Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Deganutti, Andrea Maria (2008) The Hypermobility of Rock Avalanches. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The thesis contains a study on the apparent low friction in the motion of rock avalanches. A literature review is followed by the description of three real cases of rock avalanches. Then a report is presented, on laboratory work with an innovative high pressure rheometer, used in order to study the rheology of a fragmenting flow of rock granules. A developed numerical distinct elements model of the fragmentation rheometer is then described and its results are presented and discussed.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Genevois, Rinaldo
Ph.D. course:Ciclo 20 > Corsi per il 20simo ciclo > SCIENZE DELLA TERRA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:Rock avalanches, Low friction geological processes, Granular flow numerical modelling, High pressure rheology
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/05 Geologia applicata
Struttura di riferimento:Dipartimenti > pre 2012 -Dipartimento di Geologia, Paleontologia e Geofisica
Codice ID:682
Depositato il:11 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abe, S., Mair, K. (2005); Grain fracture in 3D numerical simulations of granular shear. Geophys. Res. Lett., vol. 32, L05305. Cerca con Google

2. Antonellini, M. A., and Pollard, D. D. (1995); Distinct element modeling of deformation bands in sandstone. J. Struct. Geol., 17, 1165–1182. Cerca con Google

3. Bagnold, R. A. (1954); Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proceedings of Royal Society of London, Ser.A 225:49-63. Cerca con Google

4. Bagnold, R. A. (1956); The flow of cohesionless grains in fluids. Proceedings of Royal Society of London, Ser A, 249: 235-297. Cerca con Google

5. Beetham, R.D. (1983); Seismicity and landsliding with special attention to New Zealand. Unpublished MSc Thesis, University of London. Cerca con Google

6. Beetham, R.D., Read, S.A.L., and McSaveney M.J. (2002); Four extremely large landslides in New Zealand. In: Landslides, (Rybar, Stemberk, Wagner, Swets and Zeitlinger eds.); Lisse, 93-102. Cerca con Google

7. Beutner, E.C. (1972); Reverse gravitative movements on earlier overthrusts, Lehmi Range, Idaho. Bullettin Geological Society of America, 83, p. 839-846. Cerca con Google

8. Bieniawski Z.T. (1968); The effect of specimen size on compressive strength of coal. International Journal of Rock Mechanics and Mining Sciences, 5(4): 325–335. Cerca con Google

9. Calvetti F., Crosta G., Tatarella M. (2000); Numerical simulation of dry granular flows: from the reproduction of small-scale experiments to the prediction of rock avalanches. Rivista Italiana di Geotecnica, 2, 21-38. Cerca con Google

10. Campbell, C.S., Cleary, P.W., Hopkins, M. (1995); Large-scale landslide simulations: Global deformation, velocities and basal friction. Journal of Geophysical Research, vol. 100, n. B5, 8267-8283. Cerca con Google

11. Chambon, G., Schmittbuhl, J., and Corfdir, A. (2006); Frictional response of a thick gouge sample: 1. Mechanical measurements and microstructures, J. Geophys. Res., 111, B09308, doi:10.1029/2003JB002731. Cerca con Google

12. Cleary, P.W., Campbell, C.S. (1993); Self-lubrication for long runout landslides: examination by computer simulation. J. of Geophys. Res. 98, 21; 911-924. Cerca con Google

13. Cruden, D.M. and Hungr, O. (1986); The debris of the Frank Slide and theories of rockslide-avalanche mobility. Canadian Journal of Earth Sciences, vel. 23, 425-432. Cerca con Google

14. Cuman, A. (2007); Rock avalanches: analysis of deposits' grain size and numerical modelling of run-out. Università di Padova, PhD thesis. Cerca con Google

15. Cundall, P. A., and Strack, O. D. L. (1979); A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29, 47-65 (1979). Cerca con Google

16. Davies,T.R.H. (1982); Spreading of rock avalanches debris by mechanical fluidization. Rock Mechanics 15, 9-24. Cerca con Google

17. Davies T.R., McSaveney M.J. (2006); Rapid rock mass flow with dynamic fragmentation: inferendes from the morphology and internal structure of rockslides and rock avalanches. In: Evans, S.G.; Scarascia Mugnozza, G.; Strom, A.; Hermanns, R.L. (Eds.) Landslides from Massive Rock Slope Failure; Proceedings of the NATO Advanced Research Workshop on Massive Rock Slope Failure: New Models for Hazard Assessment, Celano, Italy, 16-21 Cerca con Google

18. June 2002. 285-304. Cerca con Google

19. Davies, T.R.H. and McSaveney, M.J. (in progress); The role of dynamic rock fragmentation in the motion of large landslides. Submitted to Engineering Geology. Cerca con Google

