Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cesaretto, Rudy (2014) An optimal therapeutic treatment for HIV infection with differential Game approach. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1835Kb

Abstract (inglese)

This thesis is a work focused on the application of the differential game theory to HIV therapeutic treatment, where a player is represented by the immune system of the subject (helped by drug therapy) which opposes the HIV virus. The aim of our study is to determine the optimal therapy that
allows to prevent viral replication in his body (rather than the complete eradication of the infection, that remains chronic) so as to reduce the damage caused to the immune system, and allow greater survival and quality of life.
To this end, our work is subdivided into 2 phases: in the first one we analyze the related literature in order to identify models and dynamics that describe the behavior of HIV and the behavior of immune system in the presence of this virus. In the second one we propose a generalized model which considers all six classes of antiretroviral drugs and different immune cells dynamics, with the aim of representing as much as possible the real setting of this problem. At a later stage, we validate our model with numerical simulations, determining optimal structured treatment interruption (STI) schedules for
medications.

Abstract (italiano)

Questa tesi è un lavoro focalizzato sull'applicazione della Teoria dei giochi differenziali al trattamento terapeutico dell'HIV, in cui un giocatore è rappresentato dal sistema immunitario del soggetto (supportato dalla terapia
farmacologica) al quale si oppone il virus dell'HIV. Lo scopo del nostro studio è quello di determinare la terapia ottimale che consente di prevenire la replicazione virale nel corpo del soggetto stesso, (e non l'eradicazione completa
dell'infezione che rimane cronica) così da ridurre i danni provocati al sistema immunitario, e garantirgli una sopravvivenza e una qualità di vita certamente
maggiori. A tal fine, il nostro lavoro è suddiviso in 2 fasi: nella prima fase abbiamo analizzato la letteratura attinente al fine di individuare modelli e dinamiche che descrivono il comportamento dell'HIV ed il comportamento del
sistema immunitario in presenza di questo virus. Nella seconda fase abbiamo proposto un modello generalizzato, che consideri tutte le sei classi di farmaci antiretrovirali e le dinamiche delle diverse cellule immunitarie, con l'obiettivo di approssimare al meglio la realtà di questo problema. Successivamente, siamo passati alla validazione del nostro modello, con simulazioni numeriche, cercando di determinare il piano strutturato ottimo delle interruzioni al
trattamento farmacologico (STI).

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Buratto, Alessandra
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > MEDICINA DELLO SVILUPPO E SCIENZE DELLA PROGRAMMAZIONE > SCIENZE DELLA PROGRAMMAZIONE
Data di deposito della tesi:25 Febbraio 2014
Anno di Pubblicazione:25 Febbraio 2014
Informazioni aggiuntive:La tesi presenta 3 parti: 1) una prima parte di analisi della letteratura annessa e dei modelli su questo tema; 2) una seconda parte di presentazione e validazione del modello proposto; 3) una terza parte in cui vengono proposti i listati dei programmi necessari per le simulazioni.
Parole chiave (italiano / inglese):Human Immunodeficiency Virus (HIV), Acquired Immunodeficiency Syndrome (AIDS), Viral Dynamics Dynamical Systems, Optimal Control, Game Theory, Optimal structured treatment interruption (STI) schedules for medications.
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/17 Malattie infettive
Area 01 - Scienze matematiche e informatiche > MAT/09 Ricerca operativa
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica
Dipartimenti > Dipartimento di Salute della Donna e del Bambino
Codice ID:6879
Depositato il:06 Nov 2014 13:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Adams B.M., Banks H.T., Davidian M., Know H.D., Tran H.T., Wynne S.N., Rosenberg E.S. (2005). HIV Dynamics: Modeling, Data Analysis, and Optimal Treatment Protocols. Journal of Computational and applied mathematics 184(1): 10-49. Cerca con Google

[2] Anderson R.M. (1989). Complex dynamical behavior in the interactions between HIV and immunosystems. In Cell to Cell Signalling edited by Goldbetter A. New York: Academic Press pp. 335-349. Cerca con Google

