Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Giubilato, Federico (2014) Development of integrated methods for the engineering characterization of bicycle components. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
40Mb

Abstract (inglese)

Aim of this work was the development of integrated methods for the engineering characterization of the bicycle components, following a user-centred approach. The overall methodology was developed through five main stages. The first stage concerned the development of laboratory testing methods for the evaluation of the basic engineering characteristics of the bicycle components. The regarding activities were focused on the study of the vibrational and impulsive comfort properties of bicycle wheels and saddles. New laboratory testing methods were therefore developed for the evaluation of the wheels radial structural behaviour, and for the measurement of the vibration transmissibility of wheels and saddles. The testing methods developed for the evaluation of the radial stiffness and the vibration transmissibility of the wheels were developed in the University laboratory, and then implemented in Campagnolo srl. The second stage of the work regarded the development of a structured and objective method for the identification and organization of wheels quality requirements, evaluated by the cyclists during road cycling. A dedicated subjective evaluation tests session was performed in order to collect the assessment of 33 cyclists among the quality requirements of three different wheelsets. The correlation between them and the basic engineering characteristics of the wheels was then calculated through the adoption of a mathematic method. The adoption of a mathematic method for the computation of the correlation coefficients, represents a significant improvement of the arbitrary method proposed by the widely used QFD [16]. The high differences obtained among the evaluated quality requirements of three different tested wheelsets suggested the development of the engineering complex indexes. Six engineering complex indexes were formulated in the fourth stage with the aim to express a technical measurement of the user quality requirements. The engineering complex indexes were developed through a scientific and rigorous approach, in which the analysis of the subjective evaluation of the cyclists and of the bicycle dynamics is combined. In the fifth stage, an instrumented racing bicycle was developed for measuring, through dedicated field tests, the parameters needed for the computation of the indexes, and for characterizing the braking actions performed by the cyclists during road downhill riding. The engineering complex indexes are the final outcome of the overall method developed. Since they give a technical measurement of the cyclist feelings, they represent the integrated engineering characterization of the wheels. They can assist the product development based on a user-centred approach, the management of the products range, and the definition of the target characteristics of new products. They can also represent a reliable guideline for customers in the product choice, or for marketing communication messages.
So, an innovative structured approach for the user-centred characterization of sports equipment is presented in this thesis. The overall methodology was developed mainly considering racing bicycle wheels, but it is suitable also for the characterization of other bicycle components, or other sports equipment

Abstract (italiano)

