phys. Lett. 2009, 95, 013305. Cerca con Google

(7) Tian, Y.; Tatsuma, T. Plasmon-Induced Photoelectrochemistry at Metal Nanoparticles Supported on Nanoporous TiO2. Chem. Commun. 2004, 16, 1810–1811. Cerca con Google

(8) Frare, M. C.; Weber, V.; Signorini, R.; Bozio, R. Gold Nanoparticles in Polycarbonate Matrix for Optical Limiting Against Cw Laser. J. Laser Phys. 2014, submitted. Cerca con Google

(9) Qu, S.; Du, C.; Song, Y.; Wang, Y.; Gao, Y. Optical Nonlinearities and Optical Limiting Properties in Gold Nanoparticles Protected by Ligands. Chem. Phys. Lett. 2002, 356, 403–408. Cerca con Google

(10) Ara, M. H. M.; Dehghani, Z.; Sahraei, R.; Daneshfar, A.; Javadi, Z.; Divsar, F. Diffraction Patterns and Nonlinear Optical Properties of Gold Nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 366–372. Cerca con Google

(11) Homola, J.; Yee, S.; Gauglitz, G. Surface Plasmon Resonance Sensors: Review. Sensors Actuators B 1999, 54, 3–15. Cerca con Google

(12) Hong, S.; Lee, S.; Yi, J. Sensitive and Molecular Size-Selective Detection of Proteins Using a Chip-Based and Heteroliganded Gold Nanoisland by Localized Surface Plasmon Resonance Spectroscopy. Nanoscale Res. Lett. 2011, 6, 336. Cerca con Google

(13) Henry, A.-I.; Bingham, J. M.; Ringe, E.; Marks, L. D.; Schatz, G. C.; Van Duyne, R. P. Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles. J. Phys. Chem. C 2011, 115, 9291–9305. Cerca con Google

(14) Ghosh Chaudhuri, R.; Paria, S. Core/shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. Cerca con Google

(15) Wang, H. U. I.; Brandl, D. W. Plasmonic Nanostructures : Artificial Molecules Nanoshell Plasmons : The Sphere - Cavity. Acc. Chem. Res. 2007, 40, 53–62. Cerca con Google

(16) Willets, K. a; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. Cerca con Google

(17) Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic Nanoparticle Arrays : A Common Substrate for Both Surface Enhanced Raman Scattering and Surface Enhanced Infrared Absorption. ACS Nano 2008, 2, 707–718. Cerca con Google

(18) Fort, E.; Grésillon, S. Surface Enhanced Fluorescence. J. Phys. D. Appl. Phys. 2008, 41, 013001. Cerca con Google

(19) Campion, A.; Kambhampati, P. Surface-Enhanced Raman Scattering. Chem. Soc. Rev. 1998, 27, 241–250. Cerca con Google

(20) McCreery, R. L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons, 2005; p. 448. Cerca con Google

(21) Nie, S. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science (80-. ). 1997, 275, 1102–1106. Cerca con Google

(22) Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4, 1576–1599. Cerca con Google

(23) Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; et al. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science (80-. ). 1995, 267, 1629–1632. Cerca con Google

(24) Joseph, V.; Matschulat, A.; Polte, J.; Rolf, S.; Emmerling, F.; Kneipp, J. SERS Enhancement of Gold Nanospheres of Defined Size. J. Raman Spectrosc. 2011, 42, 1736–1742. Cerca con Google

(25) Giallongo, G.; Rizzi, G. A.; Weber, V.; Ennas, G.; Signorini, R.; Granozzi, G. Green Synthesis and Electrophoretic Deposition of Ag Nanoparticles on SiO2/Si(100). Nanotechnology 2013, 24, 345501. Cerca con Google

(26) Green, M.; Liu, F. M. SERS Substrates Fabricated by Island Lithography: The Silver/Pyridine System. J. Phys. Chem. B 2003, 107, 13015–13021. Cerca con Google

(27) Li, M.; Cushing, S. K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D.; Liu, Y.; Wu, N. Three-Dimensional Hierarchical Plasmonic Nano-Architecture Enhanced Surface-Enhanced Raman Scattering Immunosensor for Cancer Biomarker Detection in Blood Plasma. ACS Nano 2013, 7, 4967–4976. Cerca con Google

(28) Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. Cerca con Google

(29) Saikin, S. K.; Olivares-Amaya, R.; Rappoport, D.; Stopa, M.; Aspuru-Guzik, A. On the Chemical Bonding Effects in the Raman Response : Benzenethiol Adsorbed on Silver Clusters. Phys. Chem. Chem. Phys. 2009, 11, 9401–9411. Cerca con Google

