Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Hernandez Gonzalez, Victor Hugo (2008) Biophysical analysis of gap-junction channels involved in congenital diseases. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Mutations in connexin genes have been linked to a variety of human diseases, including cardiovascular anomalies, peripheral neuropathies, deafness, skin disorders and cataracts. In connexin-based gap junction channels, each cell contributes a hexamer of connexins forming half a channel, or connexon, which, in the narrow extracellular cleft, interacts with and aligns to another connexon from the adjacent cell. Several endogenous ions and low molecular weight species have been shown to cross gap junction channels, including all current- arrying anions and cations, glycolytic intermediates, vitamins, amino acids, nucleotides, as well as some of the more important second messengers involved in cell signaling, such as InsP3 and cAMP. InsP3 can be considered a global messenger molecule. InsP3 molecules diffuse throughout the cell nearly unbuffered with a diffusion coefficient of 280 µm2/s and lifetime up to 60s in the cytoplasm depending on cell type, interact with specific receptors (InsP3R) present in the endoplasmic reticulum and Ca2+ is liberated, raising its concentration in the cytosol. Similar to InsP3, cAMP is a ubiquitous intracellular
second messenger that affects cell physiology by directly interacting with effector molecules, including cAMP-dependent protein kinases (PKA), cyclic nucleotide-gated ion channels (CNG channels), hyperpolarization activated channels and the guanine exchange factor EPAC. A variety of specific functions have been proposed for the intercellular transfer of ions and endogenous solutes through gap junction channels, yet the procedures that have gained wide acceptance in assaying the molecular permeability of connexins are dependent on the introduction into living cells of exogenous markers which are then traced in their individual intercellular movements.
Direct measurement of endogenous messengers' transit has been so far problematic mostly due to lack of selective reporters. For example, to compare the transfer rate of cAMP through gap junction channels formed by different connexins, CFTR-mediated chloride currents, Ca2+ currents through CNG channels and Ca2+ imaging have been utilized as sensors for cAMP. Defective permeation of cAMP through gap junctions between adjacent cytoplasmic loops of myelinating Schwann cells has been hypothesized to underlie certain forms of CMTX disease. Also the transfer of InsP3 has been detected indirectly, using Ca2+ imaging as the readout for InsP3 dynamics. InsP3 permeability defects detected by a Ca2+ reporter system in supporting cells of the auditory sensory epithelium, in which Cx26 and Cx30 are expressed at high levels, have been recently implicated in genetic deafness. In an effort to develop direct, quantitative and reproducible means to monitor the flux of cAMP or InsP3 through recombinant connexin channels, we used novel ratiometric fluorescent biosensors that exploit the phenomenon of FRET for the quantitative monitoring of second messenger concentrations in single living cells in real time. This approach may have a general impact as it provides fast and reliable estimates of connexin permeability to second messengers and permits to investigate their role in the physiology and pathology of cell-cell communication.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mammano, Fabio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > NEUROBIOLOGIA
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):Connexins, Gap-Junctions, Inner ear, FRET
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/09 Fisiologia
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:681
Depositato il:26 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Pickles, J. O., Comis, S. D. & Osborne, M. P. Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15, 103-12 (1984). Cerca con Google

2. Merchan, M. A., Merchan, J. A. & Ludena, M. D. Morphology of Hensen's cells. J Anat 131, 519-23 (1980). Cerca con Google

3. Spicer, S. S. & Schulte, B. A. Differences along the place-frequency map in the structure of supporting cells in the gerbil cochlea. Hear Res 79, 161-77 (1994). Cerca con Google

4. Yeaman, C., Grindstaff, K. K. & Nelson, W. J. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol Rev 79, 73- 98 (1999). Cerca con Google

5. Wangemann, P., Schacht, J. in The Cochlea (ed. Dallos, P., Popper, A., Fay, R.) 130-185 (Springer-Verlag, New York, 1996). Cerca con Google

6. von Bekesy, G. DC resting potential inside the cochlea partition. J Acoust Soc Am 24, 72-76 (1952). Cerca con Google

7. Marcus, D. Acoustic Transduction (ed. Sperelakis, N.) (Academic press, San Diego, California, USA, 1995). Cerca con Google

8. Mammano, F. & Nobili, R. Biophysics of the cochlea: linear approximation. J Acoust Soc Am 93, 3320-32 (1993). Cerca con Google

9. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194-202 (2001). Cerca con Google

10. Corey, D. P. et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723-730 (2004). Cerca con Google

11. von Bekesy, G. Microphonics produced by touching the cochlear partition with a vibrating electrode. J Acoust Soc Am 23, 29-35 (1951). Cerca con Google

12. He, D. Z., Jia, S. & Dallos, P. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429, 766-70 (2004). Cerca con Google

13. Cheatham, M. A. & Dallos, P. Longitudinal comparisons of IHC ac and dc receptor potentials recorded from the guinea pig cochlea. Hear Res 68, 107-14 (1993). Cerca con Google

14. Kennedy, H. J. & Meech, R. W. Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 539, 15-23 (2002). Cerca con Google

