Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Mascheretti, Iride (2014) regolazione epigenetica del meccanismo autonomo di fioritura in mais (Zea mays). [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3304Kb

Abstract (inglese)

In the B73 maize temperate line, the autonomous flowering pathway controls flowering independently of external signals. In Arabidopsis, the epigenetic mechanisms have been demonstrated to play an important role in the control of floral transition. To understand whether, also in maize, the epigenetic mechanisms are important in the regulation of flowering, we have characterized mutants in epi-regulators that are components of the autonomous flowering pathway. Moreover, we have analyzed mutants in a key regulator of floral transition, for which a role in epigenetic mechanisms has been speculated. During the first approach, we have analyzed lines, which were simultaneously down-regulated in nfc101 and nfc102. The maize Nucleosome remodeling factor complex component101 (nfc101) and nfc102 are putative paralogs encoding WD-repeat proteins with homology to plant and mammalian components of various chromatin modifying complexes. Our results indicate that the NFC101/NFC102 proteins directly bind and repress the Indeterminate1 (Id1) and the Zea mays CENTRORADIALIS8 (ZCN8) genes, two key regulators of the autonomous flowering pathway. In addition, the abolition of NFC101/NFC102 association with repetitive sequences of different transposable elements (TEs) resulted in tissue-specific up-regulation of non-polyadenylated RNAs produced by these regions. All direct NFC101/NFC102 targets showed histone modification patterns linked to active chromatin in nfc101/nfc102 down-regulation lines. However, different mechanisms may be involved because NFC101/NFC102 proteins mediate HDAC recruitment at Id1 and TE repeats but not at ZCN8. These results, along with the pleiotropic effects observed in nfc101/nfc102 down-regulation lines, suggest that NFC101 and NFC102 are components of distinct chromatin modifying complexes, which operate in different pathways and influence diverse aspects of maize development.
In the second strategy, we have analyzed id1 mutants, to understand if Id1 is able to activate ZCN8 and ZCN7 expression through epigenetic mechanisms. We have demonstrated that Id1, which is expressed in the immature leaf, partially contributes to the formation of histone modification patterns linked to active chromatin in the ZCN8 and ZCN7 loci in this tissue. So, in the immature leaf Id1 could be important for the formation of active chromatin at the ZCN8 and ZCN7 loci, which is maintained through mitotic divisions until the formation of mature leaf, where ZCN8 and ZCN7 are expressed. However, our results also indicate that other proteins could play a role in the formation of active chromatin at the ZCN8 and ZCN7 genes, independently from Id1 and could be necessary in the post-transcriptional regulation of ZCN8 and ZCN7.

Abstract (italiano)

Il meccanismo autonomo di fioritura regola la transizione dalla fase vegetativa alla fase riproduttiva in linee di mais temperato, indipendentemente da segnali ambientali. In Arabidopsis, è stato dimostrato che la regolazione epigenetica svolge un ruolo importante nel meccanismo autonomo di fioritura. Al fine di comprendere se la regolazione epigenetica è importante anche per la fioritura del mais, sono stati caratterizzati mutanti di epi-regolatori, che sono componenti del meccanismo autonomo di fioritura e mutanti di un regolatore chiave della transizione fiorale, per il quale è stata ipotizzata una funzione correlata a meccanismi epigenetici.
Relativamente al primo approccio, sono state analizzate linee che sotto-esprimono i geni Nucleosome remodeling factor complex component 101 (nfc101) e nfc102, due paraloghi codificanti per proteine WD-repeat, componenti di vari complessi che modificano la cromatina. I nostri risultati indicano che le proteine NFC101/NFC102 legano direttamente e reprimono l’espressione dei geni Indeterminate1 (Id1) e Zea mays CENTRORADIALIS8 (ZCN8), regolatori chiave del meccanismo autonomo di fioritura. Le proteine NFC101/NFC102 legano anche le sequenze ripetute di diversi elementi trasponibili (TE), regolando negativamente e in modo tessuto-specifico gli RNA non-poliadenilati da loro prodotti. Nei mutanti nfc101/nfc102, tutti i target diretti di NFC101/NFC102 mostrano un profilo di modifiche istoniche caratterizzanti una cromatina trascrizionalmente attiva. La regolazione mediata da NFC101/NFC102 coinvolge probabilmente meccanismi differenti, poiché esse reclutano la istone deacetilasi di tipo Rpd3 al gene Id1 e ai TE, ma non al gene ZCN8. Nel complesso, questi risultati, insieme agli effetti pleiotropici osservati nei mutanti nfc101/nfc102, indicano che NFC101/NFC102, oltre a modulare l’espressione di regolatori della fioritura mediante modifiche della cromatina, sono coinvolti in molteplici meccanismi che controllano diversi aspetti dello sviluppo del mais.
Nel secondo approccio, è stato utilizzato il mutante nullo id1, per verificare se la sua azione di attivatore del florigeno ZCN8 e del suo paralogo ZCN7 viene svolta mediante regolazione epigenetica. I nostri risultati indicano che la funzione di Id1, espresso nella foglia immatura, correla solo parzialmente con la formazione, in questo tessuto, di un profilo di modifiche istoniche associate a una competenza trascrizionale nei loci dei florigeni, il cui mRNA processato è invece prodotto solo nella foglia matura. Pertanto, Id1 potrebbe effettivamente promuovere nei florigeni la formazione di uno stato epigenetico “istruttivo” per la trascrizione, che è mantenuto durante lo sviluppo della foglia fino all’effettiva sintesi degli mRNA. Tuttavia, le osservazioni fatte suggeriscono che altri fattori sono richiesti per spiegare l’esistenza, nei florigeni, di un profilo di modifiche istoniche indipendente da Id1, così come l’importanza della regolazione post-trascrizionale che caratterizza la regolazione dei florigeni nella foglia matura nel mais.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Varotto, Serena
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE DELLE PRODUZIONI VEGETALI
Data di deposito della tesi:22 Maggio 2014
Anno di Pubblicazione:26 Maggio 2014
Parole chiave (italiano / inglese):mais / maize fioritura / flowering regolazione epigenetica / epigenetic regulation
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:6927
Depositato il:19 Mag 2015 17:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052-1056. Cerca con Google

Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) Cis-regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. The Plant Cell 22:1425–1440. Cerca con Google

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2011) Molecular biology of the cell. Fifth Edition. Cerca con Google

Amasino R (2010) Seasonal and developmental timing of flowering. Plant J. 61:1001-1013. Cerca con Google

Angel A, Song J, Dean C, Howard M (2011) A Polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105-108. Cerca con Google

Ausin I, Alonso-Blanco C, Jarillo JA, Ruiz-Garcia L and Martinez-Zapater JM (2004) Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 36:162-166. Cerca con Google

Ausín I, Alonso-Blanco C and Martínez-Zapater JM (2005) Environmental regulation of flowering. Int. J. Dev. Biol. 49:689-705. Cerca con Google

Baucom RS., Estill JC., Chaparro C, Upshaw N, Jogi A, Deragon JM, Westerman RP, SanMiguel FJ, Bennetzen JL (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet. 5(11): e1000732. Cerca con Google

Bäurle I, Dean C (2008) Differential interactions of the autonomous pathway RRM proteins and chromatin regulators in the silencing of Arabidopsis targets. PLoS ONE 3(7):e2733. Cerca con Google

Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29:464–489. Cerca con Google

Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet. Dev. 15:621–627. Cerca con Google

Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3(9):e3156. Cerca con Google

Berg DE, Howe MM (1989) Mobile DNA. Washington, DC. American Society for Microbiology. Cerca con Google

Bieker JJ (2001) Kruppel-like factors: three fingers in many pies. J. Biol. Chem. 276:34355-34358. Cerca con Google

Blackman BK, Strasburg JL, Raduski AR, Michaels SD, Rieseberg LH (2010) The role of recently derived FT paralogs in sunflower domestication. Curr. Biol. 20:629–635. Cerca con Google

Bologna NG e Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol. 65:473-503. Cerca con Google

Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519-531. Cerca con Google

Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl.):S18–31. Cerca con Google

Bouveret R, Schonrock N, Gruissem W, Hennig L (2006) Regulation of flowering time by Arabidopsis MSI1. Development 133:1693–1702. Cerca con Google

Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797. Cerca con Google

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714-718. Cerca con Google

Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. PNAS 90:287-291. Cerca con Google

Campi M, D’Andrea L, Emiliani J, Casati P (2012) Participation of chromatin-remodeling proteins in the repair of ultraviolet-B damaged DNA. Plant Physiol. 158:981–995. Cerca con Google

Casati P, Campi M, Chu F, Suzuki N, Maltby D, Guan S, Burlingame AL, Walbot V (2008) Histone acetylation and chromatin remodeling are required for UV-B-dependent transcriptional activation of regulated genes in maize. The Plant Cell 20:827–842. Cerca con Google

Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of Histone H3 Lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039-1043. Cerca con Google