(30) Zayak, A. T.; Hu, Y. S.; Choo, H.; Bokor, J.; Cabrini, S.; Schuck, P. J.; Neaton, J. B. Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces. Phys. Rev. Lett. 2011, 083003, 1–4. Cerca con Google

(31) Wu, D.; Liu, X.; Duan, S.; Xu, X.; Ren, B.; Lin, S.-H.; Tian, Z.-Q. Chemical Enhancement Effects in SERS Spectra: A Quantum Chemical Study of Pyridine Interacting with Copper, Silver, Gold and Platinum Metals. J. Phys. Chem. C 2008, 112, 4195–4204. Cerca con Google

(32) Le Ru, E. C.; Galloway, C.; Etchegoin, P. G. On the Connection Between Optical Absorption/extinction and SERS Enhancements. Phys. Chem. Chem. Phys. 2006, 8, 3083–3087. Cerca con Google

(33) McFarland, A. D.; Young, M. a; Dieringer, J. a; Van Duyne, R. P. Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2005, 109, 11279–11285. Cerca con Google

(34) Kleinman, S. L.; Sharma, B.; Blaber, M. G.; Henry, A.-I.; Valley, N.; Freeman, R. G.; Natan, M. J.; Schatz, G. C.; Van Duyne, R. P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308. Cerca con Google

(35) Ueno, Y.; Tate, A.; Niwa, O.; Zhou, H.-S.; Yamada, T.; Honma, I. High Benzene Selectivity of Mesoporous Silicate for BTX Gas Sensing Microfluidic Devices. Anal. Bioanal. Chem. 2005, 382, 804–809. Cerca con Google

(36) Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. SERS as a Bioassay Platform: Fundamentals, Design, and Applications. Chem. Soc. Rev. 2008, 37, 1001–1011. Cerca con Google

(37) Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N. J. Surface-Enhanced Raman Spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130, 5523–5529. Cerca con Google

(38) Fang, C.; Agarwal, A.; Buddharaju, K. D.; Khalid, N. M.; Salim, S. M.; Widjaja, E.; Garland, M. V; Balasubramanian, N.; Kwong, D.-L. DNA Detection Using Nanostructured SERS Substrates with Rhodamine B as Raman Label. Biosens. Bioelectron. 2008, 24, 216–221. Cerca con Google

(39) Wood, R. W. XLII. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Philos. Mag. Ser. 6 1902, 4, 396–402. Cerca con Google

(40) Rayleigh, L. On the Dynamical Theory of Gratings. Proc. R. Soc. A Math. Phys. Eng. Sci. 1907, 79, 399–416. Cerca con Google

(41) Mie, G. Beiträge Zur Optik Trüber Medien Speziell Kolloidaler Metalllösungen. Ann. Phys. 1908, 330, 377–445. Cerca con Google

(42) Pines, D. Collective Energy Losses in Solids. Rev. Mod. Phys. 1956, 28, 184–198. Cerca con Google

(43) Ritchie, R. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957, 106, 874–881. Cerca con Google

(44) Otto, A. Excitation and Nonradiative Surface Plasma Waves in Silver Bz the Method of Frustrated Total Reflection. Zeitschrift für Phys. 1968, 216, 398–410. Cerca con Google

(45) Kretschmann, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by light(Surface Plasma Waves Excitation by Light and Decay into Photons Applied to Nonradiative Modes). Zeitschrift Fuer Naturforschung, Tl. A 1968, 23, 2135. Cerca con Google

(46) Maier, S. A. Plasmonics: Fundamentals and Applications; Springer, 2007. Cerca con Google

(47) Le Ru, E.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier, 2008; Vol. 2008, p. 688. Cerca con Google

(48) Schlücker, S. Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications; John Wiley & Sons, 2011; p. 344. Cerca con Google

(49) Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer Berlin Heidelberg, 1988; Vol. 111. Cerca con Google

(50) Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. Optical Absorption Spectra of Nanocrystal Gold Molecules. J. Phys. Chem. B 1997, 5647, 3706–3712. Cerca con Google

(51) Persson, B. N. J. Polarizability of Small Spherical Metal Particles: Influence of the Matrix Environment. Surf. Sci. 1993, 281, 153–162. Cerca con Google

(52) Oldenburg, S. .; Averitt, R. .; Westcott, S. .; Halas, N. . Nanoengineering of Optical Resonances. Chem. Phys. Lett. 1998, 288, 243–247. Cerca con Google

(53) Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters; Springer Verlag, B., Ed.; Berlin, 1995. Cerca con Google

(54) Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. A Hybridization Model for the Plasmon Response of Complex Nanostructures. Science 2003, 302, 419–422. Cerca con Google