Lo sviluppo di metodi integrati per la caratterizzazione ingegneristica di componenti ciclistici rappresenta lo scopo di questo lavoro. La metodologia complessiva è stata sviluppata attraverso cinque fasi. Nella prima fase sono stati sviluppati dei metodi di prova di laboratorio per la caratterizzazione dei parametri ingegneristici base dei componenti ciclistici. Tale fase ha riguardato principalmente lo studio delle proprietà di comfort vibrazionale e impulsivo. Nello specifico, sono stati sviluppati dei nuovi metodi di prova di laboratorio dedicati alla valutazione delle caratteristiche strutturali radiali delle ruote e della trasmissibilità delle vibrazioni di ruote e selle ciclistiche. I metodi di prova riguardanti la misurazione della rigidezza radiale e della trasmissibilità delle vibrazioni delle ruote sono stati inoltre implementati nel centro prove della ditta Campagnolo srl. La seconda fase del lavoro ha riguardato lo sviluppo di un metodo strutturato e oggettivo per la ricerca e l’organizzazione dei requisiti di qualità delle ruote, valutati dai ciclisti durante l’utilizzo della bicicletta da corsa. È stata dunque condotta una sessione di test di valutazione soggettiva per ricavare il giudizio di 33 ciclisti relativamente ai requisiti di qualità di tre differenti coppie di ruote. La correlazione tra i requisiti di qualità dei ciclisti e i parametri ingegneristici delle ruote è stata ottenuta attraverso l’applicazione di un metodo matematico. L’adozione di un metodo matematico per il calcolo dei coefficienti di correlazione rappresenta un significativo miglioramento della metodologia arbitraria proposta dal diffuso metodo QFD [16]. Le elevate differenze riscontrate tra i giudizi dei tester relativi alle diverse coppie di ruote provate hanno suggerito lo sviluppo di un set di indici ingegneristici complessi, il cui fine è stato fornire una misura tecnica dei requisiti di qualità valutati dal ciclista. Sei indici sono stati dunque formulati adottando un approccio scientifico rigoroso, nel quale i risultati dell’analisi delle valutazioni soggettive vengono combinati con l’analisi della dinamica della bicicletta. La quinta fase del lavoro ha riguardato lo sviluppo di una bicicletta strumentata con un duplice scopo: misurare, mediante prove sul campo, i parametri necessari al calcolo degli indici ingegneristici e caratterizzare l’azione frenante svolta durante l’utilizzo in discesa della bicicletta da corsa.
Gli indici ingegneristici complessi rappresentano il risultato finale della metodologia complessiva sviluppata. Dal momento che essi forniscono una misurazione tecnica delle sensazioni del ciclista, rappresentano la caratterizzazione ingegneristica integrata delle ruote. Tali indici risultano utili per lo sviluppo del prodotto, svolto adottando un approccio user-centred, per la gestione della linea di prodotti e per la definizione delle caratteristiche-obiettivo di nuovi prodotti. Possono essere inoltre impiegati come linee guida che assistono il cliente nella scelta del prodotto, o come strumenti per la comunicazione marketing.
In questa tesi viene dunque presentato un approccio user-centred innovativo per la caratterizzazione ingegneristica dell’attrezzo sportivo. Il metodo complessivo è stato sviluppato prendendo in considerazione le ruote per biciclette da corsa, anche se la metodologia risulta comunque adatta per la caratterizzazione di altri componenti ciclistici o di diversa attrezzatura sportiva

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Petrone, Nicola - Franch, Valentino
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > PROGETTAZIONE E DINAMICA DEI SISTEMI MECCANICI
Data di deposito della tesi:31 Gennaio 2014
Anno di Pubblicazione:31 Gennaio 2014
Parole chiave (italiano / inglese):bicicletta, bicicletta da corsa, ruota per biciclette, analisi in frequenza, sistema frenante, caratterizzazione ingegneristica, attrezzatura sportiva, analisi strutturale, componenti per biciclette, selle ciclistiche, QFD, bicycle, racing bicycle, bicycle wheel, frequency analysis, braking system, engineering characterization, bycicle component, bicycle saddle, QFD, user requirement
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/35 Ingegneria economico-gestionale
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/14 Progettazione meccanica e costruzione di macchine
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/06 Fluidodinamica
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/12 Misure meccaniche e termiche
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6834
Depositato il:14 Nov 2014 09:36
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Bicycle Comfort Cerca con Google

[1] A.Z. Hastings, K.B. Blair, F.K. Culligan, D.M. Pober, Measuring the effect of transmitted road vibration on cycling performance, The Engineering of Sport 5, Davis, (2004). Cerca con Google

[2] S. Richard, Y. Champoux, Modal analysis of road bike’s front components. Proceedings of IMAC-XXII – 2004. Ed. Curran Associates, Inc. ISBN:9781604238020 (2007). Cerca con Google

[3] M. Olieman, R. Marin-Perianu, M. Marin-Perianu, (2012). Measurement of dynamic comfort in cycling using wireless acceleration sensors. In: -. Procedia Engineering. PROCEDIA ENGINEERING, vol. 34, p. 568-573, ISSN: 1877-7058, Lowell, Massachusetts, 9-13 July 2012, doi: 10.1016/j.proeng.2012.04.097. Cerca con Google

[4] G Marcolin, A Paoli, FA Panizzolo, G Biasco, N Petrone, A method for the analysis of cyclist shorts with different pads for perineal area protection: comparison between drum and road tests. Procedia Engineering, Volume 2, Issue 2, June 2010, Pages 2831-2835. Cerca con Google

