Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Modena, Nicola (2008) Lo Zebrafish come strumento per lo studuio integrato di segnali endocrini e paracrini che regolano le prime fasi dello sviluppo tissutale. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Studies performed in this research are aimed to define how different cell types are specified during neural development of the model organism zebrafish (Danio rerio), a little teleost fish of Cyprinid family.
Investigations involved the analysis of Olig genes, a family of transcriptional factors important for development and determination of different cell types of CNS (Central Nervous System), such as interneurons, motoneurons, oligodendrocytes, astrocytes, and neural crest cells, a structure that is unique of vertebrates.
Phylogenetic comparisons (Bronchain et al., 2007) identified three Olig members in amniotes, while in fishes and amphibians four members were isolated: olig1, olig2, olig3 and olig4.
Moreover, this project dealt with a microarray analysis to identify molecular targets controlled by the transcriptional factor olig4. So, this led to the identification of a group of genes related to the inactivation of this transcriptional factor that offered a wide image on possible regulatory patterns involved in CNS development, and on possible olig4 function in limiting neural crest development.
The availability of an olig4 genetic mutant is now confirming results already observed during microarray analysis and further evidences are coming from in situ hybridization staining using a group of target genes.
An additional member of the olig family has been cloned in zebrafish and it has been named olig3 on the basis of phylogenetic comparisons (Bronchain et al., 2007). In zebrafish, olig3 in situ hybridization staining analysis revealed that expression patterns of olig3 and olig4 (which sequences show a high level of similarity), together correspond to the expression pattern of murine Olig3 (an homologue of olig4 in mouse has not yet been identified).
In this study, the zebrafish olig3 gene has been cloned and its expression pattern compared with that of some neural tube markers and other members of the olig family, to elucidate inter-reciprocal position of expression domains.
Analysis have been performed based on treatments with specific inhibitors of some paracrine signaling pathways involved in zebrafish CNS development. This analysis allowed focusing on regulatory pathways of olig family members controlled by morphogenetic gradients during early embryonic development.
Furthermore, this research project involved a study on zebrafish moonshine (mon) gene. This gene codifies for Trimm33, a protein implicated in adult hematopoiesis. Zebrafish mon gene product is related to different co-activators an co-repressors of the TGF-ß signaling pathway.
In this study, genetic moonshine mutants (montg234) were treated with an artificial inhibitor of TGF-ß signaling pathway that allows reproducing in vivo the phenotype of genetic mutants for this important signaling pathway. The effect obtained after the treatment showed in zebrafish a restored expression of haematopoietic precursor markers such as gata1 and this was confirmed through in situ hybridization staining. Results added insight on mon involvement upstream TGF-ß signals in zebrafish haematopoietic pathway.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Argenton, Francesco
Supervisor:Tiso, Natascia
Data di deposito della tesi:25 January 2008
Anno di Pubblicazione:25 January 2008
Key Words:zebrafish, sistema nervoso centrale, oligodendrociti, astroglia, motoneuroni, geni olig.
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:686
Depositato il:27 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Alexander J., Stainier D.Y. (1999). "A molecular pathway leading to endoderm formation in zebrafish". Curr. Biol., 9: 1147-1157. Cerca con Google

2. Amaya E., Musci T. J. e Kirschner M. W. (1991). "Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos". Cell, 66: 257-270. Cerca con Google

3. Amaya E., Stein P. A., Musci T. J. e Kirschner M. W. (1993). "FGF signalling in the early specification of mesoderm in Xenopus". Development, 118: 477-487. Cerca con Google

4. Appel B. e Chitnis A. (2002). "Neuogenesis and specification of neuronal identity". Results Probl. Cell Differ.,40: 237-251. Cerca con Google

5. Appel B., Korzh V., Glasgow E., Thor S., Edlund T., Dawid I.B. e Eisen, J.S. (1995). "Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish". Development 121: 4117-4125. Cerca con Google

6. Arnett H. A., Fancy S. P., Zhao C., Plant S. R., Kaing S., Raine C. S., Rowitch D. H., Franklin R. J. e Stiles C. D. (2004). "bHLH transcription factor Olig1 is required to repair demielinated lesion in the CNS". Science, 306: 2111-2115. Cerca con Google

7. Blader P., Fischer N., Gradwohl G., Guillemont F. e Strahle U. (1997). "The activity of neurogenin1 is controlled by local cues in the zebrafish embryo". Development, 124: 4557-4569. Cerca con Google

8. Böttcher R. T. e Niehrs C. (2005). "Fibroblast growth factor signaling during early vertebrate development". Endocr. Rev., 26: 63-77. Cerca con Google