(55) Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies. Chem. Soc. Rev. 2008, 37, 898–911. Cerca con Google

(56) Miller, M. M.; Lazarides, A. a. Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment. J. Phys. Chem. B 2005, 109, 21556–21565. Cerca con Google

(57) Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 1985, 57, 783–826. Cerca con Google

(58) Raman, C. .; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. Cerca con Google

(59) Kneipp, K. Surface-Enhanced Raman Scattering. Phys. Today 2007, 40–46. Cerca con Google

(60) Long, D. A. The Raman Effect; John Wiley & Sons, Ltd: Chichester, UK, 2002. Cerca con Google

(61) Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. Cerca con Google

(62) Jeanmaire, D. L.; Duyne, R. P. Van. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. Cerca con Google

(63) Moskovits, M. Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159–4161. Cerca con Google

(64) Stiles, P. L.; Dieringer, J. a; Shah, N. C.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. (Palo Alto. Calif). 2008, 1, 601–626. Cerca con Google

(65) Otto, A.; Cardona, M. Light Scattering in Solids IV. In Topics in applied physics; 1984. Cerca con Google

(66) Orendorff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect Ratio Dependence on Surface Enhanced Raman Scattering Using Silver and Gold Nanorod Substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170. Cerca con Google

(67) Sackmann, M.; Bom, S.; Balster, T.; Materny, A. Nanostructured Gold Surfaces as Reproducible Substrates for Surface-Enhanced Raman Spectroscopy. 2007, 38, 277–282. Cerca con Google

(68) Yi, Z.; Li, X.-Y.; Liu, F.-J.; Jin, P.-Y.; Chu, X.; Yu, R.-Q. Design of Label-Free, Homogeneous Biosensing Platform Based on Plasmonic Coupling and Surface-Enhanced Raman Scattering Using Unmodified Gold Nanoparticles. Biosens. Bioelectron. 2013, 43, 308–314. Cerca con Google

(69) Fabris, L.; Dante, M.; Braun, G.; Lee, S. J.; Reich, N. O.; Moskovits, M.; Nguyen, T.-Q.; Bazan, G. C. A Heterogeneous PNA-Based SERS Method for DNA Detection. J. Am. Chem. Soc. 2007, 129, 6086–6087. Cerca con Google

(70) Diaz Fleming, G.; Finnerty, J. J.; Campos-Vallette, M.; Célis, F.; Aliaga, A. E.; Fredes, C.; Koch, R. Experimental and Theoretical Raman and Surface-Enhanced Raman Scattering Study of Cysteine. J. Raman Spectrosc. 2009, 40, 632–638. Cerca con Google

(71) Han, X. X.; Zhao, B.; Ozaki, Y. Surface-Enhanced Raman Scattering for Protein Detection. Anal. Bioanal. Chem. 2009, 394, 1719–1727. Cerca con Google

(72) Barhoumi, A.; Halas, N. J. Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2010, 132, 12792–12793. Cerca con Google

(73) Yea, K.; Lee, S.; Kyong, J. B.; Choo, J.; Lee, E. K.; Joo, S.-W.; Lee, S. Ultra-Sensitive Trace Analysis of Cyanide Water Pollutant in a PDMS Microfluidic Channel Using Surface-Enhanced Raman Spectroscopy. Analyst 2005, 130, 1009–1011. Cerca con Google

(74) Alvarez-Puebla, R. a.; dos Santos, Jr., D. S.; Aroca, R. F. SERS Detection of Environmental Pollutants in Humic Acid–gold Nanoparticle Composite Materials. Analyst 2007, 132, 1210. Cerca con Google

(75) Guo, H.; Xu, W.; Zhou, J.; Xu, S.; Lombardi, J. R. Highly Efficient Construction of Oriented Sandwich Structures for Surface-Enhanced Raman Scattering. Nanotechnology 2013, 24, 045608. Cerca con Google

(76) Muniz-miranda, M.; Sbrana, G. Quantitative Determination of the Surface Concentration of Phenazine Adsorbed on Silver Colloidal Particles and Relationship with the SERS Enhancement Factor. J. Phys. Chem. B 1999, 103, 10639–10643. Cerca con Google

(77) Kato, Y.; Takuma, H. Experimental Study on the Wavelength Dependence of the Raman Scattering Cross Sections. J. Chem. Phys. 1971, 54, 5398–5402. Cerca con Google

(78) Szafranski, C. a.; Tanner, W.; Laibinis, P. E.; Garrell, R. L. Surface-Enhanced Raman Spectroscopy of Aromatic Thiols and Disulfides on Gold Electrodes. Langmuir 1998, 14, 3570–3579. Cerca con Google