[3] Bai Y., Xue H.,Wang K., Cai L., et al. (2013). Covalent fusion inhibitors targeting HIV-1 gp41 deep pocket. Amino Acids the Forum for Amino Acid, Peptide and Protein Research 44 (2): 701. Cerca con Google

[4] Banks H.T., Know H.D., Toivanen J.A., Tran H.T. (2005). An SDRE Based Estimator Approach fo HIV Feedback Control. Cerca con Google

[5] Banks H.T., Know H.D., Toivanen J.A., Tran H.T. (2006). A state dependent Riccati equation-based estimator approach for HIV feedback control. Optimal Control Applications and Methods 27: 93-121. Cerca con Google

[6] Barbaro G., Barbarini G., (2011). Human immunodeficiency virus & cardio vascular risk. The Indian journal of medical research 134 (6):898-903. Cerca con Google

[7] Bonhoeffer S., Rembiszewski M., Ortiz G.M., Nixon D.F. (2000). Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS 2000(14): 2313-2322. Cerca con Google

[8] Bonhoeffer S., May R.M., Shaw G.M., Nowak M.A.(1997). Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94: 6971-6976. Cerca con Google

[9] Bonhoeffer S., Barbour A.D., De Boer R.J. (2002). Procedures for reliable estimation of viral fitness from time-series data. Proc. R. Soc.Lond. B 269: 1887-1893. Cerca con Google

[10] Borrow P., Tishon A., Lee S., Xu J., Grewal I.S., Oldstone M.B.,Flavell R.A. (1996). CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL. J Exp Med 1183:2129-2142. Cerca con Google

[11] Borrow P., Tough D.F., Eto D., Tishon A., Grewal I.S., Sprent J., FlavellR.A., Oldstone M.B.. (1998). CD40 ligand-mediated interactions are involved in the generation of memory CD8+ cytotoxic T lymphocytes(CTL) but are not required for the maintenance of CTL memory following virus infection. J Virol 72: 7440-7449. Cerca con Google

[12] Buratto A., Viscolani B. (2005). Programmazione Matematica e Decisioni Economiche. Padova: Edizioni Libreria Progetto. Cerca con Google

[13] Buratto A., Grosset L., Viscolani B. (2013). Ottimizzazione Dinamica. Padova: Edizioni Libreria Progetto. Cerca con Google

[14] Burke DS. (1997). Recombination of HIV: An Important Viral Evolutionary Strategy Emerging Infectious Diseases 3(3). Cerca con Google

[15] Burgoyne R.W., Tan D.H. (2008). Prolongation and quality of life for HIV-infected adults treated with highly active antiretroviral therapy (HAART): a balancing act. J. Antimicrob. Chemother. 61 (3): 469-73. Cerca con Google

[16] Butler S., Kirschner D., Lenhart S. (1995). Optimal control of chemotherapy affecting the infectivity of HIV. Mathematical Biology and Medicine Vol. 6, World Scientific. Cerca con Google

[17] Caetano M.A.L., Yoneyama T. (2002). Short and long period optimization of drug doses in the treatment of AIDS. Anais da Academia Brasileira de Ciencias 74(3): 379-392. Cerca con Google

[18] Chen J., Dang Q., Unutmaz D., Pathak V.K., Powell D., Hu W.S.(2005). Mechanisms of non-random human immunodeficiency virus type 1 infection and double infection: preference in virus entry is important but is not the sole factor. J. Virol 79: 4140-4149. Cerca con Google

[19] Cressman R. (1992). The Stability Concept of Evolutionary Game Theory: A Dynamic Approach. Springer-Verlag. Cerca con Google

[20] Culshaw R.V., Ruan S., Spiteri R.J. (2004). Optimal HIV treatment by maximizing immune response. J Math. Biol. 48: 545-562. Cerca con Google

[21] Dang Q., Chen J., Unutmaz D., Cofin J.M., Pathak V.K., Powell D.,Kewal Ramani V.N., Maldarelli F., Hu W.S. (2004). Non random HIV-1 infection and double infection via direct and cell-mediated path-ways. Proc Natl Acad Sci USA 101: 632-637. Cerca con Google