Chailakhyan MK (1936) New facts in support of the hormonal theory of plant development. C.R. (Dokl.) Acad. Sci. U.R.S.S. 13:79-83. Cerca con Google

Chardon F, Hourcade D, Combes V, Charcosset A (2005) Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor. Appl.Genet. 112:1-11. Cerca con Google

Chinnusamy V, Zhu JK (2009) RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci 52:331–343. Cerca con Google

Choi J, Hyun Y, Kang MJ, Yun HI, Yun JY, Lister C, Dean C, Amasino RM, Noh B, Noh YS, Choi YC (2009) Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. The Plant J. 57:918-931. Cerca con Google

Chouard P (1960) Vernalization and its relations to dormancy. Annu. Rev. Plant Physiol. 11:191-238. Cerca con Google

Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Bioch. 78:273-304. Cerca con Google

Colasanti e Coneva (2009) Mechanisms of floral induction in grasses: something borrowed, something new. Plant Physiol. 149:56–62. Cerca con Google

Colasanti J, Muszynski MG (2008) The maize floral transition. In SC Hake, JL Bennetzen, eds, Handbook of Maize: Its Biology, Springer Science 1:41-55. Cerca con Google

Colasanti J, Tremblay R, Wong AYM, Coneva V, Kozaki A, Mable BK (2006) The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants. BMC Genomics 7:1-15. Cerca con Google

Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593-603. Cerca con Google

Coles JP, Phillips AL, Croker SJ, Garcìa-Lepe R, Lewis MJ Hedden P (1999) Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes. Plant J. 17:547–556. Cerca con Google

Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799-U301. Cerca con Google

Coneva V, Zhu T, Colasanti J (2007) Expression differences between normal and indeterminate1 maize suggest downstream targets of ID1, a floral transition regulator in maize. J. Exp. Bot. 58:3679-3693. Cerca con Google

Cortijo S, Wardenaar R, Colomé-Tatché M, Gilly A, Etcheverry M, Labadie K, Caillieux E, Hospital F, Aury J-M, Wincker P, Roudier F, Jansen RC, Colot V, Johannes F (2014) Mapping the epigenetic basis of complex traits. Science 343:1145-1148. Cerca con Google

Danilevskaya ON, Meng X, Hou ZL, Ananiev EV, Simmons CR (2008a) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol. 146:250-264. Cerca con Google

Danilevskaya ON, Meng X, McGonigle B and Muszynski MG (2011) Beyond flowering time. Pleiotropic function of the maize flowering. Plant Signal. & Behav. 6(9):1267-1270. Cerca con Google

Danilevskaya ON, Meng X, Selinger DA, Deschamps S, Hermon P, Vansant G, Gupta R, Ananiev EV, Muszynski MG (2008b) Involvement of the MADS-Box gene ZMM4 in floral induction and inflorescence development in maize. Plant Physiol. 147:2054-2069. Cerca con Google

Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132:1849–1860. Cerca con Google

de Hostos EL, Bradtke B, Lottspeich F, Guggenheim R, Gerisch G (1991) Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein β subunits. EMBO J. 10:4097–4104. Cerca con Google

Delichère C, Veuskens J, Hernould M, Barbacar N, Mouras A, Negrutiu I, Monéger F (1999) SlY1, the first active gene cloned from a plant Y chromosome, encodes a WD-repeat protein. EMBO J. 18:4169-4179. Cerca con Google

De Lucia F, Crevillen P, Jones AM, Greb T and Dean C (2008) A PHD-Polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. PNAS 105:16831–16836. Cerca con Google

De Lucia F, Dean C (2011) Long non-coding RNAs and chromatin regulation. Curr. Opin. Plant Biol. 14:168–173. Cerca con Google

Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 126:1309-1321. Cerca con Google

Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485-488. Cerca con Google

Dunoyer P, Brosnan CA, Schott G, Wang Y, Jay F, Alioua A, Himber C, Voinnet O (2010) An endogenous, systemic RNAi pathway in plants. EMBO J. 29:1699–1712. Cerca con Google

Englesberg E, Irr J, Power J, Lee N (1965) Positive control of enzyme synthesis by gene C in the L-arabinose system. J. Bacteriol. 90:946–957. Cerca con Google

Farrona S, Coupland G, Turck F (2008) The impact of chromatin regulation on the floral transition. Sem. Cell & Develop. Biol. 19:560-573. Cerca con Google

Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599-609. Cerca con Google

Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230. Cerca con Google

Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of plant and animal methylation patterning. PNAS 107:8689–8694. Cerca con Google

Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol. 17(22):1978–83. Cerca con Google

Fong HK, Hurley JB, Hopkins RS, Miake-Lye R, Johnson MS, Doolittle RF, Simon MI (1986) Repetitive segmental structure of the transducin β subunit: homology with the CDC4 gene and identification of related mRNAs. PNAS 83:2162–2166. Cerca con Google

Galinat WC, Naylor AW (1951) Relation of photoperiod to inflorescence proliferation in Zea mays L. Am. J. Bot. 38: 38-47. Cerca con Google

Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. PNAS 94:6809–6814. Cerca con Google

Gilbert W, Muller-Hill B (1966) Isolation of the LAC repressor. Proc. Natl Acad. Sci. U.S.A 56:1891–1898. Cerca con Google

Goodrich J, Tweedie S (2002) REMEMBRANCE OF THINGS PAST: Chromatin remodeling in plant development. Cell Dev. Biol. 18:707-746. Cerca con Google

Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 131:1855-1867. Cerca con Google

Gu X, Jiang D, Yang W, Jacob Y, Michaels SD and He Y (2011) Arabidopsis homologs of retinoblastoma-associated protein 46/48 associate with a histone deacetylase to act redundantly in chromatin silencing. PLoS Genet. 7:e1002366-. Cerca con Google

Guo Y, McCarty JC, Jenkins JN, Saha S (2008) QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L., cultivar with primitive accession Texas 701. Euphytica 163:113–122. Cerca con Google

Hale CJ, Erhard KF Jr, Lisch D, Hollick JB (2009) Production and processing of siRNA precursor transcripts from the highly repetitive maize genome. PLoS Genet. 5(8):e1000598. Cerca con Google

Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11. Cerca con Google

Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719-722. Cerca con Google

He H, Lehming N (2003) Global effects of histone modifications. Funct. Genom. 2:234:243. Cerca con Google

He Y, Michaels S, Amasino R (2003) Regulation of flowering time by histone acetylation in Arabidopsis. Science 302:1751–1754. Cerca con Google

He YH (2009) Control of the transition to flowering by chromatin modifications. Mol. Plant 2:554-564. Cerca con Google

Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447:418-24. Cerca con Google

Henderson IR, Dean C (2004) Control of Arabidopsis flowering: the chill before the bloom. Develop. 131(16):3829–3838. Cerca con Google

Hennig L, Bouveret R, Gruissem W (2005) MSI1-like proteins: an escort service for chromatin assembly and remodeling complexes. Trends Cell Biol. 15:295–302. Cerca con Google

Hennig L, Taranto P, Walser M, Schönrock N, Gruissem W (2003) Arabidopsis MSI1 is required for epigenetic maintenance of reproductive development. Develop. 130:2555-2565. Cerca con Google

Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76-79. Cerca con Google

Hoey T, Weinzierl RO, Gill G, Chen JL, Dynlacht BD, Tjian R (1993) Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260. Cerca con Google

Hollick JB (2012) Paramutation: a trans-homolog interaction affecting heritable gene regulation. Curr. Opin. Plant Biol. 15:536–543. Cerca con Google

Hongay CF, Grisafi PL, Galitski T, Fink GR (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–745. Cerca con Google

Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696. Cerca con Google

Huang S, Raman AS, Ream JE, Fujiwara H, Cerny RE, Brown SM (1998) Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol. 118:773–781. Cerca con Google

Hubert B, Rosegrant M, van Boekel M, Ortiz R (2010) The future of food: scenarios for 2050. Crop Science 50:S33-S50. Cerca con Google

Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Develop. 138:4117-4129. Cerca con Google

Irish EE, Nelson TM (1991) Identification of multiple stages in the conversion of maize meristems from vegetative to floral development. Develop.112:891-898. Cerca con Google

Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes & Develop. 16:2006-2020. Cerca con Google

Jullien PE, Mosquna A, Ingouff M, Sakata T, Ohad N, Berger F (2008) Retinoblastoma and its binding partner MSI1 control imprinting in Arabidopsis. PLoS Biol. 6(8):e194. Cerca con Google

Kardailsky I, Shukla VK, Ahn, JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962-1965. Cerca con Google

Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems. Cell 104:131–142. Cerca con Google

Kenzior AL, Folk WR (1998) AtMSI4 and RbAp48 WD-40 repeat proteins bind metal ions. FEBS Lett. 440:425-429. Cerca con Google