15. Lelli, A. et al. Presynaptic calcium stores modulate afferent release in vestibular hair cells. J Neurosci 23, 6894-903 (2003). Cerca con Google

16. Lioudyno, M. et al. A "synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells. J Neurosci 24, 11160-4 (2004). Cerca con Google

17. Cousillas, H., Cole, K. S. & Johnstone, B. M. Effect of spider venom on cochlear nerve activity consistent with glutamatergic transmission at hair cellafferent dendrite synapse. Hear Res 36, 213-20 (1988). Cerca con Google

18. Parsons, T. D., Lenzi, D., Almers, W. & Roberts, W. M. Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13, 875-83 (1994). Cerca con Google

19. Beutner, D., Voets, T., Neher, E. & Moser, T. Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29, 681-90 (2001). Cerca con Google

20. Fuchs, P. The synaptic physiology of cochlear hair cells. Audiol Neurootol 7, 40-4 (2002). Cerca con Google

21. Glowatzki, E. & Fuchs, P. A. Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5, 147-54 (2002). Cerca con Google

22. Keen, E. C. & Hudspeth, A. J. Transfer characteristics of the hair cell's afferent synapse. Proc Natl Acad Sci U S A 103, 5537-42 (2006). Cerca con Google

23. Holt, J. C., Xue, J. T., Brichta, A. M. & Goldberg, J. M. Transmission between type II hair cells and bouton afferents in the turtle posterior crista. J Neurophysiol 95, 428-52 (2006). Cerca con Google

24. Dallos, P. & Fakler, B. Prestin, a new type of motor protein. Nat Rev Mol Cell Biol 3, 104-11 (2002). Cerca con Google

25. Davis, H. An active process in cochlear mechanics. Hear Res 9, 79-90 (1983). Cerca con Google

26. Liberman, M. C. et al. Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300-4 (2002). Cerca con Google

27. Nobili, R. & Mammano, F. Biophysics of the cochlea. II: Stationary nonlinear phenomenology. J Acoust Soc Am 99, 2244-55 (1996). Cerca con Google

28. Scherer, M. P. & Gummer, A. W. Impedance analysis of the organ of corti with magnetically actuated probes. Biophys J 87, 1378-91 (2004). Cerca con Google

29. Fridberger, A. et al. Organ of corti potentials and the motion of the basilar membrane. J Neurosci 24, 10057-63 (2004). Cerca con Google

30. Greenwood, D. D. A cochlear frequency-position function for several species- -29 years later. J Acoust Soc Am 87, 2592-605 (1990). Cerca con Google

31. Sadanaga, M. & Morimitsu, T. Development of endocochlear potential and its negative component in mouse cochlea. Hear Res 89, 155-61 (1995). Cerca con Google

32. Xia, A., Kikuchi, T., Hozawa, K., Katori, Y. & Takasaka, T. Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications. Brain Res 846, 106-11 (1999). Cerca con Google

33. Johnstone, B. M. & Sellick, P. M. The peripheral auditory apparatus. Q Rev Biophys 5, 1-57 (1972). Cerca con Google

34. Johnstone, B. M., Johnstone, J. R. & Pugsley, I. D. Membrane resistance in endolymphatic walls of the first turn of the guinea-pig cochlea. J Acoust Soc Am 40, 1398-404 (1966). Cerca con Google

35. Kitajiri, S. et al. Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J Cell Sci 117, 5087-96 (2004). Cerca con Google

36. Gow, A. et al. Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci 24, 7051-62 (2004). Cerca con Google

37. Takeuchi, S., Ando, M. & Kakigi, A. Mechanism generating endocochlear potential: role played by intermediate cells in stria vascularis. Biophys J 79, 2572-82 (2000). Cerca con Google

38. Marcus, D. C., Wu, T., Wangemann, P. & Kofuji, P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol 282, C403-7 (2002). Cerca con Google

39. Wangemann, P. K+ cycling and the endocochlear potential. Hear Res 165, 1-9 (2002). Cerca con Google

40. Marcus, D. C. et al. Protein kinase C mediates P2U purinergic receptor inhibition of K+ channel in apical membrane of strial marginal cells. Hear Res 115, 82-92 (1998). Cerca con Google

41. Offner, F. F., Dallos, P. & Cheatham, M. A. Positive endocochlear potential: mechanism of production by marginal cells of stria vascularis. Hear Res 29, 117-24 (1987). Cerca con Google

42. Wangemann, P., Shen, Z. & Liu, J. K(+)-induced stimulation of K+ secretion involves activation of the IsK channel in vestibular dark cells. Hear Res 100, 201-10 (1996). Cerca con Google

43. Housley, G. D., Greenwood, D. & Ashmore, J. F. Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B Biol Sci 249, 265-73 (1992). Cerca con Google

44. McGuirt, J. P. & Schulte, B. A. Distribution of immunoreactive alpha- and beta-subunit isoforms of Na,K-ATPase in the gerbil inner ear. J Histochem Cytochem 42, 843-53 (1994). Cerca con Google