9. Bronchain O. J., Pollet N., Ymlahi-Ouazzani Q., Dhorne-Pollet S., Helbling J. C., Lecarpentier J. E., Percheron K. e Wegnez M. (2007). "The Olig family: phylogenetic analysis and early gene expression in Xenopus tropicalis". Dev. Genes Evol., 217: 485-497. Cerca con Google

10. Bunge R. P. (1968). "Glial cells and the central myelin sheath". Nat. Rev. Neurosci., 3: 517-530. Cerca con Google

11. Chitnis A. and Kintner C. (1996). "Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos". Development 122: 2295-2301. Cerca con Google

12. Cornell R. A. e Eisen J. S. (2002). "Delta/Notch signalling promotes formetion of zebrafish neural crest by repressing Neurogenin1 function". Development, 129: 2639-2648. Cerca con Google

13. Ding L., Takebayashi H., Watanabe K., Ohtsuki T., Tanaka K. F., Nabeshima Y., Chisaka O., Ikenaka K. e Ono K. (2005). "Short-term lineage analysis of dorsally derived Olig3 cells in the developing spinal cord". Cerca con Google

14. Dev. Dyn., 243: 622-632. Cerca con Google

15. Draper B. W, Stock D. W. e Kimmel C. B. (2003). "Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development". Development, 130: 4639-4654. Cerca con Google

16. Driever W., Solnica-Krezel L., Schier A. F., Neuhauss S. C., Malicki J., Stemple D. L., Stainier D. Y., Zwartkruis F., Abdelilah S., Rangini Z., Belak J., Boggs C. (1996) "A genetic screen for mutations affecting embryogenesis in zebrafish". Development, 123: 123-137. Cerca con Google

17. Dorsky R. I., Moon R. T. e Raible D. W. (1998). "Control of neural crest cell fate by the Wnt signalling pathway". Nature, 396: 370-373. Cerca con Google

18. Eisen J. S., Myers P. Z. e Westerfield M. (1986). "Pathway selection by growth cone sof identified motoneurons in live zebrafish embryos". Nature, 320: 269-271. Cerca con Google

19. Eisen J. S., Pike S. H. e Romancier B. (1990). "An identified neuron with variable fates in embryonic zebrafish". J. Neurosci., 10: 34-43. Cerca con Google

20. Filippi A., Tiso N., Deflorian G., Zecchin E., Bortolussi M. e Argenton F. (2005). "The basic helix-loop-helix Olig3 establishes the neural plate boundary of the trunk and is necessary for the development of the dorsal spinal cord". Proc. Nat. Acad. Sci. USA, 102: 4377-4382. Cerca con Google

21. Friedman J. R., Fredericks W. J., Jensen D. E., Speiches D. W., Huang X. P., et al. (1996). "KAP-1, a novel corepressor of the highly conserved KRAB repression domain". Genes Dev., 10: 2067-2078. Cerca con Google

22. Geling A., Steiner H., Willem M., Bally-Cuif L., Haass C. (2002). "A gamma-secretase inhibitor blocks Notch signalling in vivo and causes a severe neurogenic phenotype in zebrafish". EMBO Rep 3: 688-694. Cerca con Google

23. Glavic A., Silva F., Aybar M. J., Bastidas F. e Mayor R. (2004). "Interplay between Notch signaling and the homeoprotein Xiro1is required for neural crest induction in Xenopus embryos". Development, 131: 347-359. Cerca con Google

24. Goris A., Yeo T. W., Maranian M., Walton A., Ban M., Gray J., Compston A. e Sawcer S. (2006). " NovelOlig1 coding variants and susceptibility to multiple sclerosis". J. Neurol. Neurosurg. Psychiatry, 77: 1296-1297. Cerca con Google

25. Griffin K., Patient R. e Holder N. (1995). "Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail". Development, 121: 2983-2984. Cerca con Google

26. Gritsman K., Talbot W.S. e Schier A. (2000). "Nodal signalling patterns the organizer". Development, 127(2): 921-32. Cerca con Google

27. Grunwald D. J. e Eisen J. S. (2002). "Headwaters of the zebrafish - emergence of a new model vertebrate". Nat. Rev. Genet., 3: 717-724. Cerca con Google

28. Heldin C. H., Miyazono K. e ten Dijke P. (1997). "TGF-β signaling from cell membrane to nucleus through SMAD proteins". Nature, 390: 465-471. Cerca con Google

29. Ho D. M., Chan J., Bayliss P. e Withman M. (2006). "Inhibitor-resistant type I receptors reveal specifics requirements for TGF-β signalling in vivo". Dev. Biol., 295: 730-742. Cerca con Google

30. Hongo I., Kengaku M. e Okamoto H. (1999). "FGF signaling and the anterior neural induction in Xenopus". Dev. Biol., 216: 561-581. Cerca con Google