[22] Dalal N., Greenhalgh D., Mao X. (2008). A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341: 1084-1101. Cerca con Google

[23] Das K., Arnold E., (2013). HIV-1 reverse transcriptase and antiviral drug resistance. Part 1. Current Opinion in Virology 3 (2): 111-8. Cerca con Google

[24] De Boer R.J., Boerlust M. C. (1994). Diversity and virulence thresholds in AIDS. Proc. Natl. Acad. Sci. USA 94: 544-548. Cerca con Google

[25] De Boer R.J., Perelson A.S. (1998). Target Cell Limited and Immune Control Models of HIV Infection: A Comparison. J. theor. Biol. 190:201-212. Cerca con Google

[26] De Marco G. (1999). Analisi due: secondo corso di analisi matematica. Padova: Decibel editrice. Cerca con Google

[27] Delemarre F.G.A. et al. (1990). Repopulation of macrophages in popliteal lymph nodes of mice after liposome-mediated depletion. J.Leukocyte Biology 47: 251-257. Cerca con Google

[28] Di Mascio M., Ribeiro R.M., Markowitz M., Ho D.D., Perelson A.(2004). Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy. Mathematical Biosciences188: 47-62. Cerca con Google

[29] Dockner E., Jorgensen S., Sorger G., Van Long N. (2000). Differential games in economics and management science. Cambridge: Cambridge University Press. Cerca con Google

[30] Fister K.R., Lenhart S., McNally J.S. (1998). Optimizing chemotherapy in an HIV model. Electronic Journal pf Differential Equations 1998(32):1-12. Cerca con Google

[31] Flint S.J., Enquist L.W., Krug R.M., Racaniello V.R., Skalka A.M.(2000). Principles of Virology. Washington: ASM Press. Cerca con Google

[32] Gregio J.M., Caetano M.A.L., Yoneyama T. (2009). State estimation and optimal long period clinical treatment of HIV seropositive patients. Anais da Academia Brasileira de Ciencias 81(1): 3-12. Cerca con Google

[33] Gao F et. al. (1998). An Isolate of Human Immunodeficiency Virus Type 1 Originally Classified as Subtype I Represents a Complex Mosaic Comprising Three Different Group M Subtypes (A, G, and I). Journalof Virology 72(12). Cerca con Google

[34] Haase A.T., Henry K., Zupancic M., Sedgewick G., Faust R.A., Melroe H. (1996). Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science 274: 985-989. Cerca con Google

[35] Hraba T., Dolezal J. (1995). Communication mathematical modelling of HIV infection therapy. International Journal of Immunopharmacology 17(6): 523-526. Cerca con Google

[36] Jang T., Kwon H.D., Lee J. (2011). Free Terminal Time Optimal Control Problem of an HIV Model Based on a Conjugate Gradient Method. Bull Math Biol 73: 2408-2429. Cerca con Google

[37] Jeffrey A.M., Xia X., Craig I.K. (2003). When to Initiate HIV Therapy: A Control Theoretic Approach. IEEE Transactions on Biomedical Engineering 50(11): 1213-1220. Cerca con Google

[38] Jeffrey K.J., et al. (1999). HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associatedmyelopathy. Proc Natl Acad Sci USA 96: 3848-3853. Cerca con Google

[39] Jin X, et al. (1999). Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med 189: 991-998. Cerca con Google

[40] Joshi H.R. (2002). Optimal Control of an HIV Immunology Model Optimal Control Applications and Methods 23(4): 199-213. Cerca con Google

[41] Jolly C., Sattentau Q.J. (2004). Retroviral spread by induction of virological synapses. Traffic 5: 643-650. Cerca con Google

[42] Jung A., Maier R., Vartanian J.P., Bocharov G., Jung V., Fischer U., Meese E., Wain-Hobson S., Meyerhans A. (2002). Multiply infected spleen cells in HIV patients. Nature 418: 144 Cerca con Google