20. Davies, T.R.H. and McSaveney, M.J. (2002); Dynamic simulation of the motion of fragmenting rock avalanches. Canadian Geotechnical Journal, vol. 39, 789-798. Cerca con Google

21. Davies T.R., McSaveney M.J. (1999); Runout of dry granular avalanches. Canadian Geotechnical Journal, vol. 36, no. 2, April 1999, 313-320. Cerca con Google

22. Davies, T.R., McSaveney, M.J. and Beetham, R. (2006), Rapid block glides – slide-surface fragmentation in New Zealand’s Waikaremoana landslide. Quarterly Journal of Engineering Geology and Hydrogeology vol. 39, 115– 129. Cerca con Google

23. Davies, T.R, McSaveney, M.J., Deganutti, A.M. (2007); Dynamic fragmentation causes low rock-on-rock friction. Proc. of 1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, 27-31 May 2007. Cerca con Google

24. Davies, T.R., Deganutti, A.M. & McSaveney, M.J. (2005). A high-stress rheometer for fragmenting rock. In: Picarelli,L. (ed.) Proceedings, International Conference on fast slope movements. Naples, May 11-13, 1. Patron Editore, Bologna, 139–141. Cerca con Google

25. Davies, T.R., McSaveney, M.J. and Hodgson, K.A. (1999). A fragmentationspreading model for long-runout rock avalanches. Canadian Geotechnical Journal, 36: 6, 1096–1110. 1999. Cerca con Google

26. Deganutti, A.M., Scotton, P., (1997). Yield stress of granular material. Proc. Of “First International Conference on Debris Flow Hazards Mitigation” ASCE, S. Francisco August 7/9,1997; 270-278. Cerca con Google

27. Di Toro, G., Goldsby, D.L., Tullis, T.E. (2004). Friction falls toward zero in quarz rock as slip velocity approaches seismic rates. Nature vol. 427, 29 Jan. 04, 436-439. Cerca con Google

28. Donzé, F., Magnier S. A. and Bouchez J. (1996); Numerical modeling of a highly explosive source in an elastic-brittle rock mass, J. Geophys. Res., 101, 3103–3112. Cerca con Google

29. Dunning, S.A. 2004. Rock avalanches in high mountains – A sedimentological approach. PhD Thesis. University of Luton, U.K. Cerca con Google

30. Evans, S.G. (1995); The field behaviour of rock avalanches in the Canadian Cordillera. International Symposium on prediction of landslide motion, Disaster Prevention Institute, Kyoto University. Cerca con Google

31. Genevois, R. 2007, Pers. comm.. Cerca con Google

32. Grady, D.E. and Kipp, M.E. (1987); Dynamic rock fragmentation. In Fracture Mechanics of Rock, Academic Press, London, UK, 429–475. 1987. Cerca con Google

33. Gukwa, P.R., and Kehle, R.O. (1978); Bearpaw Mountains rockslide, Montana, U.S.A. In: Rockslides and Avalanches, (Voight, B. ed.) vol. 1 Development in Geotechnical Engineering, vol. 14A, 393-421; Amsterdam, Elsevier. Cerca con Google

34. Guest, J.E. (1971); Geology of the far side Crater Tsiolkovsky. In: Geology and Physics of the Moon (Fielder, G. ed.) 93-103, Elsevier. Cerca con Google

35. Habib, P. (1975); Production of gaseous pore pressure during rock slides. Rock Mechanics 7, 193-197. Cerca con Google

36. Harrison, J.V., and Falcon, N.L. (1938); An ancient landslip at Saidmarreh, in southwestern Iran. Journal of Geology, vol. 46, 296-309. Cerca con Google

37. Hazzard, J.F., and Mair, K. (2003); The importance of the third dimension in granular shear. Geophys. Res. Lett., 30(13), 1708, doi:10.1029/ 2003GL017534. Cerca con Google

38. Hazzard, J.F., Young, R.P., Maxwell, S.C. (2000); Micromechanical modeling of cracking and failure in brittle rocks. J. of Geoph. Res., vol. 105, B7, p. 16,683–16,697. Cerca con Google

39. Heim, A. (1882); Der Bergsturz von Elm. Z. Dtsch. Geol. Ges., 34, 74-115. Cerca con Google

40. Heim, A. (1932); Der Bergsturz und Menschenleben. Zürich, Fretz und Wasmuth Verlag, 218 p. Cerca con Google

41. Hayashi, J.N. and Self, F. (1992); A comparison of pyroclastic flow and debris avalanche mobility. Journal of Geophysical Research, 97, B6, 9063-9071. Cerca con Google

42. Herget, G. (1988); Stresses in rock. Balkema, Rotterdam.179 p. Cerca con Google

43. Howard, K. (1973); Avalanche mode of motion: implications from lunar examples. Science 180, 1052-1055. Cerca con Google