45. Rarey, K. E., Ross, M. D. & Smith, C. B. Distribution and significance of norepinephrine in the lateral cochlear wall of pigmented and albino rats. Hear Res 6, 15-23 (1982). Cerca con Google

46. Wangemann, P., Liu, J., Shimozono, M., Schimanski, S. & Scofield, M. A. K+ secretion in strial marginal cells is stimulated via beta 1-adrenergic receptors but not via beta 2-adrenergic or vasopressin receptors. J Membr Biol 175, 191- 202 (2000). Cerca con Google

47. Ishii, K., Zhai, W. G. & Akita, M. Effect of a beta-stimulant on the inner ear stria vascularis. Ann Otol Rhinol Laryngol 109, 628-33 (2000). Cerca con Google

48. Kanoh, N. Effect of norepinephrine on ouabain-sensitive, K+-dependent pnitrophenylphosphatase activity in strial marginal cells of the cochlea in normal and reserpinized guinea pigs. Acta Otolaryngol 118, 817-20 (1998). Cerca con Google

49. Kanoh, N. Effects of epinephrine on ouabain-sensitive, K(+) -dependent Pnitrophenylphosphatase activity in strial marginal cells of guinea pigs. Ann Otol Rhinol Laryngol 108, 345-8 (1999). Cerca con Google

50. Sunose, H., Liu, J. & Marcus, D. C. cAMP increases K+ secretion via activation of apical IsK/KvLQT1 channels in strial marginal cells. Hear Res 114, 107-16 (1997). Cerca con Google

51. Marcus, D. C. & Chiba, T. K+ and Na+ absorption by outer sulcus epithelial cells. Hear Res 134, 48-56 (1999). Cerca con Google

52. Ricci, A. J., Crawford, A. C. & Fettiplace, R. Tonotopic variation in the conductance of the hair cell mechanotransducer channel. Neuron 40, 983-90 (2003). Cerca con Google

53. Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nat Rev Neurosci 1, 21-30 (2000). Cerca con Google

54. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437-46 (1999). Cerca con Google

55. Kharkovets, T. et al. KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97, 4333-8 (2000). Cerca con Google

56. Fechner, F. P., Burgess, B. J., Adams, J. C., Liberman, M. C. & Nadol, J. B., Jr. Dense innervation of Deiters' and Hensen's cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400, 299-309 (1998). Cerca con Google

57. Oesterle, E. C. & Dallos, P. Intracellular recordings from supporting cells in the guinea pig cochlea: DC potentials. J Neurophysiol 64, 617-36 (1990). Cerca con Google

58. Karwoski, C. J., Lu, H. K. & Newman, E. A. Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. Science 244, 578-80 (1989). Cerca con Google

59. Skatchkov, S. N., Krusek, J., Reichenbach, A. & Orkand, R. K. Potassium buffering by Muller cells isolated from the center and periphery of the frog retina. Glia 27, 171-80 (1999). Cerca con Google

60. Boettger, T. et al. Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416, 874-8 (2002). Cerca con Google

61. Lauf, P. K. & Adragna, N. C. K-Cl cotransport: properties and molecular mechanism. Cell Physiol Biochem 10, 341-54 (2000). Cerca con Google

62. Forge, A. et al. Gap junctions and connexin expression in the inner ear. Novartis Found Symp 219, 134-50; discussion 151-6 (1999). Cerca con Google

63. Santos-Sacchi, J. Isolated supporting cells from the organ of Corti: some whole cell electrical characteristics and estimates of gap junctional conductance. Hear Res 52, 89-98 (1991). Cerca con Google

64. Forge, A. Gap junctions in the stria vascularis and effects of ethacrynic acid. Hear Res 13, 189-200 (1984). Cerca con Google

65. Mizuta, K., Adachi, M. & Iwasa, K. H. Ultrastructural localization of the Na- K-Cl cotransporter in the lateral wall of the rabbit cochlear duct. Hear Res 106, 154-62 (1997). Cerca con Google

66. Hibino, H. et al. Expression of an inwardly rectifying K+ channel, Kir5.1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci 19, 76-84 (2004). Cerca con Google

67. Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381-8 (1996). Cerca con Google

68. Harris, A. L. Emerging issues of connexin channels: biophysics fills the gap. Q Rev Biophys 34, 325-472 (2001). Cerca con Google

69. Gerido, D. A. & White, T. W. Connexin disorders of the ear, skin, and lens. Biochim Biophys Acta 1662, 159-70 (2004). Cerca con Google

70. Bruzzone, R., White, T. W. & Paul, D. L. Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 1-27 (1996). Cerca con Google

71. Unger, V. M., Kumar, N. M., Gilula, N. B. & Yeager, M. Projection structure of a gap junction membrane channel at 7 A resolution. Nat Struct Biol 4, 39-43 (1997). Cerca con Google

72. Unger, V. M., Kumar, N. M., Gilula, N. B. & Yeager, M. Three-dimensional structure of a recombinant gap junction membrane channel. Science 283, 1176-80 (1999). Cerca con Google