[5] J. Vanwalleghem, F. Mortier, I. De Baere, M. Loccufier, W. Van Paepegem, Design of an instrumented bicycle for the evaluation of bicycle dynamics and its relation with the cyclist’s comfort, 9th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 34 ( 2012 ), pp. 485 – 490. Cerca con Google

[6] F. Giubilato, Development of a methodology for the quantitative comparison of performance and comfort of wheels for racing bicycles, M.Sc. thesis in Mechanical Engineering, Department of Mechanical Engineering, University of Padova. Cerca con Google

[7] F. Giubilato, N. Petrone (2012). A method for evaluating the vibrational response of racing bicycles wheels under road roughness excitation. In: -. Procedia Engineering. PROCEDIA ENGINEERING, vol. 34, p. 409-414, ISSN: 1877-7058, Lowell, Massachusetts, 9-13 July 2012, doi: 10.1016/j.proeng.2012.04.070. Cerca con Google

[8] C. Hölzel, F. Höchtl, V. Senner, Cycling comfort on different road surfaces, In: -. Procedia Engineering. PROCEDIA ENGINEERING, vol. 34, p. 479-484, ISSN: 1877-7058, Lowell, Massachusetts, 9-13 July 2012. Cerca con Google

[9] A. Doria, L.Taraborrelli, On the structural vibrations of bicycles: influence of materials and construction technology on the modal properties, Proceedings, International Cycling Safety Conference 2013 20-21 November 2013, Helmond, The Netherlands. Cerca con Google

[10] J. L. Wojtowicki, Y. Champoux, J. Thibault, Modal properties of road bikes vs ride comfort, Acoustics and Vibration Group of Universite de Sherbrooke (GAUS). Cerca con Google

[11] Y. S. Liua, T. S. Tsayb, C. P. Chenc, H. C. Panc, Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force, Procedia Engineering 60 ( 2013 ) pp. 84 – 90, 6th Asia-Pacific Congress on Sports Technology (APCST). Cerca con Google

[12] ISO 2631-1, Evaluation of human exposure to whole-body vibrations. Cerca con Google

[13] ISO 5349, Measurement and evaluation of human exposure to hand-transmitted vibrations. Cerca con Google

[14] ISO 13473-1, Characterization of pavement texture by use of surface profiles. Cerca con Google

[15] K. Shin, J. K. Hammond, Fundamentals of signal processing for sound and vibration engineers, Wiley. Cerca con Google

Analysis of User Quality Requirements Cerca con Google

[16] Y. Akao, QFD: Quality Function Deployment - Integrating Customer Requirements into Product Design. Productivity Press, 2004, Portland. p 1-83, 147-181. Cerca con Google

[17] A. W. Ulwick, An Introduction to Outcome‐Driven Innovation, Strategyn Inc. Cerca con Google

[18] A. W. Ulwick, L. A. Bettencourt, Giving costumers a fair hearings, MIT Sloan Management Review. Cerca con Google

[19] J.Darques, R. Carreira, A. De La Mettrie, D. Bruyant, Quality Function Deployment - A means for developing adequate skis and snowboards, 2004, The Engineering of Sport 5 - Conference Proceedings of the Engineering of Sport, pp. 428-434. Davis, USA. Cerca con Google

[20] P. Clifton, Investigation and Customisation of Snowboard Performance Characteristics for DifferentRiding Styles, 2011, PhD thesis School of Aerospace, Mechanical and Manufacturing Engineering, College of Science, Engineering and Health, RMIT University. Cerca con Google

[21] P. Clifton, M. Burton, A. Subic, T. Perret-Ellena, A. Bedford, A. Schembri, Identification of performance requirements for user-centered design of running shoes, 2011, 5th Asia-Pacific Congress on Sports Technology - Procedia Engineering 13, pp. 100-106. Cerca con Google

[22] W. J. Vincent, Statistics in Kinesiology, California State University, Northridge; Human Kinetics Cerca con Google

[23] A. Subic, P. Clifton, J. Beneyto-Ferre, Identification of innovation opportunities for snowboard design through benchmarking, Sports Technology. Cerca con Google