Kim S, Choi K, Park C, Hwang HJ, Lee I (2006) SUPPRESSOR OF FRIGIDA4, encoding a C2H2-Type zinc finger protein, represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C. The Plant Cell 18:2985-2998. Cerca con Google

Kim HJ, Hyun Y, Park JY, Park MJ, Park MK, Kim MD, Lee MH, Moon J, Lee I, Kim J (2004) A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana. Nat. Genet. 36:167-171. Cerca con Google

Kim HD, O’Shea EK (2008). A quantitative model of transcription factor-activated gene expression. Nat. Struct. Mol. Biol. 15:1192–1198. Cerca con Google

Klug A, Schwabe JWR (1995) Protein motifs. 5. Zinc fingers. FASEB J, 9:597-604. Cerca con Google

Kwon CS, Wagner D (2007) Unwinding chromatin for development and growth: a few genes at a time. Trends Genet. 23:403-412. Cerca con Google

Köhler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U and Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22:4804–4814. Cerca con Google

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43:1096-1105. Cerca con Google

Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Develop. 135:767–774. Cerca con Google

Kouzarides T (2007) Chromatin modifications and their functions. Cell 128:693–705. Cerca con Google

Kozaki A, Hake S, Colasanti J (2004) The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties. Nucleic Acids Res 32:1710–1720. Cerca con Google

Kuleshov NN (1933) World's diversity of phenotypes of maize. J. Agron. 25:688-700. Cerca con Google

Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Bioch. Bioph. Acta. 1809:369-378. Cerca con Google

Lazakis CM, Coneva V, Colasanti J (2011) ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J. Exp. Bot. 62:4833-4842. Cerca con Google

Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. Cerca con Google

Lee EA, Tollenaar M (2007) Physiological basis of successful breeding strategies for maize grain yield. Crop Science 47:S202-S215. Cerca con Google

Lewin B, Krebs JE, Goldstrin ES, Kilpatrick ST (2010) Il gene X, Zanichelli Editore. Cerca con Google

Li H, Freeling M, Lisch D (2010) Epigenetic reprogramming during vegetative phase change in maize. PNAS 107:22184–22189. Cerca con Google

Lifschitz E, Eshed Y (2006) Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato. J. Exp. Bot. 57:3405–3414. Cerca con Google

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. PNAS 103:6398–6403. Cerca con Google

Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. The Plant Cell 16:731-740. Cerca con Google

Lisch D (2012) Regulation of transposable elements in maize. Curr. Opin. Plant Biol. 15:511–516. Cerca con Google

Liu F, Marquardt S, Lister C, Swiezewski S, Dean C (2010) Targeted 3’ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 327:94–97. Cerca con Google

Locatelli L, Piatti P, Motto M, Rossi V (2007) Chromatin and DNA modifications in the Opaque2-mediated regulation of gene transcription during maize endosperm development. The Plant Cell 21:1410-1427. Cerca con Google

Loyola A, Almouzni G (2004) Bromodomains in living cells participate in deciphering the histone code. Trends Cell. Biol. 14(6):279-281. Cerca con Google

Luger K (2003) Structure and dynamic behavior of nucleosome. Curr. Opin. Genet. Dev. 13:127-135. Cerca con Google

Luger K, Mader AW, Richmond RK, Sargent DF, Richmont TJ. (1997) Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389(6648):251–260. Cerca con Google

Macknight R, Bancroft I, Page T, Lister C, Schmidt R, Love K, Westphal L, Murphy G, Sherson S, Cobbett C, Dean C (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89:737–745. Cerca con Google

Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435. Cerca con Google

Malcomber ST, Preston JC, Reinheimer R, Kossuth J, Kellogg EA (2006) Developmental gene evolution and the origin of grass inflorescence diversity. Adv Bot Res. 44:426–481. Cerca con Google

Mascheretti I, Battaglia R, Mainieri D, Altana A, Lauria M, Rossi V (2013) The WD40-repeat proteins NFC101 and NFC102 regulate different aspects of maize development through chromatin modification. The Plant Cell 25:404–420. Cerca con Google

Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008) Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1. Plant Physiol. 148:1425-1435. Cerca con Google

Matzke MA, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376. Cerca con Google

Matzke MA, Birchler JA (2005) RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 6:24-35. Cerca con Google

Mauney JR, Phillips LL (1963) Influence of daylength and night temperature on flowering of Gossypium. Bot. Gaz. 124:278–283. Cerca con Google

McGarry RC, Ayre BG (2012) Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organsand uncouples flowering from photoperiod in cotton. PLoS ONE 7:e36746. Cerca con Google