(79) Moskovits, M. Surface Selection Rules. J. Chem. Phys. 1982, 77, 4408–4416. Cerca con Google

(80) Moskovits, M.; Suh, J. S. Surface Selection Rules for Surface-Enhanced Raman Spectroscopy: Calculations and Application to the Surface-Enhanced Raman Spectrum of Phthalazine on Silver. J. Phys. Chem. 1984, 88, 5526–5530. Cerca con Google

(81) Le Ru, E. C.; Meyer, S. a; Artur, C.; Etchegoin, P. G.; Grand, J.; Lang, P.; Maurel, F. Experimental Demonstration of Surface Selection Rules for SERS on Flat Metallic Surfaces. Chem. Commun. 2011, 47, 3903–3905. Cerca con Google

(82) Ru, E. C. Le; Meyer, M.; Blackie, E.; Etchegoin, P. G. Advanced Aspects of Electromagnetic SERS Enhancement Factors at a Hot Spot. J. Raman Spectrosc. 2008, 39, 1127–1134. Cerca con Google

(83) Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. . Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy and Electrochemistry. J. Am. Chem. Soc. 1987, 109, 3559–3568. Cerca con Google

(84) Lacy, W. B.; Olson, L. G.; Harris, J. M. Quantitative SERS Measurements on Dielectric-Overcoated Silver-Island Films by Solution-Deposition Control of Surface Concentrations. Anal. Chem. 1999, 71, 2564–2570. Cerca con Google

(85) Sackmann, M.; Materny, a. Surface Enhanced Raman Scattering (SERS)—a Quantitative Analytical Tool? J. Raman Spectrosc. 2006, 37, 305–310. Cerca con Google

(86) Le Ru, E. C.; Dalley, M.; Etchegoin, P. G. Plasmon Resonances of Silver Colloids Studied by Surface Enhanced Raman Spectroscopy. Curr. Appl. Phys. 2006, 6, 411–414. Cerca con Google

(87) Wang, C.; Ruan, W.; Ji, N.; Ji, W.; Lv, S.; Zhao, C.; Zhao, B. Preparation of Nanoscale Ag Semishell Array with Tunable Interparticle Distance and Its Application in Surface-Enhanced Raman Scattering. J. Phys. Chem. C 2010, 114, 2886–2890. Cerca con Google

(88) Li, X.; Hu, H.; Li, D.; Shen, Z.; Xiong, Q.; Li, S.; Fan, H. J. Ordered Array of Gold Semishells on TiO2 Spheres: An Ultrasensitive and Recyclable SERS Substrate. ACS Appl. Mater. Interfaces 2012, 4, 2180–2185. Cerca con Google

(89) Litz, J. P.; Camden, J. P.; Masiello, D. J. Active Hot Spots via the Discrete-Dipole Approximation. J. Phys. Chem. Lett. 2011, 2, 1695–1700. Cerca con Google

(90) Zuloaga, J.; Nordlander, P. On the Energy Shift Between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems. Nano Lett. 2011, 11, 1280–1283. Cerca con Google

(91) Baker, G. a; Moore, D. S. Progress in Plasmonic Engineering of Surface-Enhanced Raman-Scattering Substrates Toward Ultra-Trace Analysis. Anal. Bioanal. Chem. 2005, 382, 1751–1770. Cerca con Google

(92) Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on the Fabrication of Substrates for Surface Enhanced Raman Spectroscopy and Their Applications in Analytical Chemistry. Anal. Chim. Acta 2011, 693, 7–25. Cerca con Google

(93) Fan, M.; Brolo, A. G. Silver Nanoparticles Self Assembly as SERS Substrates with Near Single Molecule Detection Limit. Phys. Chem. Chem. Phys. 2009, 11, 7348–7389. Cerca con Google

(94) López, I.; Vázquez, A.; Hernández-Padrón, G. H.; Gómez, I. Electrophoretic Deposition (EPD) of Silver Nanoparticles and Their Application as Surface-Enhanced Raman Scattering (SERS) Substrates. Appl. Surf. Sci. 2013, 280, 715–719. Cerca con Google

(95) Haynes, C. L.; Duyne, R. P. Van. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599–5611. Cerca con Google

(96) Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M. Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays. Nano Lett. 2008, 8, 1923–1928. Cerca con Google

(97) Gunnarsson, L.; Bjerneld, E. J.; Xu, H.; Petronis, S.; Kasemo, B.; Käll, M. Interparticle Coupling Effects in Nanofabricated Substrates for Surface-Enhanced Raman Scattering. Appl. Phys. Lett. 2001, 78, 802. Cerca con Google

(98) Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications; Imperial College Press, 2004. Cerca con Google