44. Hsü, K.J. (1975); Catastrophic debris streams (sturzstroms) generated by rockfalls. Bull. Geol. Soc. Of America, Vol. 86, 129-140. Cerca con Google

45. Hsü, K.J. (1978); Albert Heim: Observations on landslides and relevance to modern interpretations. In: Rockslides and Avalanches, (Voight, B. ed.) vol. 1 Natural Phenomena, 71-93. Amsterdam, Elsevier. Cerca con Google

46. Howell, D., and Behringer, R.P. (1999); Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition. Physical Review Letters 82: 5241-5244. Cerca con Google

47. Hungr, O, (1995); A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotech J., 32:610–623. Cerca con Google

48. Hungr, O. (1990); Mobility of rock avalanches. Report of National Research Institute for Earth Science and Disaster Prevention, Japan. 46, 11-19. Cerca con Google

49. Hungr, O. (1981); Dynamics of rock avalanches and and other types of slope movements. PhD thesis, Univ. of Alberta, Edmonton, 500 pp. Cerca con Google

50. Hungr, O., and Evans, S.G. (1996); Rock avalanche runout prediction using a dynamic model. In: Landslides, Proceedings of the 7th International Symposium on landslides, Trondheim, Norway. Senneset K.(ed) A.A Balkema, Rotterdam, vol. 1, pp 233–238 Cerca con Google

51. Hungr, O. and Morgenstern, N.R. (1984); Experiments on the flow behaviour of granular material at high velocity in an open channel. Geotecnique, vol. 34, 405-413. Cerca con Google

52. Johnson, B. (1978); Blackhawk landslide, California, USA (1978); In: Rockslides and Avalanches, (Voight, B. ed.) vol. 1 Natural Phenomena, 481- 504. Amsterdam, Elsevier. Cerca con Google

53. Kent , P.E. (1966): The transport mechanism in catastrophic rock falls. Journal of Geology, vol. 74, 79-83. Cerca con Google

54. Kilburn, C.R.J. (2001); The flow of giant rock landslides. In: Paradoxes in Geology. Ken Hsü Special Volume, Chapter 13 (Eds. Briegel U and Xiao WJ.), Elsevier, 245-265. Cerca con Google

55. Körner, H.J. (1977); Flow mechanism and resistances in the debris streams of large rock slides. Bull. Int. Ass. Of Engineering Geology, vol. 16, 101-104. Cerca con Google

56. Legros F. (2001); The mobility of long runout landslides. Engineering Geology, 63, 301-331. Cerca con Google

57. Li, T. (1983); A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie, Vol. 24, 473-482. Cerca con Google

58. Liu, C.-H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., and Witten, T.A. (1995); Force fluctuations in bead packs. Science, 269, 513-515. Cerca con Google

59. McEwen, A.S. (1989); Mobility of large rock avalanches: evidence from Valles Marineris, Mars. Geology, vol. 17, 1111-1114. Cerca con Google

60. McSaveney, M.J., Davies, T.R.H., and Hodgson, K.A. (2000); A contrast in deposit style and process between large and small rock avalanches. In: Landslides in Research, Theory and Practice, Proceedings of the 8th International Symposium on Landslides, Cardiff, Wales. Edited by E. Bromhead, N. Dixon, and M.-L. Ibsen. Thomas Telford Publishing, London, 1053–1058. Cerca con Google

61. Melosh, H.J. (1997); Asteroids: Shattered but Not Dispersed. Icarus; vol. 129, 2, 562-564. Cerca con Google

62. Mizoguchi, K., Hirose, T., Shimamoto, T., and Fukuyama, E. (2007); Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophys. Res. Lett., vol. 34, L01308, doi:10.1029/2006GL027931. Cerca con Google

63. Mora, P., and Place, D. (1998); Numerical simulation of earthquake faults with gouge: Toward a comprehensive explanation for the heat flow paradox, J. Geophys. Res., 103, 21,067–21,089. Cerca con Google

64. Mueth, D.M., Debregeas, G.F., Karczmar, G.S., Eng, P.J., Nagel, S.R., Jaeger, H.M. (2000); Signatures of granular microstructure in dense shear flows. http://www.citebase.org/abstract?id=oai:arXiv.org:cond-mat/0003433. Vai! Cerca con Google

65. Nedderman, R. (1992); Statics and kinematics of granular materials. Cambridge University Press, Cambridge. Cerca con Google

66. Nicoletti P.G., Sorriso-Valvo, M. (1991); Geomorphic controls of the shape and mobility of rock avalanches. GSA Bulletin; October 1991; v. 103; no. 10; p. 1365-1373. Cerca con Google

67. Pautre, A., Sabarly, F., Schneider, B. (1974); L'effet d'échelle dans les écroulements de falaise. C.R. 3éme Congrés ISRM, Denver, vol. II-B, p. 859. Cerca con Google