McSteen P, Laudencia-Chingcuanco D, Colasanti J (2000) A floret by any other name: control of meristem identity in maize. Trends in Plant Science 5:61-66. Cerca con Google

Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. The Plant Cell 23:942-960. Cerca con Google

Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005) Integration of flowering signals in winter annual Arabidopsis. Plant Physiol. 137:149–156. Cerca con Google

Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875. Cerca con Google

Moon J, Lee H, Kim M and Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol. 46:292-299. Cerca con Google

Mouradov A, Cremer F and Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14(Suppl):S111-S130. Cerca con Google

Murzina NV, Pei XY, Zhang W, Sparkes M, Vicente-Garcia J, Pratap JV, McLaughlin SH, Ben-Shahar TR, Verreault A, Luisi BF, Laue ED (2008) Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure 16:1077–1085. Cerca con Google

Muszynski MG, Dam T, Li B, Shirbroun DM, Hou ZL, Bruggemann E, Archibald R, Ananiev EV, Danilevskaya ON (2006) Delayed flowering1 encodes a basic leucine zipper protein that mediates floral inductive signals at the shoot apex in maize. Plant Physiol. 142:1523-1536. Cerca con Google

Neer EJ, Smith TF (2000) A groovy new structure. PNAS 97:960–962. Cerca con Google

Nemoto Y, Kisaka M, Fuse T, Yano M, Ogihara Y (2003) Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice. Plant J. 36:82-93. Cerca con Google

Nowak DE, Tian B, Brasier AR (2005) Two-step cross-linking method for identification of NF-κB gene network by chromatin immunoprecipitation. BioTech. 39:715-724. Cerca con Google

Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J. 56:1018-1029. Cerca con Google

Pasqua G, Abbate G, Forni C (2011) Biologia cellulare e biotecnologie vegetali, Piccin editore. Cerca con Google

Paterson AH, Boman RK, Brown SM, Chee PW, Gannaway JR, Gingle AR, May OL, Smith CW (2004) Reducing the genetic vulnerability of cotton. Crop Sci. 44:1900–1901. Cerca con Google

Pazhouhandeh M, Molinier J, Berr A and Genschik P (2011) MSI4/FVE interacts with CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in Arabidopsis. PNAS 108:3430–3435. Cerca con Google

Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203. Cerca con Google

Petersen K, Kolmos E, Folling M, Salchert K, Storgaard M, Jensen CS, Didion T, Nielsen KK (2006) Two MADS-box genes from perennial ryegrass are regulated by vernalization and involved in the floral transition. Physiol. Plant 126:268–278. Cerca con Google

Phillips R, Kim T, Kaeppler S, Parentoni S, Shaver D, Stucker RE, Openshaw SJ (1992) Genetic dissection of maturity using RFLP. Proceedings 47th Annual Corn and Sorghum Research Conference 47:135–150. Cerca con Google

Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJ, Nilsson O (2010) An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science 330:1397–1400. Cerca con Google

Pryer NK, Salama NR, Schekman R, Kaiser CA (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120:865–875. Cerca con Google

Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847-857. Cerca con Google

Ptashne M (1967) Isolation of the lambda phage repressor. PNAS 57:306–313. Cerca con Google

Putterill J, Laurie R and Macknight R (2004) It’s time to flower: the genetic control of flowering time. Bioessays. 26:363-373. Cerca con Google

Qian YW, Lee EY (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of Ras in yeast. J. Biol. Chem. 270:25507-25513. Cerca con Google

Rossi V, Locatelli S, Lanzanova C, Boniotti MB, Varotto S, Pipal A, Goralik-Schramel M, Lusser A, Gatz C, Gutierrez C, Motto M (2003). A maize histone deacetylase and retinoblastoma-related protein physically interact and cooperate in repressing gene transcription. Plant Mol. Biol. 51:401–413. Cerca con Google

Rossi V, Locatelli S, Varotto S, Donn G, Pirona R, Henderson DA, Hartings H, Motto M (2007) Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. The Plant Cell 19:1145-1162. Cerca con Google

Rossi V, Varotto S, Locatelli S, Lanzanova C, Lauria M, Zanotti E, Hartings H, Motto M (2001). The maize WD-repeat gene ZmRbAp1 encodes a member of the MSI/RbAp sub-family and is differentially expressed during endosperm development. Mol. Genet. Genomics 265:576–584. Cerca con Google