[24] J. A. Carnevalli, P. C. Miguel, Review, analysis and classification of the literature on QFD—Types of research, difficulties and benefits, Int. J. Production Economics. Cerca con Google

[25] L. K. Chan, M. L. Wu, Quality function deployment: A literature review, European Journal of Operational Research. Cerca con Google

[26] C. C. Usma-Alvarez, A. Subic, M. Burton, F. K. Fuss, Identification of design requirements for rugby wheelchairs using the QFD method, Procedia Engineering 2 (2010) pp. 2749–2755, 8th onferense of the International Sports Engineering Association. Cerca con Google

Dynamics of Two Wheeled Vehicles Cerca con Google

[27] D. G. Wilson, J. Papadopoulos, Bicycling Science, third edition, 2004, Massachussetts Institute of Technology. Cerca con Google

[28] V. Cossalter, Motorcycle Dynamics, 2008. Cerca con Google

[29] J. K. Moore, M. Hubbard, A. L. Schwab, J. D. G. Kooijman, D. L. Peterson, Statistics of Bicycle Rider Motion, Procedia Engineering 2 (2010) pp. 2937–2942. Cerca con Google

[30] D. L. Peterson, J. K. Moore, D. Fintelman, M. Hubbard, Low-power, modular, wireless dynamic measurement of bicycle motion, Procedia Engineering 2 (2010) pp. 2949–2954. Cerca con Google

[31] M. Plöchl, J. Edelmann, B. Angrosch, C. Ott, On the wobble mode of a bicycle, Vehicle System Dynamics Vol. 50, No. 3, March 2012, pp. 415–429. Cerca con Google

[32] P. Basu-Mandal, A. Chatterjee, J. M. Papadopoulos, Hands-free circular motions of a benchmark bicycle, Proc. R. Soc. A (2007) 463, 1983–2003 doi:10.1098/rspa.2007.1849. Cerca con Google

[33] J. P. Meijaard, J. M. Papadopoulos, A. Ruina, A. L. Schwab, Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review, Proc. R. Soc. A (2007) 463, 1955–1982 doi:10.1098/rspa.2007.1857. Cerca con Google

[34] A. L. Schwab, P. D. L. de Lange, R. Happee, J. K. Moore, Rider control identification in bicycling using lateral force perturbation tests, Proc IMechE Part K: J Multi-body Dynamics 227(4) 390–406. Cerca con Google

Structural Analysis of Bicycle Components Cerca con Google

[35] F. Giubilato, N. Petrone, Stress analysis of bicycle saddles structural components during different cycling conditions, The 2014 conference of the International Sports Engineering Association. Cerca con Google

[36] N. Petrone, F. Giubilato, A. Giro, N. Mutinelli, Development of instrumented downhill bicycle components for field data collection, Procedia Engineering 34 (2012), pp. 514 – 519, 9th Conference of the International Sports Engineering Association (ISEA). Cerca con Google

[37] N. Petrone, L. Susmel, Biaxial Testing and Analysis of Bicycle-Welded Components for the Definition of a Safety Standard, Fatigue and Fracture of Engineering Material and structures, 26, 491-505, Blackwell Publishing Ltd., UK, 2003. Cerca con Google

[38] N. Petrone, A. Tessari , R. Tovo, Acquisition and analysis of service load histories in mountain-bikes, XXV° Convegno Nazionale AIAS, International Conference on Material Engineering, Gallipoli - Lecce, 4-7 September 1996, pp. 851-858. Cerca con Google

[39] E. Seragio, N. Petrone, M. Marchiori, 2004, Design and calibration of a dynamometric saddle support for racing and mountain bikes , Proceedings of 5th International Conference on the Engineering of Sport, University of California, Davis, 13-16 September 2004, Vol. 2, pp. 187-193, ISBN 0-9547861-1-4. Cerca con Google

[40] A. Callens, A. Bignonnet, Fatigue design of welded bicycle frames using a multiaxial criterion, 9th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 34 ( 2012 ), pp. 640 – 645. Cerca con Google