73. Foote, C. I., Zhou, L., Zhu, X. & Nicholson, B. J. The pattern of disulfide linkages in the extracellular loop regions of connexin 32 suggests a model for the docking interface of gap junctions. J Cell Biol 140, 1187-97 (1998). Cerca con Google

74. Purnick, P. E., Benjamin, D. C., Verselis, V. K., Bargiello, T. A. & Dowd, T. L. Structure of the amino terminus of a gap junction protein. Arch Biochem Biophys 381, 181-90 (2000). Cerca con Google

75. Purnick, P. E., Oh, S., Abrams, C. K., Verselis, V. K. & Bargiello, T. A. Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys J 79, 2403-15 (2000). Cerca con Google

76. Arita, K. et al. A novel N14Y mutation in Connexin26 in keratitis-ichthyosisdeafness syndrome: analyses of altered gap junctional communication and molecular structure of N terminus of mutated Connexin26. Am J Pathol 169, 416-23 (2006). Cerca con Google

77. Duffy, H. S. et al. pH-dependent intramolecular binding and structure involving Cx43 cytoplasmic domains. J Biol Chem 277, 36706-14 (2002). Cerca con Google

78. Sorgen, P. L. et al. Sequence-specific resonance assignment of the carboxyl terminal domain of Connexin43. J Biomol NMR 23, 245-6 (2002). Cerca con Google

79. Willecke, K. et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383, 725-37 (2002). Cerca con Google

80. Beyer, E. C. a. W., K. in Gap Junction (ed. E., B.) 1-29 (Hertzberg, 2000). Cerca con Google

81. Laird, D. W. Life cycle of connexins in health and disease. Biochem J 394, 527-43 (2006). Cerca con Google

82. George, C. H., Kendall, J. M. & Evans, W. H. Intracellular trafficking pathways in the assembly of connexins into gap junctions. J Biol Chem 274, 8678-85 (1999). Cerca con Google

83. Kikuchi, T., Kimura, R. S., Paul, D. L. & Adams, J. C. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl) 191, 101-18 (1995). Cerca con Google

84. Sosinsky, G. Mixing of connexins in gap junction membrane channels. Proc Natl Acad Sci U S A 92, 9210-4 (1995). Cerca con Google

85. Gemel, J., Valiunas, V., Brink, P. R. & Beyer, E. C. Connexin43 and connexin26 form gap junctions, but not heteromeric channels in co-expressing cells. J Cell Sci 117, 2469-80 (2004). Cerca con Google

86. Segretain, D. & Falk, M. M. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662, 3-21 (2004). Cerca con Google

87. Sosinsky, G. E. et al. Tetracysteine genetic tags complexed with biarsenical ligands as a tool for investigating gap junction structure and dynamics. Cell Commun Adhes 10, 181-6 (2003). Cerca con Google

88. Lampe, P. D. & Lau, A. F. The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36, 1171-86 (2004).ù Cerca con Google

89. Lampe, P. D., Cooper, C. D., King, T. J. & Burt, J. M. Analysis of Connexin43 phosphorylated at S325, S328 and S330 in normoxic and ischemic heart. J Cell Sci 119, 3435-42 (2006). Cerca con Google

90. Lawrence, T. S., Beers, W. H. & Gilula, N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature 272, 501-6 (1978). Cerca con Google

91. Goldberg, G. S., Valiunas, V. & Brink, P. R. Selective permeability of gap junction channels. Biochim Biophys Acta 1662, 96-101 (2004). Cerca con Google

92. Suchyna, T. M. et al. Different ionic selectivities for connexins 26 and 32 produce rectifying gap junction channels. Biophys J 77, 2968-87 (1999). Cerca con Google

93. Veenstra, R. D. et al. Selectivity of connexin-specific gap junctions does not correlate with channel conductance. Circ Res 77, 1156-65 (1995). Cerca con Google

94. Elfgang, C. et al. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129, 805-17 (1995). Cerca con Google

95. Hernandez, V. H. et al. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods 4, 353-8 (2007). Cerca con Google

96. Bukauskas, F. F., Elfgang, C., Willecke, K. & Weingart, R. Heterotypic gap junction channels (connexin26-connexin32) violate the paradigm of unitary conductance. Pflugers Arch 429, 870-2 (1995). Cerca con Google

97. Bukauskas, F. F. & Verselis, V. K. Gap junction channel gating. Biochim Biophys Acta 1662, 42-60 (2004). Cerca con Google

98. Bennett, M. V. Gap junctions as electrical synapses. J Neurocytol 26, 349-66 (1997). Cerca con Google

99. Bukauskas, F. F. & Weingart, R. Multiple conductance states of newly formed single gap junction channels between insect cells. Pflugers Arch 423, 152-4 (1993). Cerca con Google

100. Verselis, V. K., Ginter, C. S. & Bargiello, T. A. Opposite voltage gating polarities of two closely related connexins. Nature 368, 348-51 (1994). Cerca con Google