31. Incardona J.P., Gaffield W., Kapur R.P. e Roelink H. (1998). "The teratogenic veratum alkaloid cyclopamine inhibits Sonic hedgehog signal transduction". Development, 125: 3553-62. Cerca con Google

32. Kawabata, M. e Miyazono K. (1999). "Signal trasduction of the TGF-ß superfamily by Smad proteins". J. Biochem., 125: 9-16. Cerca con Google

33. Kawakami K. (2004). "Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element". Methods Cell Biol., 77: 201-222. Cerca con Google

34. Kim S. S., Chen Y. M., O'Leary E., Witzgall R., Vidal M., et al. (1996). "A novel member of the RING finger family, KRIP-1, associates with the KRAB-A transcriptional repressor domain of zinc finger poteins". Proc. Nat. Acad. Sci. U.S.A., 93: 15299-15304. Cerca con Google

35. Kimmel, C. B. (1993). "Patterning the brain of zebrafish embryo". Annu. Rev. Neurosci., 16: 707-732. Cerca con Google

36. Kudoh T., Wilson S. W., Dawid I. B. (2002). "Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm". Development, 129: 4335-4346. Cerca con Google

37. Kudoh T., Concha M. L., Houart C., Dawid I. B. e Wilson S.W. (2004). "Combinatorial Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal domains". Development, 131: 3581-3592. Cerca con Google

38. Kumar, A., Novoselov, V., Celeste, A.J., Wolfman, N.M., ten Dijke, P., Kuehn, M.R. (2001). "Nodal signaling uses activin and transforming growth factor-β receptor-regulated Smads". J. Biol. Chem., 276: 656-661. Cerca con Google

39. Lai E.C. (2004). "Notch signaling: control of cell communication and cell fate". Development, 131: 965-973. Cerca con Google

40. Le Douarin B., Zechel C., Garnier J. M., Lutz Y., Tora L., et al. (1995). "The N-terminal part of TIF1, a putative mediaor of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18". EMBO J., 14: 2020-2033. Cerca con Google

41. Lewis J. (1998). "Notch signalling and the control of cell fate choices in vertebrates". Academic Press, 9: 583-589. Cerca con Google

42. Lewis K. E. e Eisen J. S. (2003) "From cells to circuits: development of the zebrafish spinal cord". Prog Neurobiol. 69: 419-49. Cerca con Google

43. Lu Q.R., Yuk D., Alberta J. A., Zhu Z., Pawlitzky I., Chan J., McMahon A. P., Stiles C. D., Rowitch D. H. (2000). "Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system". Neuron, 25: 317-329. Cerca con Google

44. Ma Q., Chen Z., del Barco Barrantes I., de la Pompa J.L. e Anderson D.J. (1998). "neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia". Neuron 20: 469-482. Cerca con Google

45. Morales A. V., Barbas J. A. e Nieto M. A. (2005). "How to become neural crest: from segregation to delamination". Semin. Cell. Dev. Biol., 16: 655-662. Cerca con Google

46. Müller T., Anlag K., Wildner H., Britsch S., Treier M., e Birchmeier C. (2005). "The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord".Genes. Dev. 19: 733-743. Cerca con Google

47. Nakagawa S. e Takeichi M. (1998). "Neural crest emigration from the neural tube depends on regulated cadherin expression". Development, 125(15): 2963-2971. Cerca con Google

48. Nasevicius A. e Ekker S. C. (2000). "Effective targeted gene knockdown in zebrafish". Nat. Genet., 26 (2): 216-220. Cerca con Google

49. Nielsen A.L., e Jorgensen A.L. (2003). "Structural and functional characterization of the zebrafish gene for glial fibrillary acidic protein, GFAP". Gene 310: 123-132. Cerca con Google

50. Nieto M. A. (2001). "The early steps of neural crest development". Mech. Dev., 105: 27-35. Cerca con Google

51. Park H. C., Metha A., Richardson J. S. e Appel B. (2002). "Olig2 is required for zebrafish primary neuron and oligodendrocyte development". Dev. Biol., 248: 356-368. Cerca con Google

52. Pauls S., Zecchin E., Tiso N., Bortolussi M. e Argenton F. (2007). "Function and regulation of zebrafish nkx 2.2a during development of pancreatic islet and duct". Dev. Biol., 304: 875-890. Cerca con Google

53. Peng H., Feldman I., Rauscher F. J. III (2002). "Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: A potential mechanism for regulating the switch between coactivation and corepression". J. Mol. Biol., 320: 629-644. Cerca con Google

54. Peyrieras, N., Strahle, U., Rosa, F. (1998). "Conversion of zebrafish blastomeres to an endodermal fate by TGF-β-related signaling". Curr. Biol., 8: 783-786. Cerca con Google