[43] Kalams S.A., Goulder P.J., Shea A.K., Jones N.G., Trocha A.K., Ogg G.S., Walker B.D. (1999). Levels of human immunodeficiency virus type 1-specific cytotoxic T-lymphocyte effector and memory responses decline after suppression of viremia with highly active antiretroviral therapy. J Virol 73: 6721-6728. Cerca con Google

[44] Kirschner D.E., Perelson A.S. (1993). A Model for the Immune System Response to HIV: AZT Treatment Studies. Santa Fe Institute, Working paper 01/1993. Cerca con Google

[45] Kirschner D., Webb G.F. (1996). A model for treatment strategy in the chemotherapy of AIDS. Bulletin of Mathematical Biology 58(2):367-390. Cerca con Google

[46] Kirschner D., Lanhart S., Serbin S. (1997). Optimal control of the chemotherapy of HIV. J. Math. Biol. 35: 775-792. Cerca con Google

[47] Kirschner D.E., Webb G.F. (1998). Immunotherapy of HIV-1 infection. Journal of Biological Systems 6(1): 71-83. Cerca con Google

[48] Kubiak S., Lehr H., Levy R., Moeller T., Parker A., Swim E. (2001).Modeling control of HIV infection through structured treatment interruptions with recommendations for experimental protocol. Industrial Mathematics Modeling Workshop for Graduate Students, 2001: 67-86. Cerca con Google

[49] Kutch J.J., Gurfil P. (2002). Optimal control of HIV infection with a continuously-mutating viral population. Proceedings of the American Control Conference Anchorage 5: 4033-4038. Cerca con Google

[50] Levy D.N., Aldrovandi G.M., Kutsch O., Shaw G.M. (2004). Dynamics of HIV- recombination in its natural target cells. Proc. Natl Acad Sci USA 101: 4204-4209. Cerca con Google

[51] Lieberman-Blum SS, Fung HB, Bandres JC (2008). Maraviroc: ACCR5-receptor antagonist for the treatment of HIV-1 infection. Clinical Therapeutics 30 (7): 1228-50. Cerca con Google

[52] Lenhart S., Workman J. T. (2007). Optimal Control Applied to Biological Models. Chapman & Hall/CRC Mathematical and Computational Biology Series. Cerca con Google

[53] Lin F., Ying H., MacArthur R.D., Cohn J.A., Jones D.B., Crane L.R.(2007). Decision Making in Fuzzy Discrete Event Systems. Inf Sci (Ny) 177(18): 3749-3763. Cerca con Google

[54] Leitner T., Korber B., Daniels M., Calef C., Foley B. (2005). HIV-1 Subtype and Circulating Recombinant Form (CRF) Reference Sequences. Los Alamos National Laboratory, Los Alamos, NM 87545seq-info@lanl.gov http://hiv.lanl.gov/ Vai! Cerca con Google

[55] Luo R., Piovoso M.J., Picado J.M., Zurakowski R. (2011). Optimal Antiviral Switching to Minimize Resistance Risk in HIV Therapy. PLos ONE 6(11): e27047 1-9. Cerca con Google

[56] Malta M., Strathdee S.A., Magnanini M.M., Bastos F.I., (2008).Adherence to antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome among drug users: a systematic review. Addiction (Abingdon, England) 103 (8): 1242-57. Cerca con Google

[57] Mann D.L. et al. (1990). HIV-1 transmission and function of virus infected monocytes/macrophages. J. Immunol. 144: 2152-2158. Cerca con Google

[58] Marée A.F.M., Keulen W., Boucher C.A.B., De Boer R.J. (2000). Estimating Relative Fitness in Viral Competition Experiments. Journal of Virology 74(23): 11067-11072. Cerca con Google

[59] Maynard Smith J., Price G.R. (1973). Logic of animal conflict. Nature246: 15-18. Cerca con Google

[60] Maynard Smith J., Szathamary E. (1995). The major transitions in evolution. Oxford: W. H. Freeman. Cerca con Google

[61] McLean A.R., Nowak M.A. (1992). Models of Interactions Between HIV and Other Pathogens. J. theor. Biol. 155: 69-102. Cerca con Google