101. Oh, S., Rubin, J. B., Bennett, M. V., Verselis, V. K. & Bargiello, T. A. Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32. J Gen Physiol 114, 339-64 (1999). Cerca con Google

102. Oh, S., Abrams, C. K., Verselis, V. K. & Bargiello, T. A. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J Gen Physiol 116, 13-31 (2000). Cerca con Google

103. Oh, S., Rivkin, S., Tang, Q., Verselis, V. K. & Bargiello, T. A. Determinants of gating polarity of a connexin 32 hemichannel. Biophys J 87, 912-28 (2004). Cerca con Google

104. Rubin, J. B., Verselis, V. K., Bennett, M. V. & Bargiello, T. A. Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J 62, 183-93; discussion 193-5 (1992). Cerca con Google

105. Rubin, J. B., Verselis, V. K., Bennett, M. V. & Bargiello, T. A. A domain substitution procedure and its use to analyze voltage dependence of homotypic gap junctions formed by connexins 26 and 32. Proc Natl Acad Sci U S A 89, 3820-4 (1992). Cerca con Google

106. Revilla, A., Castro, C. & Barrio, L. C. Molecular dissection of transjunctional voltage dependence in the connexin-32 and connexin-43 junctions. Biophys J 77, 1374-83 (1999). Cerca con Google

107. Gonzalez, D., Gomez-Hernandez, J. M. & Barrio, L. C. Molecular basis of voltage dependence of connexin channels: an integrative appraisal. Prog Biophys Mol Biol 94, 66-106 (2007). Cerca con Google

108. Peracchia, C., Salim, M. & Peracchia, L. L. Unusual slow gating of gap junction channels in oocytes expressing connexin32 or its COOH-terminus truncated mutant. J Membr Biol 215, 161-8 (2007). Cerca con Google

109. Barrio, L. C., Capel, J., Jarillo, J. A., Castro, C. & Revilla, A. Species-specific voltage-gating properties of connexin-45 junctions expressed in Xenopus oocytes. Biophys J 73, 757-69 (1997). Cerca con Google

110. Revilla, A., Bennett, M. V. & Barrio, L. C. Molecular determinants of membrane potential dependence in vertebrate gap junction channels. Proc Natl Acad Sci U S A 97, 14760-5 (2000). Cerca con Google

111. Cottrell, G. T., Lin, R., Warn-Cramer, B. J., Lau, A. F. & Burt, J. M. Mechanism of v-Src- and mitogen-activated protein kinase-induced reduction of gap junction communication. Am J Physiol Cell Physiol 284, C511-20 (2003). Cerca con Google

112. Duncan, J. C. & Fletcher, W. H. alpha 1 Connexin (connexin43) gap junctions and activities of cAMP-dependent protein kinase and protein kinase C in developing mouse heart. Dev Dyn 223, 96-107 (2002). Cerca con Google

113. Shi, X. et al. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 276, 2075- 82 (2001). Cerca con Google

114. John, S., Cesario, D. & Weiss, J. N. Gap junctional hemichannels in the heart. Acta Physiol Scand 179, 23-31 (2003). Cerca con Google

115. Takens-Kwak, B. R. & Jongsma, H. J. Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pflugers Arch 422, 198-200 (1992). Cerca con Google

116. Saez, J. C. et al. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc Natl Acad Sci U S A 83, 2473-7 (1986). Cerca con Google

117. Saez, J. C. et al. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur J Biochem 192, 263-73 (1990). Cerca con Google

118. Chanson, M., White, M. M. & Garber, S. S. cAMP promotes gap junctional coupling in T84 cells. Am J Physiol 271, C533-9 (1996). Cerca con Google

119. Traub, O. et al. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 108, 1039-51 (1989). Cerca con Google

120. Kwak, B. R. et al. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6, 1707-19 (1995). Cerca con Google

121. Locke, D., Koreen, I. V. & Harris, A. L. Isoelectric points and posttranslational modifications of connexin26 and connexin32. Faseb J 20, 1221-3 (2006). Cerca con Google

122. Peracchia, C. Chemical gating of gap junction channels; roles of calcium, pH and calmodulin. Biochim Biophys Acta 1662, 61-80 (2004). Cerca con Google

123. Peracchia, C., Wang, X. G. & Peracchia, L. L. Chemical gating of gap junction channels. Methods 20, 188-95 (2000). Cerca con Google

124. Peracchia, C., Sotkis, A., Wang, X. G., Peracchia, L. L. & Persechini, A. Calmodulin directly gates gap junction channels. J Biol Chem 275, 26220-4 (2000). Cerca con Google

125. Burr, G. S., Mitchell, C. K., Keflemariam, Y. J., Heidelberger, R. & O'Brien, J. Calcium-dependent binding of calmodulin to neuronal gap junction proteins. Biochem Biophys Res Commun 335, 1191-8 (2005). Cerca con Google

126. Zhou, Y. et al. Identification of the calmodulin binding domain of connexin 43. J Biol Chem 282, 35005-17 (2007). Cerca con Google

127. Stergiopoulos, K. et al. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ Res 84, 1144-55 (1999). Cerca con Google