(99) Israelachvili, J. Intermolecular and Surface Forces; Academic, Ed.; London, 1992. Cerca con Google

(100) Mironov, V. Fundamentals of Scanning Probe Microscopy; Technosfera, Ed.; Moscow, 2004. Cerca con Google

(101) Mayer; Feldman. Fundamentals of Surface and Thin Film Analysis; Holland, N., Ed.; 1986. Cerca con Google

(102) Putnis, A. An Introduction to Mineral Sciences; Cambridge University Press, 1992. Cerca con Google

(103) Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55. Cerca con Google

(104) Lee, C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols’. J. Phys. Chem. 1982, 86, 3391–3395. Cerca con Google

(105) Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Bishnoi, S. W. Comparative Toxicity Study of Ag, Au, and Ag-Au Bimetallic Nanoparticles on Daphnia Magna. Anal. Bioanal. Chem. 2010, 398, 689–700. Cerca con Google

(106) Raveendran, P.; Fu, J.; Wallen, S. L. Completely “Green” Synthesis and Stabilization of Metal Nanoparticles. J. Am. Chem. Soc. 2003, 125, 13940–13941. Cerca con Google

(107) Amendola, V.; Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV - Vis Spectroscopy. J. Phys Chem C 2009, 113, 4277–4285. Cerca con Google

(108) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–liquid System. J. Chem. Soc., Chem. Commun. 1994, 7, 801–802. Cerca con Google

(109) Leff, D. V; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Thermodynamic Control of Gold Nanocrystal Size: Experiment and Theory. J. Phys. Chem. 1995, 99, 7036–7041. Cerca con Google

(110) Hostetler, M. J.; Wingate, J. E.; Zhong, C.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1 . 5 to 5 . 2 Nm : Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17–30. Cerca con Google

(111) Thomas, K. G.; Zajicek, J.; Kamat, P. V. Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir 2002, 18, 3722–3727. Cerca con Google

(112) Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C. Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles : A Strategy for Size and Shape Manipulations. Langmuir 2000, 16, 490–497. Cerca con Google

(113) Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold Nanocages: Synthesis, Properties and Applications. Acc. Chem. Res. 2008, 41, 1587–1595. Cerca con Google

(114) Shi, W.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Gold Nanoshells on Polystyrene Cores for Control of Surface Plasmon Resonance. Langmuir 2005, 21, 1610–1617. Cerca con Google

(115) Pham, T.; Jackson, J. B.; Halas, N. J.; Lee, T. R. Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers. Langmuir 2002, 18, 4915–4920. Cerca con Google

(116) Stöber, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. Cerca con Google

(117) Preston, T. C.; Signorell, R. Growth and Optical Properties of Gold Nanoshells Prior to the Formation of a Continuous Metallic Layer. ACS Nano 2009, 3, 3696–3706. Cerca con Google

(118) Brinson, B. E.; Lassiter, J. B.; Levin, C. S.; Bardhan, R.; Mirin, N.; Halas, N. J. Nanoshells Made Easy : Improving Au Layer Growth on Nanoparticle Surfaces. Langmuir 2008, 24, 14166–14171. Cerca con Google

(119) Kalele, S.; Gosavi, S. W.; Urban, J.; Kulkarni, S. K. Nanoshell Particles : Synthesis , Properties and Applications. Curr. Sci. 2006, 91, 1038–1052. Cerca con Google

(120) Sylvestre, J.; Poulin, S.; Kabashin, A. V; Sacher, E.; Meunier, M.; Luong, J. H. T. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B 2004, 18, 16864–16869. Cerca con Google

(121) Khoury, C. G.; Vo-Dinh, T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C 2008, 112, 18849–18859. Cerca con Google

(122) Wei, G.-T.; Yang, Z.; Lee, C.-Y.; Yang, H.-Y.; Wang, C. R. C. Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid. J. Am. Chem. Soc. 2004, 126, 5036–5037. Cerca con Google

(123) Lala, N.; Lalbegi, S. P.; Adyanthaya, S. D.; Sastry, M. Phase Transfer of Aqueous Gold Colloidal Particles Capped with Inclusion Complexes of Cyclodextrin and Alkanethiol Molecules into Chloroform. Langmuir 2001, 17, 3766–3768. Cerca con Google

(124) Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold Nanoparticles in Delivery Applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315. Cerca con Google

(125) Liu, Y.; Shipton, M. K.; Ryan, J.; Kaufman, E. D.; Franzen, S.; Feldheim, D. L. Synthesis, Stability, and Cellular Internalization of Gold Nanoparticles Containing Mixed Peptide-Poly(ethylene Glycol) Monolayers. Anal. Chem. 2007, 79, 2221–2229. Cerca con Google