68. Pollet, N. (2004); Mouvements gravitaires rapides de grandes masses rocheuses: apports des observations de terrain à la compréhension des processus de propagation et dépôt. PhD Thesis, École Nationale des Ponts et Chaussées, Paris. Cerca con Google

69. Pollet, N., Schneider J.-L.M. (2004); Dynamic disintegration processes accompanying transport of the Holocene Flims Sturzstrom (Swiss Alps). Earth and Planetary Science Letters, 221, (2004), 433-448. Cerca con Google

70. Pollet, N., Cojean, R., Couture, R., Schneider J.-L.M., Strom, A.L., Voirin, C., Wassmer, P. (2005); A slab-on-slab model for the Flims rockslide (Swiss Alps). Canadian Geotechnical Journal, 42(2) 587-600. Cerca con Google

71. Prostka, H.J. (1978); Heart Mountain fault and Absaroka volcanism, Wyoming and Montana, U.S.A. In: Rockslides and Avalanches, (Voight, B. ed.) vol. 1 Development in Geotechnical Engineering, vol. 14A, 423-437; Amsterdam, Elsevier. Cerca con Google

72. Read, S.A.L. (1979); The Waikaremoana outlet, engineering geological studiesof factors related to leakage through the natural dam. New Zealand Geological Survey report EG336. Cerca con Google

73. Read, S.A.L., Beetham, R.D., and Ridley P.B. (1992); Lake Waikaremoana barrier – a large landslide dam in New Zealand. Proceedings of the Sixth International Symposium on Landslides, 10-14 February, Christchurch, New Zealand (D.H. Bell ed.); 1481-1487. Cerca con Google

74. Sammis, C. and Stacey, S.J. (1994); The micromechanics of friction in a granular layer. PAGEOPH (Pure and Applied Geophysics), 142, 3/4., 777- 794. Cerca con Google

75. Sammis, C., King, G., and Biegel, R. (1987); The kinematics of gouge formation. PAGEOPH (Pure and Applied Geophysics), 125: 777–812. Cerca con Google

76. Scheidegger, A.E. (1973); On the prediction of the reach and velocity of catastrophic landslides. Rock Mech. 5, 231-236. Cerca con Google

77. Schneider, J.-L., Wassmer, P., Ledésert, B. (1999); The fabric of the sturzstrom of Flims (Swiss Alps): Characteristics and implications on the transport mechanisms. Comptes Rendus de lAcademie des Sciences Series IIA Earth and Planetary Science; vol 328, 9, 607-613. Cerca con Google

78. Schneider, J.-L., Fisher, R.V. (1998); Transport and emplacement mechanisms of large volcanic debris avalanches: evidence from the northwest sector of Cantal Volcano (France). Journal of Volcanology and Geothermal Research, vol. 83, 141–165. Cerca con Google

79. Shreve, R.L., (1959); Geology and mechanics of the Blackhawk landslide, Lucerne Valley, California. PhD Thesis, Caltech, Pasadena, California, USA. Cerca con Google

80. Shreve, R.L., (1968a); The Blackhawk landslide. Geol. Soc. Am. Spec. Pap. 108 47 pp. Cerca con Google

81. Shreve, R.L., (1968b); Leakage and fluidization in air-layer lubricated avalanches. Geol. Soc. Am. Bull., 79: 653-658. Cerca con Google

82. Siebert, L. (1984); Large volcanic debris avalanche: characteristic of the source areas, deposits, and associated eruptions. Journal of Volcanology and Geothermal Research, vol. 22, 163-197. Cerca con Google

83. Smith, G.M. (2004); The coseismicity and morphology of the Acheron rock avalanche deposit in the Red Hill valley New Zealand Unpublished M.Sc. thesis, University of Canterbury, Christchurch, New Zealand. Cerca con Google

84. Smith G. M., Davies, T.R., McSaveney, M.J., Bell, D.H. (2005); The Acheron rock avalanche, Canterbury, New Zealand—morphology and dynamics. Landslides vol. 00, DOI: 10.1007/s10346-005-0012-1. Cerca con Google

85. Staron, L. (2000); Mobility of long-runout rock flows: a discrete numerical investigation. Geophysical Journal International, vol. 172, 1, 455-463. Cerca con Google

86. Voight, B. (1978); Lower Gros Ventre slide, Whyoming, U.S.A. In: Rockslides and Avalanches, (Voight, B. ed.) vol. 1 Natural Phenomena, 113-166. Amsterdam, Elsevier. Cerca con Google

87. Voight B., Janda, R.J., Glicken, H. and Douglass P.M. (1985); Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980. Geotechnique vol. 33, no3, pp. 243-273. Cerca con Google

88. Watson, R.A., Wright, H.E. (1967); The Saidmarreh landslide, Iran. Geological Society of America, special paper n. 123, 115-139 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record