128. Young, K. C. & Peracchia, C. Opposite Cx32 and Cx26 voltage-gating response to CO2 reflects opposite voltage-gating polarity. J Membr Biol 202, 161-70 (2004). Cerca con Google

129. Peracchia, C., Wang, X., Li, L. & Peracchia, L. L. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pflugers Arch 431, 379-87 (1996). Cerca con Google

130. White, R. L., Doeller, J. E., Verselis, V. K. & Wittenberg, B. A. Gap junctional conductance between pairs of ventricular myocytes is modulated synergistically by H+ and Ca++. J Gen Physiol 95, 1061-75 (1990). Cerca con Google

131. Forge, A. & Wright, T. The molecular architecture of the inner ear. Br Med Bull 63, 5-24 (2002). Cerca con Google

132. Kikuchi, T., Adams, J. C., Paul, D. L. & Kimura, R. S. Gap junction systems in the rat vestibular labyrinth: immunohistochemical and ultrastructural analysis. Acta Otolaryngol 114, 520-8 (1994). Cerca con Google

133. Jagger, D. J. & Forge, A. Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea. J Neurosci 26, 1260-8 (2006). Cerca con Google

134. Yum, S. W. et al. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 293, C1032- 48 (2007). Cerca con Google

135. Dahl, E. et al. Molecular cloning and functional expression of mouse connexin-30,a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271, 17903-10 (1996). Cerca con Google

136. Kelley, P. M. et al. Human connexin 30 (GJB6), a candidate gene for nonsyndromic hearing loss: molecular cloning, tissue-specific expression, and assignment to chromosome 13q12. Genomics 62, 172-6 (1999). Cerca con Google

137. Buniello, A., Montanaro, D., Volinia, S., Gasparini, P. & Marigo, V. An expression atlas of connexin genes in the mouse. Genomics 83, 812-20 (2004). Cerca con Google

138. Cohen-Salmon, M. et al. Expression of the connexin43- and connexin45- encoding genes in the developing and mature mouse inner ear. Cell Tissue Res 316, 15-22 (2004). Cerca con Google

139. Morton, C. C. Gene discovery in the auditory system using a tissue specific approach. Am J Med Genet A 130, 26-8 (2004). Cerca con Google

140. Carrasquillo, M. M., Zlotogora, J., Barges, S. & Chakravarti, A. Two different connexin 26 mutations in an inbred kindred segregating non-syndromic recessive deafness: implications for genetic studies in isolated populations. Hum Mol Genet 6, 2163-72 (1997). Cerca con Google

141. Denoyelle, F. et al. Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6, 2173-7 (1997). Cerca con Google

142. Zelante, L. et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans. Hum Mol Genet 6, 1605-9 (1997). Cerca con Google

143. Richard, G. Connexin gene pathology. Clin Exp Dermatol 28, 397-409 (2003). Cerca con Google

144. Chaib, H. et al. A gene responsible for a dominant form of neurosensory nonsyndromic deafness maps to the NSRD1 recessive deafness gene interval. Hum Mol Genet 3, 2219-22 (1994). Cerca con Google

145. Stojkovic, T., Latour, P., Vandenberghe, A., Hurtevent, J. F. & Vermersch, P. Sensorineural deafness in X-linked Charcot-Marie-Tooth disease with connexin 32 mutation (R142Q). Neurology 52, 1010-4 (1999). Cerca con Google

146. Liu, X. Z. et al. Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 9, 63-7 (2000). Cerca con Google

147. Richard, G. et al. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20, 366-9 (1998). Cerca con Google

148. Liu, X. Z. et al. Mutations in GJA1 (connexin 43) are associated with nonsyndromic autosomal recessive deafness. Hum Mol Genet 10, 2945-51 (2001). Cerca con Google

149. Xia, J. H. et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20, 370-3 (1998). Cerca con Google

150. Grifa, A. et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23, 16-8 (1999). Cerca con Google

151. Kelsell, D. P. et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387, 80-3 (1997). Cerca con Google

152. White, T. W., Deans, M. R., Kelsell, D. P. & Paul, D. L. Connexin mutations in deafness. Nature 394, 630-1 (1998). Cerca con Google

153. Estivill, X. et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351, 394-8 (1998). Cerca con Google

154. Van Laer, L. et al. A common founder for the 35delG GJB2 gene mutation in connexin 26 hearing impairment. J Med Genet 38, 515-8 (2001). Cerca con Google

155. Morell, R. J. et al. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med 339, 1500-5 (1998). Cerca con Google

156. Bruzzone, R. et al. Functional analysis of a dominant mutation of human connexin26 associated with nonsyndromic deafness. Cell Commun Adhes 8, 425-31 (2001). Cerca con Google

157. Beltramello, M., Piazza, V., Bukauskas, F. F., Pozzan, T. & Mammano, F. Impaired permeability to Ins(1,4,5)P(3) in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7, 63-9 (2005). Cerca con Google