[62] McLean A.R., Nowak M.A. (1992). Competition between zidovudine-sensitive and zidovudine-resistant strains of HIV. AIDS 6: 71-79. Cerca con Google

[63] Meltzer M.S., Skillman D.R., et al. (1990). Macrophages and the human immunodeficiency virus. Immunology Today 11 (6): 217-223. Cerca con Google

[64] Mirabile L., Baroncini S. (2012). Rianimazione in età pediatrica, pp: 99. Springer, Milano. Cerca con Google

[65] Montessori V., Press N., Harris M., Akagi L., Montaner J.S. (2004).Adverse effects of antiretroviral therapy for HIV infection. CMAJ 170(2): 229-238. Cerca con Google

[66] Nachega J.B., Marconi V.C., van Zyl G.U., Gardner E.M., Preiser W., Hong S.Y., Mills E.J., Gross R., (2011). HIV treatment adherence, drug resistance, virologic failure: evolving concepts. Infectious disorders drug targets 11 (2): 167-74. Cerca con Google

[67] Neri F., Toivanen J., Cascella G.L. (2007). An Adaptive Multimeme Algorithm for Designing HIV Multidrug Therapies. IEEE/ACM Trans Comput Biol Bioinform 4(2): 264-278. Cerca con Google

[68] Nowak M.A. (1990). HIV mutation rate. Nature 347: 522. Cerca con Google

[69] Nowak M.A., May R.M., Anderson R.M. (1990). The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. AIDS 4: 1095-1103. Cerca con Google

[70] Nowak M.A., May R.M. (1991). Mathematical Biology of HIV Infections: Antigenic Variation and Diversity Threshold. Mathematical Biosciences 106: 1-21. Cerca con Google

[71] Nowak M.A., Anderson R.M., McLean A.R., Wolfs T.F.W., Goudsmit J., May R.M. (1991). Antigenic Diversity Thresholds and the Development of AIDS. Science 254: 963-969. Cerca con Google

[72] Nowak M.A., McLean A.R. (1991). A Mathematical Model of Vaccination against HIV Prevent the Development of AIDS. Proceedings: Biological Sciences 246(1362): 141-146. Cerca con Google

[73] Nowak M.A., May R.M., Sigmund K. (1995). Immune Responses against Multiple Epitopes. J. theor. Biol. 175: 325-353. Cerca con Google

[74] Nowak MA, Bangham CR. (1996). Population dynamics of immune responses to persistent viruses. Science 272:74-79. Cerca con Google

[75] Nowak MA. (2006). Evolutionary dynamics: exploring the equations oflife. Harvard University Press. Cerca con Google

[76] Orrell C. (2005). Antiretroviral adherence in a resource-poor setting. Current HIV/AIDS reports 2 (4): 171-6. Cerca con Google

[77] Orsi F., D'Almeida C., (2010). Soaring antiretroviral prices, TRIPS and TRIPS flexibilities: a burning issue for antiretroviral treatment scale-up in developing countries. Current Opinion in HIV and AIDS 5(3): 237-241. Cerca con Google

[78] Palella FJ., Delaney KM., Moorman AC., Loveless MO., Fuhrer J.,Satten GA., Aschman DJ., Holmberg SD. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N. Engl. J. Med.338 (13): 853-60. Cerca con Google

[79] Panel on Antiretroviral Guidelines for Adults and Adolescents (2009).Guidelines for the use of Antiretroviral Agents in HIV-1-infected Adults and Adolescents. US Dept. of Health and Human Services. Cerca con Google

[80] Pannocchia G., Laurino M., Landi A. (2010). A Model Predictive Control Strategy Toward Optimal Structured Treatment Interruptions in Anti-HIV Therapy. IEEE Transactions on Biomedical Engineering 57(5): 1040-1050. Cerca con Google

[81] Pauza D. (1998). HIV persistence in monocytes leads to pathogenesis and AIDS. Cellular Immunology 112: 1-11. Cerca con Google