(126) Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. a. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248. Cerca con Google

(127) Braslavsky, S. E.; Heibel, G. E. Time-Resolved Photothermal and Photoacoustic Methods Applied to Photoinduced Processes in Solution. Chem. Rev. 1992, 92, 1381–1410. Cerca con Google

(128) Patel, C. K. N.; TAM, A. C. Pulsed Optoacoustic Spectroscopy of Condensed Matter. Rev. Mod. Phys. 1981, 53, 517–553. Cerca con Google

(129) Tam, A. C. Applications of Photoacoustic Sensing Techniques. Rev. Mod. Phys. 1981, 58, 381–434. Cerca con Google

(130) Cunningham, V.; Lamela, H. Laser Optoacoustic Spectroscopy of Gold Nanorods Within a Highly Scattering Medium. Opt. Lett. 2010, 35, 3387–3389. Cerca con Google

(131) Evanoff, D. D.; Chumanov, G. Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections. J. Phys. Chem. B 2004, 108, 13957–13962. Cerca con Google

(132) Lim, C.; Hong, J.; Chung, B. G.; deMello, A. J.; Choo, J. Optofluidic Platforms Based on Surface-Enhanced Raman Scattering. Analyst 2010, 135, 837–844. Cerca con Google

(133) Cecchini, M. P.; Hong, J.; Lim, C.; Choo, J.; Albrecht, T.; Andrew, J.; Edel, J. B. Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Anal. Chem. 2011, 83, 3076–3081. Cerca con Google

(134) Casadevall i Solvas, X.; DeMello, A. Droplet Microfluidics: Recent Developments and Future Applications. Chem. Commun. 2011, 47, 1936–1942. Cerca con Google

(135) Socrates, G. Infrared & Raman Characteristic Group Frequencies : Tables & Charts; Wilthshire, 1994. Cerca con Google

(136) Varsanyi, G. Vibrational Spectra of Benzene Derivatives; Akademiai Kiado-Budapest, 1969. Cerca con Google

(137) Loo, C.; Lin, A.; Hirsch, L.; Lee, M.-H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer. Technol. Cancer Res. Treat. 2004, 3, 33–40. Cerca con Google

(138) Loo, C.; Hirsch, L.; Lee, M.-H.; Chang, E.; West, J.; Halas, N.; Drezek, R. Gold Nanoshell Bioconjugates for Molecular Imaging in Living Cells. Opt. Lett. 2005, 30, 1012–1014. Cerca con Google

(139) Feis, A.; Gellini, C.; Salvi, P. R.; Becucci, M. Photoacoustic Excitation Profiles of Gold Nanoparticles. Photoacoustics 2014, accepted. Cerca con Google

(140) Von Raben, U.; Chang, R. K.; Laube, B. L.; Barber, P. W. Wavelength Dependence of Surface-Enhanced Raman Scattering from Ag Colloids with Adsorbed CN-Complexes, SO32-, and Pyridine. J. Phys. Chem. 1984, 88, 5290–5296. Cerca con Google

(141) Dr. Roberto Pilot. Self-Absorption Simulations of Plasmonic Nanostructures in Solution at Different Excitation Wavelengths. Pers. Comun. Cerca con Google

(142) Ru, E. C. Le; Blackie, E.; Meyer, M.; Etchegoin, P. G. Supporting Information for ” SERS Enhancement Factors : a Comprehensive Study ”. 1–19. Cerca con Google

(143) Natan, M. J. Concluding Remarks : Surface Enhanced Raman Scattering. Faraday Discuss. 2006, 132, 321. Cerca con Google

(144) Haynes, C. L.; Van Duyne, R. P. Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2003, 107, 7426–7433. Cerca con Google

(145) Cheng, C.-S.; Chen, Y.-Q.; Lu, C.-J. Organic Vapour Sensing Using Localized Surface Plasmon Resonance Spectrum of Metallic Nanoparticles Self Assemble Monolayer. Talanta 2007, 73, 358–365. Cerca con Google

(146) Chen, Y.-Q.; Lu, C.-J. Surface Modification on Silver Nanoparticles for Enhancing Vapor Selectivity of Localized Surface Plasmon Resonance Sensors. Sensors Actuators B Chem. 2009, 135, 492–498. Cerca con Google

(147) Chen, K.-J.; Lu, C.-J. A Vapor Sensor Array Using Multiple Localized Surface Plasmon Resonance Bands in a Single UV-Vis Spectrum. Talanta 2010, 81, 1670–1675. Cerca con Google