158. Denoyelle, F. et al. Connexin 26 gene linked to a dominant deafness. Nature 393, 319-20 (1998). Cerca con Google

159. Loffler, J. et al. Sensorineural hearing loss and the incidence of Cx26 mutations in Austria. Eur J Hum Genet 9, 226-30 (2001). Cerca con Google

160. Morle, L. et al. A novel C202F mutation in the connexin26 gene (GJB2) associated with autosomal dominant isolated hearing loss. J Med Genet 37, 368-70 (2000). Cerca con Google

161. Piazza, V. et al. Functional analysis of R75Q mutation in the gene coding for Connexin 26 identified in a family with nonsyndromic hearing loss. Clin Genet 68, 161-6 (2005). Cerca con Google

162. Common, J. E. et al. Functional studies of human skin disease- and deafnessassociated connexin 30 mutations. Biochem Biophys Res Commun 298, 651-6 (2002). Cerca con Google

163. del Castillo, I. et al. A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346, 243-9 (2002). Cerca con Google

164. Del Castillo, I. et al. Prevalence and evolutionary origins of the del(GJB6- D13S1830) mutation in the DFNB1 locus in hearing-impaired subjects: a multicenter study. Am J Hum Genet 73, 1452-8 (2003). Cerca con Google

165. Lopez-Bigas, N. et al. Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 10, 947-52 (2001). Cerca con Google

166. Di, W. L. et al. Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet 11, 2005-14 (2002). Cerca con Google

167. White, T. W. & Paul, D. L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61, 283-310 (1999). Cerca con Google

168. Gabriel, H. D. et al. Transplacental uptake of glucose is decreased in embryonic lethal connexin26-deficient mice. J Cell Biol 140, 1453-61 (1998). Cerca con Google

169. Cohen-Salmon, M. et al. Targeted ablation of connexin26 in the inner ear epithelial gap junction network causes hearing impairment and cell death. Curr Biol 12, 1106-11 (2002). Cerca con Google

170. Lautermann, J. et al. Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294, 415-20 (1998). Cerca con Google

171. Valiunas, V., Manthey, D., Vogel, R., Willecke, K. & Weingart, R. Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol 519 Pt 3, 631-44 (1999). Cerca con Google

172. Teubner, B. et al. Connexin30 (Gjb6)-deficiency causes severe hearing impairment and lack of endocochlear potential. Hum Mol Genet 12, 13-21 (2003). Cerca con Google

173. Cohen-Salmon, M. et al. Connexin30 deficiency causes instrastrial fluid-blood barrier disruption within the cochlear stria vascularis. Proc Natl Acad Sci U S A 104, 6229-34 (2007). Cerca con Google

174. Ahmad, S. et al. Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci U S A 104, 1337-41 (2007). Cerca con Google

175. Brissette, J. L., Kumar, N. M., Gilula, N. B., Hall, J. E. & Dotto, G. P. Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci U S A 91, 6453-7 (1994). Cerca con Google

176. Kelsell, D. P., Di, W. L. & Houseman, M. J. Connexin mutations in skin disease and hearing loss. Am J Hum Genet 68, 559-68 (2001). Cerca con Google

177. Richard, G. Connexin disorders of the skin. Adv Dermatol 17, 243-77 (2001). Cerca con Google

178. Lamartine, J. et al. Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 26, 142-4 (2000). Cerca con Google

179. Birouk, N. et al. X-linked Charcot-Marie-Tooth disease with connexin 32 mutations: clinical and electrophysiologic study. Neurology 50, 1074-82 (1998). Cerca con Google

180. Anzini, P. et al. Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17, 4545-51 (1997). Cerca con Google

181. Bergoffen, J. et al. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262, 2039-42 (1993). Cerca con Google

182. Oh, S. et al. Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron 19, 927-38 (1997). Cerca con Google

183. Balice-Gordon, R. J., Bone, L. J. & Scherer, S. S. Functional gap junctions in the schwann cell myelin sheath. J Cell Biol 142, 1095-104 (1998). Cerca con Google

184. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial, and Golgi pH in single living cells with green fluorescent proteins. Proc Natl Acad Sci U S A 95, 6803-8 (1998). Cerca con Google

185. Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. C. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2, 318-25 (2000). Cerca con Google

186. Thompson, R. B., Whetsell, W. O., Jr., Maliwal, B. P., Fierke, C. A. & Frederickson, C. J. Fluorescence microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrasebased biosensor system. J Neurosci Methods 96, 35-45 (2000). Cerca con Google

187. Jayaraman, S., Haggie, P., Wachter, R. M., Remington, S. J. & Verkman, A. S. Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275, 6047-50 (2000). Cerca con Google

188. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc Natl Acad Sci U S A 96, 11241-6 (1999). Cerca con Google

189. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882-7 (1997). Cerca con Google

190. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc Natl Acad Sci U S A 96, 2135-40 (1999). Cerca con Google

191. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein. Nat Biotechnol 19, 137-41 (2001). Cerca con Google

192. Wouters, F. S., Verveer, P. J. & Bastiaens, P. I. Imaging biochemistry inside cells. Trends Cell Biol 11, 203-11 (2001). Cerca con Google