[41] M. L. Hull, D. Wootten, An improved accuracy six-load component pedal dynamometer for cycling, Journal of Biomechanics, Vol. 29, pp. 1105-1110, 1996. Cerca con Google

[42] R. R. Biniab, P. A. Humea, A. Cerviric, A comparison of cycling SRM crank and strain gauge instrumented pedal measures of peak torque, crank angle at peak torque and power output, Procedia Engineering 13 (2011) pp. 56–61, 5th Asia-Pacific Congress on Sports Technology (APCST). Cerca con Google

[43] J. M. Drouet, Y. Champoux, A novel dynamometric hubset design to measure wheel loads in road cycling, 2010 , 8th Conference of the International Sports Engineering Association (ISEA) Cerca con Google

[44] Henri P. Gavin, Bicycle-wheel spoke patterns and spoke fatigue, Journal Of Engineering Mechanics. August 1996. Cerca con Google

[45] Robin C. Redfield, Cory Sutela, Mountain bike wheel endurance testing and modeling, 9th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 34 (2012), pp. 658 – 663. Cerca con Google

Bicycle Aerodynamics Cerca con Google

[46] T. Defraeye, B. Blocken, E. Koninckx, P. Hespel, J. Carmeliet, Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests, Journal of Biomechanics, Vol 43 (2010) pp. 1262–1268 Cerca con Google

[47] H. Chowdhury, F. Alam, D. Mainwaring, A full scale bicycle aerodynamics testing methodology, 5th Asia-Pacific Congress on Sports Technology (APCST), Procedia Engineering 13 (2011), pp. 94–99. Cerca con Google

[48] G.S. Tew, A.T. Sayers, Aerodynamics of yawed racing cycle wheels, Journal of Wind Engineering and Industrial Aerodynamics 82 (1999), pp. 209-222. Cerca con Google

[49] N. Barry, D. Burton, T. Crouch, J. Sheridan, R. Luescher, Effect of crosswinds and wheel selection on the aerodynamic behavior of a cyclist, 9th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 34 ( 2012 ), pp. 20 – 25. Cerca con Google

[50] M. N. Godo, D. Corson, S. M. Legensky, A Comparative Aerodynamic Study of Commercial Bicycle Wheels using CFD, American Institute of Aeronautics and Astronautics 2010. Cerca con Google

[51] M. N. Godo, D. Corson, S. M. Legensky, An Aerodynamic Study of Bicycle Wheel Performance using CFD, 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition, 5 - 8 January 2009, Orlando, Florida. Cerca con Google

[52] M. N. Godo, D. Corson, S. M. Legensky, A Practical Analysis of Unsteady Flow Around a Bicycle Wheel, Fork and Partial Frame Using CFD, American Institute of Aeronautics and Astronautics 2011. Cerca con Google

[53] J. K. Moore, Aerodynamics of high performance bicycle wheels, M.Sc thesis in Mechanical Engineering, University of Canterbury. Cerca con Google

Bicycle Braking Systems Cerca con Google

[54] T. Nakae, T. Ryu, A. Sueoka, Y. Nakano, T. Inoue, Squeal and chatter phenomena generated in a mountain bike disc brake, Journal of Sound and Vibration 330 (2011) 2138–2149. Cerca con Google

[55] D. Lie, C. K. Sung, Synchronous brake analysis for a bicycle, Mechanism and Machine Theory 45 (2010) 543–554. Cerca con Google

[56] C. Oertel, H. Neuburger, A. Sabo , Construction of a test bench for bicycle rim and disc brakes, 8th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 2 (2010), pp. 2943–2948. Cerca con Google

[57] A. Caya, Y. Champoux, J. M. Drouet, Dynamic behaviour and measurement accuracy of a bicycle brake hood force transducer, 9th Conference of the International Sports Engineering Association (ISEA), Procedia Engineering 34 ( 2012 ), pp. 526 – 531. Cerca con Google

Safety Standard Cerca con Google

[58] EN 14781, Racing bicycles – Safety requirements and test methods. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record