Roudier F, Ahmed I, Bérard C, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D, Caillieux E, Duvernois-Berthet E, Al-Shikhley L, Giraut L, Després B, Drevensek S, Barneche F, Dèrozier S, Brunaud V, Aubourg S, Schnittger A, Bowler C, Martin-Magniette ML, Robin S, Caboche M, Colot V (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. Trends Genet. 25:511-517. Cerca con Google

Ruggieri R, Tanaka K, Nakafuku M, Kaziro Y, Toh-e A Matsumoto K (1989) MSI1, a negative regulator of the RAS-cAMP pathway in Saccharomyces cerevisiae. PNAS 86:8778–8782. Cerca con Google

Russell WK, Stuber CW (1983) Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci. 23:847-850. Cerca con Google

Salvi S, Sponza G, Morgante M, Tomes D, Niu X (2007) Conserved noncoding genomic sequences associated with a flowering‐time quantitative trait locus in maize. PNAS 104:11376–81. Cerca con Google

Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 48:601–613. Cerca con Google

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Tolga Emre NC, Schreiber SL, Mellor J, Kouzarides T (2002) Active genes are tri-methylated at K4 of histone H3. Lett. Nature 419:407-411. Cerca con Google

Saze H, Kakutani T (2010) Differentiation of epigenetic modifications between transposons and genes. Curr Opin Plant Biol. 14:81–87. Cerca con Google

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B, Chen W, Yan L, Higginbotham J, Cardenas M, Waligorski J, Applebaum E, Phelps L, Falcone J, Kanchi K, Thane T, Scimone A, Thane N, Henke J, Wang T, Ruppert J, Shah N, Rotter K, Hodges J, Ingenthron E, Cordes M, Kohlberg S, Sgro J, Delgado B, Mead K, Chinwalla A, Leonard S, Crouse K, Collura K, Kudrna D, Currie J, He R, Angelova A, Rajasekar S, Mueller T, Lomeli R, Scara G, Ko A, Delaney K, Wissotski M, Lopez G, Campos D, Braidotti M, Ashley M, Golser W, Kim H, Lee S, Lin J, Dujmic Z, Kim W, Talag J, Zuccolo A, Fan C, Sebastian A, Kramer M, Spiegel L, Nascimento L, Zutavern T, Miller B, Ambroise C, Muller S, Spooner W, Narechania A, Ren L, Wei S, Kumari S, Faga B, Levy MJ, McMahan L, Van Buren P, Vaughn MW, Ying K,Yeh C-T, Emrich SJ, Jia Y, Kalyanaraman A, Hsia A-P, Barbazuk WB, Baucom RS, Brutnell TP, Carpita NC, Chaparro C, Chia J-M, Deragon J-M, Estill JC, Fu Y, Jeddeloh JA, Han Y, Lee H, Li P, Lisch DR, Liu S, Liu Z, Nagel DH, McCann MC, SanMiguel P, Myers AM, Nettleton D, Nguyen J, Penning BW, Ponnala L, Schneider KL, Schwartz DC, Sharma A, Soderlund C, Springer NM, Sun Q, Wang H, Waterman M, Westerman R, Wolfgruber TK, Yang L, Yu Y, Zhang L, Zhou S, Zhu Q, Bennetzen JL, Dawe RK, Jiang J, Jiang N, Presting GG, Wessler SR, Aluru S, Martienssen RA, Clifton SW, McCombie WR, Wing RA, Wilson RK (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112:1115. Cerca con Google

Schübeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O'Neill LP, Turner BM, Delrow J, Bell SP, Groudine M (2004) The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes & Dev. 18:1263-1271. Cerca con Google

Schomburg FM, Patton DA, Meinke DW and Amasino RM (2001) FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. The Plant Cell 13:1427-1436. Cerca con Google

Schwartz S, Ast G (2010) Chromatin density and splicing destiny: on the cross-talk between chromatin structure and splicing. EMBO J. 29:1629–1636. Cerca con Google

Searle I, He YH, Turck F, Vincent C, Fornara F, Krober S, Amasino RA, Coupland G (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Develop. 20:898-912. Cerca con Google

Seo PJ, Ryu J, Kang SK, Park CM (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. The Plant J. 65:418–429. Cerca con Google

Sheldon CC, Finnegan EJ, Peacock WJ, Dennis ES (2009) Mechanisms of gene repression by vernalization in Arabidopsis. The Plant J. 59:488–498. Cerca con Google

Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. PNAS 105:2214-2219. Cerca con Google

Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ and Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). PNAS 97:3753-3758. Cerca con Google

Simpson GG (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol. 7:570-574. Cerca con Google