193. Gu, Y., Di, W. L., Kelsell, D. P. & Zicha, D. Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 215, 162-73 (2004). Cerca con Google

194. Wlodarczyk, J. et al. Analysis of FRET-signals in the presence of free donors and acceptors. Biophys J (2007). Cerca con Google

195. Ponsioen, B. et al. Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. EMBO Rep 5, 1176-80 (2004). Cerca con Google

196. Qu, Y. & Dahl, G. Function of the voltage gate of gap junction channels: selective exclusion of molecules. Proc Natl Acad Sci U S A 99, 697-702 (2002). Cerca con Google

197. Bedner, P. et al. Selective permeability of different connexin channels to the second messenger cyclic AMP. J Biol Chem 281, 6673-81 (2006). Cerca con Google

198. Saez, J. C., Connor, J. A., Spray, D. C. & Bennett, M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A 86, 2708-12 (1989). Cerca con Google

199. Tanimura, A., Nezu, A., Morita, T., Turner, R. J. & Tojyo, Y. Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5- trisphosphate in single living cells. J Biol Chem 279, 38095-8 (2004). Cerca con Google

200. Mammano, F. et al. An optical recording system based on a fast CCD sensor for biological imaging. Cell Calcium 25, 115-23 (1999). Cerca con Google

201. Bastianello S., C. C. D., Beltramello M., Mammano F. in Proceedings of SPIE 265-274 (2004). Cerca con Google

202. Downes, C. P., Mussat, M. C. & Michell, R. H. The inositol trisphosphate phosphomonoesterase of the human erythrocyte membrane. Biochem J 203, 169-77 (1982). Cerca con Google

203. Ressot, C., Gomes, D., Dautigny, A., Pham-Dinh, D. & Bruzzone, R. Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct behaviors: loss of function and altered gating properties. J Neurosci 18, 4063-75 (1998). Cerca con Google

204. Wang, H. L. et al. Functional analysis of connexin-32 mutants associated with X-linked dominant Charcot-Marie-Tooth disease. Neurobiol Dis 15, 361-70 (2004). Cerca con Google

205. Fleishman, S. J., Unger, V. M., Yeager, M. & Ben-Tal, N. A Calpha model for the transmembrane alpha helices of gap junction intercellular channels. Mol Cell 15, 879-88 (2004). Cerca con Google

206. Evans, W. H. & Martin, P. E. Gap junctions: structure and function (Review). Mol Membr Biol 19, 121-36 (2002). Cerca con Google

207. Fleishman, S. J., Sabag, A. D., Ophir, E., Avraham, K. B. & Ben-Tal, N. The structural context of disease-causing mutations in gap junctions. J Biol Chem 281, 28958-63 (2006). Cerca con Google

208. Kenna, M. A., Wu, B. L., Cotanche, D. A., Korf, B. R. & Rehm, H. L. Connexin 26 studies in patients with sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 127, 1037-42 (2001). Cerca con Google

209. Marlin, S. et al. Connexin 26 gene mutations in congenitally deaf children: pitfalls for genetic counseling. Arch Otolaryngol Head Neck Surg 127, 927-33 (2001). Cerca con Google

210. Bicego, M. et al. Pathogenetic role of the deafness-related M34T mutation of Cx26. Hum Mol Genet 15, 2569-87 (2006). Cerca con Google

211. Saez, J. C., Berthoud, V. M., Branes, M. C., Martinez, A. D. & Beyer, E. C. Plasma membrane channels formed by connexins: their regulation and functions. Physiol Rev 83, 1359-400 (2003). Cerca con Google

212. Bone, L. J., Deschenes, S. M., Balice-Gordon, R. J., Fischbeck, K. H. & Scherer, S. S. Connexin32 and X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 4, 221-30 (1997). Cerca con Google

213. Petit, C., Levilliers, J. & Hardelin, J. P. Molecular genetics of hearing loss. Annu Rev Genet 35, 589-646 (2001). Cerca con Google

214. Paznekas, W. A. et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72, 408-18 (2003). Cerca con Google

215. Abrams, C. K., Freidin, M. M., Verselis, V. K., Bennett, M. V. & Bargiello, T. A. Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease. Brain Res 900, 9-25 (2001). Cerca con Google

216. Abrams, C. K., Bennett, M. V., Verselis, V. K. & Bargiello, T. A. Voltage opens unopposed gap junction hemichannels formed by a connexin 32 mutant associated with X-linked Charcot-Marie-Tooth disease. Proc Natl Acad Sci U S A 99, 3980-4 (2002). Cerca con Google

217. Bicego, M. et al. Selective defects in channel permeability associated with Cx32 mutations causing X-linked Charcot-Marie-Tooth disease. Neurobiol Dis 21, 607-17 (2006). Cerca con Google

218. Zhou, L., Kasperek, E. M. & Nicholson, B. J. Dissection of the molecular basis of pp60(v-src) induced gating of connexin 43 gap junction channels. J Cell Biol 144, 1033-45 (1999). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record