[82] Parthasarathy T. (1997). Game theoretical applications to economics and operation research. Theory and Decision Library C, vol. 18. Berlin, Germany: Springer-Verlag: p. 108. Cerca con Google

[83] Perelson A.S. (1989). Modeling the interaction of HIV with the immune system. Mathematical and Statistical Approaches to AIDS Epidemiology,(Castillo-Chavez. C., ed.) Lect. Notes in Biomath. 83: 350-370.New York: Springer-Verlag. Cerca con Google

[84] Perelson A.S., Kirschner D.E., De Boer R. (1993). Dynamics of HIV Infection of CD4+ T cells. Mathematical Biosciences 114: 81-125. Cerca con Google

[85] Perelson A.S., Neumann A.U., Markowitz M., Leonard J.M., Ho D.D.(1996). HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time. Science 271: 1582-1586. Cerca con Google

[86] Perelson A.S., Essunger P., Cao Y., Vesanen M., Hurley A., Saksela K., Markowitz M., Ho D.D. (1997). Decay characteristics of HIV-1-infected compartments during combination therapy. Nature 387: 188-191. Cerca con Google

[87] Perelson A.S., Nelson P.W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41: 3-44. Cerca con Google

[88] Perelson A.S. (2002). Modelling viral and immune system dynamics. Macmillan Magazines Ltd 2: 28-36. Cerca con Google

[89] Plantier J.C. (2009). A new human immunodeficiency virus derived from gorillas. Nature Medicine, 2nd August. Cerca con Google

[90] Pontesilli O., Kerkhof G.S., Pakker N.G., Notermans D.W., RoosM.T.L., Klein M.R., Danner S.A., Miedema F. (1999). Immunology Letters 66: 213-217. Cerca con Google

[91] Quashie PK, Mespléde Thibault; Wainberg Mark A. (2013). HIV drug resistance and the advent of integrase inhibitors. Current Infectious Disease Reports 15 (1): 85-100. Cerca con Google

[92] Quaternoni A., Saleri F., Gervasio P. (2012). Calcolo Scientifico.Springer-Verlag Italia. Cerca con Google

[93] Radisavljevic-Gajic R. (2009). Optimal Control of HIV-Virus Dynamics. Annals of Biomedical Engineering Vol. 37(6): 1251-1261. Cerca con Google

[94] Ribeiro R.M., Bonhoeffer S., Nowak M.A. (1998). The frequency of resistant mutant virus before antiviral therapy. AIDS 12: 461-465. Cerca con Google

[95] Ribeiro R.M., Bonoeffer S. (2000). Production of resistant HIV mutants during antiretroviral therapy. PNAS 94(14): 7681-7686. Cerca con Google

[96] Rosenberg E.S., Altfeld M., Poon S.H., Phillips M.N., Wilkes B.M., Eldridge R.L., Robbins G.K., D'Aquila R.T., Goulder P.J., Walker B.D. (2000). Immune control of HIV-1 after early treatment of acute infection. Nature 407: 523-526. Cerca con Google

[97] Saah AJ, et al. (1998). Association of HLA profiles with early plasma viral load, CD4+ cell count and rate of progression to AIDS following acute HIV-1 infection. Multicenter AIDS Cohort Study. Aids 12: 2107-2113. Cerca con Google

[98] Sattentau Q. (2004). Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6: 815-826. Cerca con Google

[99] Sax P.E., Baden L.R., (2009). When to start antiretroviral therapy? ready when you are?. The New England Journal of Medicine 360 (18):1897-9. Cerca con Google

[100] Schmitz JE, et al. (1999). Control of viremia in simian immunodeficiency virus infection by CD8(+) lymphocytes. Science 283: 857-860. Cerca con Google

[101] Seierstad A., Sydsaeter K. (1987). Optimal Control Theory with Economic Applications. North Holland, Amsterdam. Cerca con Google

[102] Shim H., Han S.J., Chung C.C., Nam S.W., Seo J.H. (2003). Optimal Scheduling of Drug Treatment for HIV Infection: Continuous Dose Control and Receding Horizon Control. International Journal of Control, Automation, and Systems 1(3): 282-288. Cerca con Google