(148) Carron, K.; Peltersen, L.; Lewis, M. Octadecylthiol-Modified Surface-Enhanced Raman Spectroscopy Substrates: A New Method for the Detection of Aromatic Compounds. Environ. Sci. Technol. 1992, 26, 1950–1954. Cerca con Google

(149) Mosier-Boss, P. .; Lieberman, S. . Detection of Volatile Organic Compounds Using Surface Enhanced Raman Spectroscopy Substrates Mounted on a Thermoelectric Cooler. Anal. Chim. Acta 2003, 488, 15–23. Cerca con Google

(150) Guizard, C.; Bac, A.; Barboiu, M.; Hovnanian, N. Hybrid Organic-Inorganic Membranes with Specific Transport Applications in Separation and Sensors Technologies. 2001, 25, 167–180. Cerca con Google

(151) Shea, K. J.; Loy, D. A. Bridged Polysilsesquioxanes . Molecular-Engineered Hybrid Organic - Inorganic Materials. Chem. Mater 2001, 13, 3306–3319. Cerca con Google

(152) Dąbrowski, a.; Barczak, M.; Robens, E.; Stolyarchuk, N. V.; Yurchenko, G. R.; Matkovskii, O. K.; Zub, Y. L. Ethylene and Phenylene Bridged Polysilsesquioxanes Functionalized by Amine and Thiol Groups as Adsorbents of Volatile Organic Compounds. Appl. Surf. Sci. 2007, 253, 5747–5751. Cerca con Google

(153) Brigo, L.; Cittadini, M.; Artiglia, L.; Rizzi, G. A.; Granozzi, G.; Guglielmi, M.; Martucci, A.; Brusatin, G. Xylene Sensing Properties of Aryl-Bridged Polysilsesquioxane Thin Films Coupled to Gold Nanoparticles. J. Mater. Chem. C 2013, 1, 4252–4260. Cerca con Google

(154) Brigo, L.; Gazzola, E.; Cittadini, M.; Zilio, P.; Zacco, G.; Romanato, F.; Martucci, a; Guglielmi, M.; Brusatin, G. Short and Long Range Surface Plasmon Polariton Waveguides for Xylene Sensing. Nanotechnology 2013, 24, 155502. Cerca con Google

(155) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.; Gaber, B. P. Porous Polysilsesquioxanes for the Adsorption of Phenols. Environ. Sci. Technol. 2002, 36, 2515–2518. Cerca con Google

(156) Wilmshurst, J. K.; Bernstein, H. J. The Infrared and Raman Spectra of Toluene, Toluene-a-D3, m-Xylene, and m-Xylene-Aa’-D6. Can. J. Chem. 1957, 35, 911–925. Cerca con Google

(157) Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. a. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles. Lasers Med. Sci. 2008, 23, 217–228. Cerca con Google

(158) Jain, S.; Hirst, D. G.; O’Sullivan, J. M. Gold Nanoparticles as Novel Agents for Cancer Therapy. Br. J. Radiol. 2012, 85, 101–113. Cerca con Google

(159) Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. a.; Sokolov, K.; Ben-Yakar, A. Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods. Nano Lett. 2007, 7, 941–945. Cerca con Google

(160) Chithrani, B. D.; Chan, W. C. W. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano Lett. 2007, 7, 1542–1550. Cerca con Google

(161) Huh, Y. S.; Chung, A. J.; Erickson, D. Surface Enhanced Raman Spectroscopy and Its Application to Molecular and Cellular Analysis. Microfluid. Nanofluidics 2009, 6, 285–297. Cerca con Google

(162) Smith, W. E. Practical Understanding and Use of Surface Enhanced Raman Scattering/surface Enhanced Resonance Raman Scattering in Chemical and Biological Analysis. Chem. Soc. Rev. 2008, 37, 955–964. Cerca con Google

(163) Michaels, A. M.; Brus, L. Ag Nanocrystal Junctions as the Site for Surface-Enhanced Raman Scattering of Single Rhodamine 6G Molecules. J. Phys. Chem. B 2000, 104, 11965–11971. Cerca con Google

(164) Xu, S.; Ji, X.; Xu, W.; Li, X.; Wang, L.; Bai, Y.; Zhao, B.; Ozaki, Y. Immunoassay Using Probe-Labelling Immunogold Nanoparticles with Silver Staining Enhancement via Surface-Enhanced Raman Scattering. Analyst 2004, 129, 63–68. Cerca con Google

(165) Han, X. X.; Cai, L. J.; Guo, J.; Wang, C. X.; Ruan, W. D.; Han, W. Y.; Xu, W. Q.; Zhao, B.; Ozaki, Y. Immunoabsorbent Assay Based on Surface-Enhanced Resonance Raman Scattering. 2008, 80, 3020–3024. Cerca con Google