Simpson GG and Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285-289. Cerca con Google

Simpson GG, Dijkwel PP, Quesada V, Henderson I and Dean C (2003) FY is an RNA 3’ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113:777-787. Cerca con Google

Slotkin RK, Martienssen RA (2007) Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8:272-285. Cerca con Google

Song YH, Smith RW, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys crucial timing information for CONSTANS stabilization in the photoperiodic flowering. Science 336:1045-1049. Cerca con Google

Stirnimann CU, Petsalaki E, Russell RB and Müller CW (2010) WD40 proteins propel cellular networks. Trends Biochem. Sci. 35:565–574. Cerca con Google

Strable J, Scanlon MJ (2009) Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor protocols 2009. Cerca con Google

Suganuma T, Pattenden SG, Workman JL (2008) Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev. 22:1265–1268. Cerca con Google

Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799-803. Cerca con Google

Thiriet C, Hayes JJ ( 2006) Histone dynamics during transcription: exchange of H2A/H2B dimers and H3/H4 tetramers during pol II elongation. Results Probl Cell Differ. 41:77–90. Cerca con Google

Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. PNAS 100(22):13099-13104. Cerca con Google

Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Ann. Rev. Plant Biol. 59:573-594. Cerca con Google

Vaisman N, Tsouladze A, Robzyk K, Ben-Yehuda S, Kupiec M, Kassir Y (1995) The role of Saccharomyces cerevisiae Cdc40p in DNA replication and mitotic spindle formation and/or maintenance. Mol. Gen. Genet. 247:123–136. Cerca con Google

Varotto S, Locatelli S, Canova S, Pipal A, Motto M, Rossi V (2003). Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiol. 133:606–617. Cerca con Google

Veley KM, Michaels SD (2008) Functional redundancy and new roles for genes of the autonomous floral-promotion pathway. Plant Physiol. 147:682-695. Cerca con Google

Vlăduţu C, McLaughlin J, Phillips RL (1999) Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153:993–1007. Cerca con Google

Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Gi α 1 β 1 γ 2. Cell 83:1047–1058. Cerca con Google

Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and smallRNA transcriptomes in maize. The Plant Cell 21:1053–1069. Cerca con Google

Wierzbicki AT, Ream TS, Haag JR, Pikaard CS (2009) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat Genet. 41:630–634. Cerca con Google

Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056-1059. Cerca con Google

Williams FE, Varanasi U, Trumbly RJ (1991) The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated in a protein complex. Mol. Cell. Biol. 11:3307–3316. Cerca con Google

Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100:403-408. Cerca con Google

Wong AYM, Colasanti J (2007) Maize floral regulator protein INDETERMINATE1 is localized to developing leaves and is not altered by light or the sink/source transition. J. Exp. Bot. 58:403-414. Cerca con Google

Wu CY, You CJ, Li CS, Long T, Chen GX, Byrne ME, Zhang QF (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. PNAS 105:12915-12920. Cerca con Google

Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N (2011) Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol. Biol. 75:193–204. Cerca con Google

Yamagishi, N, Yoshikawa N (2010) Expression of FLOWERING LOCUS T from Arabidopsis thaliana induces precocious flowering in soybean irrespective of maturity group and stem growth habit. Planta 233:561–568. Cerca con Google

Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. PNAS 103:19581–19586. Cerca con Google

Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. PNAS 100:6263-6268. Cerca con Google

Yang WN, Jiang DH, Jiang JF, He YH (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. The Plant J. 62:663–673. Cerca con Google

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell 12:2473-2483. Cerca con Google

Yanofsky M, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346:35 – 39. Cerca con Google

Yoo SK, Chung KS, Kim J, Lee JH, Hong SM, Yoo SJ, Yoo SY, Lee JS, Ahn JH (2005) CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol. 139:770–778. Cerca con Google

Yu CW, Liu X, Luo M, Chen C, Lin X, Tian G, Lu Q, Cui Y, Wu K. (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiol. 156:173–184. Cerca con Google

Zaratiegui M, Irvine DV, Martienssen RA (2007) Noncoding RNAs and Gene Silencing. Cell 128:763-776. Cerca con Google

Zhang X, Bernatavichute YV, Cokus S, Pellegrini M, Jacobsen SE (2009) Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 10:R62. Cerca con Google

Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2007) Genome-wide high-resolution mapping and functionalaAnalysis of DNA methylation in Arabidopsis. Cell 126:1189-1201. Cerca con Google

Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers and interdependence between methylation and transcription. Nat. Genet. 39:61-69. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record