[103] Siegfried N., Uthman O.A., Rutherford G.W. (2010). Optimal time for initiation of antiretroviral therapy in asymptomatic, HIV-infected, treatment-naive adults. In Siegfried, Nandi. Cochrane database of systematic reviews (Online) (3): CD008272. Cerca con Google

[104] Sterne J.A., May M., Costagliola D., de Wolf F., Phillips A.N., Harris R., Funk M.J., Geskus R.B., Gill J., Dabis F., Mirò J.M., Justice A.C., Ledergerber B., Fatkenheuer G., Hogg R.S., Monforte A.D., Saag M., Smith C., Staszewski S., Egger M., Cole S.R. (2009). Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet 373 (9672):1352-63. Cerca con Google

[105] TanW.Y.,Wu H. (1999). Stochastic Modeling of the Dynamics of CD4+ T-Cell Infection by HIV and Some Monte Carlo Studies. Mathematical Biosciences 147: 173-205. Cerca con Google

[106] Tan W.Y., Xiang Z. (1999). Some state space models of HIV pathogenesis under treatment by anti-viral drugs in HIV-infected individuals. Mathematical Biosciences 156: 69-94. Cerca con Google

[107] Thomsen AR, Johansen J, Marker O, Christensen JP. (1996). Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell deficient mice. J Immunol 157: 3074-3080. Cerca con Google

[108] Thomsen AR, Nansen A, Christensen JP, Andreasen SO, Marker O. (1998). CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J Immunol 161:4583-4590. Cerca con Google

[109] Tuckwell H.C., Le Corfec E. (1998). A Stochastic Model for EarlyHIV-1 Population Dynamics. J. theor. Biol. 195: 451-463. Cerca con Google

[110] UNAIDS. World AIDS day report 2011. Copyright © 2011. Joint United Nations Programme on HIV/AIDS (UNAIDS) All rights reserved ISBN: 978-92-9173-904-2. UNAIDS/JC2216E. Cerca con Google

[111] Velichenko V.V. (1966). The Numerical Method of Solution of Optimal Control Problems. Zh. Vychil. Mat. Mat. Fiz. (1966) 6(4): 636-647. Cerca con Google

[112] Velichenko V.V., Pritykin D.A. (2006). Control of the Medical Treatment of AIDS. Automation and Remote Control 67(3): 493-511. Cerca con Google

[113] Velichenko V.V., Pritykin D.A. (2006). Numerical Methods of Optimal Control of the HIV-Infection Dynamics. Journal of Computer and Systems Sciences International 45(6): 894-905. Cerca con Google

[114] Vogel M., Schwarze-Zander C., Wasmuth J.C., Spengler U., Sauerbruch T., Rockstroh J.K. (2010). The treatment of patients with HIV. Deutsches Arzteblatt international 107 (28?29): 507-15. Cerca con Google

[115] V. Volterra. (1931). Variations and fluctuations of the number of individuals in animal species living together. In Animal Ecology. McGraw-Hill. Cerca con Google

[116] Wein L.M., Zenios S.A., Nowak M.A. (1997). Dynamic Multidrug Therapies for HIV: A Control Theoretic Approach. J. theror. Biol. 185:15-29. Cerca con Google

[117] Wein L.M., D'Amato R.M., Perelson A.S. (1998). Mathematical Analysis of Antiretroviral Therapy Aimed at HIV-1 Eradication or Maintenance of Low Viral Loads. J. theor. Biol. 192: 81-98. Cerca con Google

[118] Wensing A.M., van Maarseveen N.M., Nijhuis M. (2010). Fifteen years of HIV protease inhibitors: Raising the barrier to resistance. Antiviral Research 85 (1): 59-74. Cerca con Google

[119] Wilson D.P., McElwain D.L.S. (2002). A Mathematical Model of Continuous HIV Mutations Eluding Immune Defence. Journal of Theoretical Medicine 4(4): 241-249. Cerca con Google