(166) Cao, Y. C.; Jin, R.; Mirkin, C. a. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection. Science 2002, 297, 1536–1540. Cerca con Google

(167) He, H.; Xie, C.; Ren, J. Nonbleaching Fluorescence of Gold Nanoparticles and Its Applications in Cancer Cell Imaging. Anal. Chem. 2008, 80, 5951–5957. Cerca con Google

(168) Fortunati, I.; Weber, V.; Ferrante, C. Two Photon Fluorescence Correlation Spectroscopy for Characterization of Static and Dynamic Features of Gold Nanoparticles. Prep. Cerca con Google

(169) Fede, C.; Fortunati, I.; Weber, V.; Rossetto, N.; Bertasi, F.; Petrelli, L.; Guidolin, D.; Signorini, R.; Albertin, G. Comparison Between Static And Flow Conditions In The In Vitro Evaluation Of Gold Nanoparticles Toxicity Towards Human Endothelial Cells. Prep. Cerca con Google

(170) Wilchek, M.; Bayer, E. a; Livnah, O. Essentials of Biorecognition: The (strept)avidin-Biotin System as a Model for Protein-Protein and Protein-Ligand Interaction. Immunol. Lett. 2006, 103, 27–32. Cerca con Google

(171) Dupont-Filliard, a; Billon, M.; Livache, T.; Guillerez, S. Biotin/avidin System for the Generation of Fully Renewable DNA Sensor Based on Biotinylated Polypyrrole Film. Anal. Chim. Acta 2004, 515, 271–277. Cerca con Google

(172) Hofstetter, H.; Morpurgo, M.; Hofstetter, O.; Bayer, E. a; Wilchek, M. A Labeling, Detection, and Purification System Based on 4-Hydroxyazobenzene-2-Carboxylic Acid: An Extension of the Avidin-Biotin System. Anal. Biochem. 2000, 284, 354–366. Cerca con Google

(173) Green, N. M. A Spectrophotometric Assay for Avidin and Biotin Based on Binding of Dyes by Avidin. Biochem. J. 1965, 94, 23C–24C. Cerca con Google

(174) Rutstein, D.; Ingenito, E. F.; Reynolds, W. E.; M., B. J. The Determination Of Albumin In Human Blood Plasma And Serum . A Method Based On The Interaction Of Albumin with an Anionic Dye-2-(4-Hydroscybenzeneazo) Benzoic Acid. J. Clin. Invest. 1954, 33, 211–221. Cerca con Google

(175) Farrera, J.-A.; Canal, I.; Hidalgo-Fernández, P.; Pérez-García, M. L.; Huertas, O.; Luque, F. J. Towards a Tunable Tautomeric Switch in Azobenzene Biomimetics: Implications for the Binding Affinity of 2-(4’-Hydroxyphenylazo)benzoic Acid to Streptavidin. Chemistry 2008, 14, 2277–2285. Cerca con Google

(176) Trotter, P. J. Azo Dye Tautomeric Structures Determined by Laser-Raman Spectroscopy. Appl. Spectrosc. 1977, 31, 30–35. Cerca con Google

(177) Dines, T. J.; MacGregor, L. D.; Rochester, C. H. A Resonance Raman Spectroscopic Study of the Protonation of 2-(4′-Hydroxyazo)-Benzoic Acid Adsorbed on Oxide Surfaces. Vib. Spectrosc. 2003, 32, 225–240. Cerca con Google

(178) Thomas, E. W.; Merlin, J. C. Resonance Raman Spectroscopic Studies of 2-(4′-Hydroxyphenylazo)-Benzoic Acid and Some Substituted analogs—II. Binding to Avidin and Bovine Serum Albumin. Spectrochim. Acta Part A Mol. Spectrosc. 1979, 35, 1251–1255. Cerca con Google

(179) Merlin, J. C.; Thomas, E. W. Resonance Raman Spectroscopic Studies of 2-(4′-Hydroxyphenylazo)-Benzoic Acid and Some Substituted analogs—I. pH Effect on Spectra. Spectrochim. Acta Part A Mol. Spectrosc. 1979, 35, 1243–1249. Cerca con Google

(180) Biswas, N.; Umapathy, S. Structures, Vibrational Frequencies, and Normal Modes of Substituted Azo Dyes: Infrared, Raman, and Density Functional Calculations. J. Phys. Chem. A 2000, 104, 2734–2745. Cerca con Google

(181) Fagnano, C.; Fini, G.; Torreggiani, A. Raman Spectroscopic Study of the Avidin-Biotin Complex. J. Raman Spectrosc. 1995, 26, 991–995. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record