55. Pires-daSilva A., Sommers R. J. (2003). "The evolution of signalling pathways in animal development". Mol. Cel. Biol., 4: 39-49. Cerca con Google

56. Ransom D. G., Bahary N., Niss K., Traver D., Burns C., Trede N. S., Paffet-Lugassy N., Saganic W. J., Anthoney Lim C., Hersey C., Zhou Y., Barut B. A., Lin S., Kingsley P. D., Plai J., Orkin S. H. e Zon L. I. (2004). "The zebrafish moonshine gene encodes Transcriptional Intermediary Factor1γ, an essential regulator of hematopoieis". PLoS Biol., 8 (2): 1188-1196. Cerca con Google

57. Riechmann V., van Cruchten I. e Stablitzky F. (1994). "The expression pattern of Id4, a novel dominant negative helix-loop-helix protein is distinct from Id1, Id2 and Id3". Nucleic Acid Res., 22: 749-755. Cerca con Google

58. Samanta J. e Kessler J. A. (2004). "Interaction between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation". Development, 131: 4131-4142. Cerca con Google

59. Schier, A.F., Neuhauss, S.C., Helde, K.A., Talbot, W.S., Driever, W. (1997). "The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail". Development, 124: 327-342. Cerca con Google

60. Spaniol P., Bornmann C., Hauptmann G. e Gerster T. (1996). "Class III POU genes of zebrafish are predominantly expressed in the central nervous system". Nucleic Acid Res., 24: 4874-4881. Cerca con Google

61. Streit A., Berliner A. J., Papanayotou C., Sirulnik A. e Stern C. D. (2000). "Initiation of neural induction by FGF signalling before gastrulation". Nature, 406: 74-78. Cerca con Google

62. Summerton J. (1999). "Morpholino antisense oligomers: the case for an RNase H-independent structural type". Biochim. Biophys. Acta, 1489: 141-158. Cerca con Google

63. Summerton J. e Weller D. (1997). "Morpholino antisense olgomers: design, preparation, and properties". Antisense Nucleic Acid Drug Dev., 7(3): 187-195. Cerca con Google

64. Takebayashi H., Nabeshima Y., Yoshida S., Chisaka O. e Ikenaka K. (2002). "The basic helix-loop-helix factor Olig2 is essential for the development of motoneuron and oligodendrocytes lineages". Curr. Biol., 12: 1157-1163. Cerca con Google

65. Tanehyll L. A. e Bronner-Fraser M. (2005). "Dynamic alterations in gene expression after Wnt-mediated induction of avian neural crest". Mol. Cell. Biol., 16: 5283-5293. Cerca con Google

66. ten Dijke P. e Hill C. S. (2004). "New insights into TGF-ß - Smad signalling". Trends. Biochem. Sci., 29: 265-273. Cerca con Google

67. Thisse, C. and Thisse, B. (1999). "Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction". Development, 126: 229-240. Cerca con Google

68. Tian T. e Meng AM. (2006). "Nodal signals pattern vertebrate embryos". Cell Mol Life Sci. 63: 672-85. Cerca con Google

69. Venturini L., You S., Stadler M., Galien R., Lallemand V., et al. (1999). "TIF1gamma, a novel member of the transcriptional intermediary factor 1 family". Oncogene, 18: 1209-1217. Cerca con Google

70. Walker C. and Streisinger G. (1983) "Induction of mutations by gamma-Rays in pregonial germ cells of zebrafish embryos". Genetics, 103: 125-136. Cerca con Google

71. Westerfield, M. (1995). "The Zebrafish Book-A guide for laboratory use of the zebrafish". Oregon University Press, Eugene, OR. Cerca con Google

72. Wilson S. I., Rydström A., Trimborn T., Willert K., Nusse R., Jessell T. M. e Edlund T. (2001). "The status of Wnt signalling regulates neural and epidermal fates in the chick embryo". Nature, 411: 325-330. Cerca con Google

73. Woo, K. and Fraser, S.E. (1995). "Order and coherence in the fate map of the zebrafish nervous system". Development 121: 2595-2609. Cerca con Google

74. Zhang, J., Talbot, W.S., Schier, A.F. (1998). "Positional cloning identifies zebrafish One-eyed pinhead as a permissive EGF-related ligand required during gastrulation". Cell, 92: 241-251. Cerca con Google

75. Zhou Q. e Anderson D. J. (2002). "The bHLH transcription factors Olig1 e Olig2 couple neuronal and glial subtype specification". Cell, 109: 61-73. Cerca con Google

76. Zhou Q., Wang S. e Anderson D. J. (2000). "Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors ". Neuron, 25 : 331-343. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record