[120] Wodarz D., Nowak M.A. (1999). Specific therapy regimes could lead to long-term immunological control of HIV. Pnas 96(25): 14464-14469. Cerca con Google

[121] Wodarz D., Bangham C.R.M. (2000). Evolutionary Dynamics of HTLV-1. J Mol Evol 50: 448-455. Cerca con Google

[122] Wodarz D., Krakauer D.C. (2000). Defining CTL-induced pathology: implications for HIV. Virology 274: 94-104. Cerca con Google

[123] Wodarz D., Page K.M., Arnaout R.A., Thomsen A.R., Lifson J.D., Nowak M.A. (2000). A new theory of cytotoxic T-lymphocyte memory: implications for HIV treatment. Phil Trans R Soc Lond B Biol Sci 355:329-343. Cerca con Google

[124] Wodarz D., May R.M., Nowak M.A. (2000). The role of antigen-independent persistence of memory CTL International Immunology 12:467-477. Cerca con Google

[125] Wodarz D., Nowak M.A. (2002). Mathematical models of HIV pathogenesis and treatment. BioEssays 24: 1178-1187. Cerca con Google

[126] Wodarz D., Levy D.N. (2009). Multiple HIV-1 Infection of cells and the Evolutionary Dynamics of Cytotoxic T Lymphocyte Escape Mutants. Evolution 63(9): 2326-2339. Cerca con Google

[127] Working Group on Antiretroviral Therapy and Medical Management ofHIV-Infected Children (2005). Guidelines for the Use of Antiretroviral Agents in Pediatric HIV Infection. Francois-Xavier Bagnoud Center, University of Medicine and Dentistry of New Jersey; Health Resources and Services Administration, US Dept. of Health and Human Services(DHHS); National Institutes of Health, DHHS. Cerca con Google

[128] Wu J., Zhang M. (2010). A Game Theoretical Approach to Optimal Control of Dual Drug Delivery for HIV Infection Treatment. IEEE Transactions on Systems, Man, and Cybernetics 40(3): 694-702. Cerca con Google

[129] Wu Y., Zhang M., Wu J., Zhao X., Xia L. (2012). Evolutionary game theoretic strategy for optimal drug delivery to influence selection pressure in treatment of HIV-1. J. Math. Biol. 64: 495-512. Cerca con Google

[130] Zarei H., Kamyad A.V., Farahi M.H. (2011). Optimal Control of HIV Dynamic Using Embedding Method. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine. 2001: 1-9. Cerca con Google

[131] Zarei H., Kamayad A.V., Heydari A.A. (2012). Fuzzy Modeling and Control of HIV Infection. Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine 2012: 1-17. Cerca con Google

[132] Zurakowski R., Messina M.J., Tuna S.E., Teel A.R. (2004). HIV treatment scheduling via robust nonlinear model predictive control. Proceedings of the 5th Asian Control Conference. Cerca con Google

[133] Zurakowski R., Teel A.R., Wodarz D. (2004). Utilizing alternate target cells in treating HIV infection through scheduled treatment interruptions. Proceedings of the 2004 American Control Conference 1: 946-951. Cerca con Google

[134] Zurakowski R., Teel A.R. (2003). Enhancing immune response to HIV infection using MPC-based treatment scheduling. Proceedings of the 2003 American Control Conference 2: 1182-1187. Cerca con Google

[135] Lila (Lega Italiana per la lotta contro l'AIDS) Milano Onlus (2005). I farmaci in uso. http://www.lilamilano.it/LILA/Lila-Site/site/it/NEW LILA/it/info aids/. Accessed 12 November 2013. Vai! Cerca con Google

[136] Treccani.it L'enciclopedia Italiana: AIDS nel "Libro dell'anno(2007)". http://www.treccani.it/enciclopedia/aids %28Il-Librodell%27Anno%29/. Accessed 2 november 2012. Vai! Cerca con Google

[137] World Health Organisation (2013). Global Health Observatory (GHO): HIV/AIDS. WHO. http://http://www.who.int/gho/hiv/en/. Accessed 10 October 2013. Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record