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Abstract, Resune, Abstract

An algebraic p-adic L-function for ordinary families

Abstract. In this thesis, we construct algebraig-adic L -functions for families of Galois
representations attached tg-adic analytic families of automorphic representations ugg the
formalism of Selmer complexes. This is achieved mainly thugh making a modi cation of
the Selmer complex to ensure that we deal with perfect compks and proving a control
theorem for the local Euler factors at places not lying aboye The control theorem for local
Euler factors is obtained by studying the variation of monomy under pure specializations
of p-adic families of Galois representations restricted to demposition groups at places of
residue characteristic di erent fromp. This allows us to prove a control theorem for the
algebraicp-adic L -functions that we construct for Hida families of ordinary cap forms and
ordinary automorphic representations for de nite unitary groups. For the Hida family of
ordinary cusp forms, we construct a two-variable algebraig-adic L-function and formulate
a conjecture relating it with the analytic p-adic L-function constructed by Emerton, Pollack
and Weston. Using results due to Kato, Skinner and Urban, we pre this conjecture in
some special cases.

Keywords. p-adic L-functions, Selmer complexes, families of Galois repretions,
purity, weight-monodromy conjecture.

Une fonction L p-adique algebrique pour les familles ordinaires

Resune. Dans cette these, nous construisons des fonctiohgp-adique algebriques pour
les familles de repesentations galoisiennes attacheesix familles p-adique analytiques de
repesentations automorphes en utilisant le formalismea$s complexes de Selmer. Ce esultat
est obtenu principalement en e ectuant une modi cation des @mplexes de Selmer pour
sassurer que nous traitons avec des complexes parfaits etndntrer un treoeme de contrble
pour les facteurs d'Euler locaux aux places en dehors gde Le treoeme de contrble pour
les facteurs d'Euler locaux est obtenu par ktude de la vaation de la monodromie sous
specialisations purs des famillegp-adiques de repesentations galoisiennes restreintesxau
groupes de cecomposition en dehors de Cela nous permet de cemontrer un threoeme de
contrble pour les fonctions algebriqguegadique que nous construisons pour les familles de
Hida de formes paraboliques ordinaires et les repesentatis automorphes ordinaires pour les
groupes unitaires e nies. Pour les familles de Hida de fores paraboliques ordinaires, nous
construisons un fonctiorL p-adique algebrique de deux variables et formulons une caujture
la relianta la fonction L p-adique analytique construite par Emerton, Pollack et Wesmn.
En utilisant des esultats de Kato, Skinner et Urban, nous motrons cette conjecture dans
certains cas particuliers.
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Mots-clefs. Fonctions L p-adique, complexes de Selmer, familles des repesentaso
galoisienne, purek, conjecture de monodromie-poids.

Un funzione L p-adiche algebriche per le famiglie ordinario

Abstract. In questa tesi, costruiamo funzioniL p-adiche algebriche per le famiglie di
rappresentazioni di Galois associate a famigligadiche analitiche di rappresentazioni au-
tomorfe, utilizzando il formalismo dei complessi di Selmer Questo risultato e ottenuto
principalmente attraverso una modi ca del complesso di Sebn, attuata in modo tale da
garantire che i complessi studiati siano perfetti e attrawvgo un teorema di controllo per i
fattori di Eulero locali nei primi diversi da p. Il teorema di controllo per fattori di Eulero
locali si ottiene studiando la monodromia al variare dellepgcializzazioni pure di famiglie
p-adiche di rappresentazioni di Galois ristrette a gruppi dilecomposizione a primi di fuorp.
Questo ci permette di dimostrare un teorema di controllo pdunzioni L p-adiche algebriche,
costruite per famiglie di Hida di forme cuspidali ordinarie eappresentazioni automorfe or-
dinarie per i gruppi unitari de niti. Per la famiglia di Hida di forme cuspidali ordinarie,
costruiamo una funzioneL p-adica algebrica di due variabili e formuliamo una congetta
che stabilisca il legame con la funzionk p-adica analitica costruita da Emerton, Pollack e
Weston. Utilizzando i risultati di Kato, Skinner e Urban, dimastriamo questa congettura in
alcuni casi particolari.

Parole chiave. Funzioni L p-adiche, complessi di Selmer, famiglie di rappresentazion
di Galois, purezza, congettura di peso-monodromia.
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Introduction

Let K1 =K be aZ,-extension of a number eldK and let K Kq K, denote the
sub-extension of degrea. Then K.Iwasawa showed inlllva59] that the exact power ofp
dividing the order of the class groupX,, of K, is given forn large enough by the formula

(0.0.2) n+p"+

where 0, 0 and are integers. Immediately thereafter, J.-P. Serre noticed {Ser95]
that this result followed from two general principles: rst the inverse limit X, of the X,
with respect to the norm map is a nite type torsion module ove = Zy[[Gal(K; =K)]] (a
regular ring of dimension 2); second, there exists a specetement! ,, such that X, is equal
to X, =!',. As the order of the class group is linked via the Dirichlet ckss number formula
to special values of the zeta function, these results sugg#st the variation of class groups
in Z,-extensions could be linked withp-adic L-functions and indeed, the Kubota-Leopoldt
zeta function was given a new construction in terms of cyclomic Z,-extensions inllwa69 .
In [Maz72], B. Mazur proved that the formula (0.0.]) admitted an extesion to the growth
of the Tate-Shafarevich group of abelian varieties idy-extensions and he proposed a bold
generalization of these facts to the Galois cohomology ofethtale cohomology of varieties
over Q. However, already in the context of abelian varieties, a remable fact is that the
control theorem relating the Selmer group over to the Selmegroup overZ[Gal(K ,=K)] is
true only up to error terms of local origins, the error terms gplaces abovep being sometimes
unbounded withn. The analogy mentioned above wittp-adic interpolation of special values
of L-functions can perhaps account for the strange behavior @t just as one should not
expect to be able to interpolate special values af-functions without rst removing an Euler
factor at p, one should presumably not expegp-adic interpolation of Galois cohomology
modules to proceed smoothly without modifying the conditio at p. The relevance (if any)
of error terms at other places, on the other hand, remained rsierious.

In the late 80s and early 90s, several theoretical improvemte completely changed our
approach to these classical questions. First, R. Greenbergpposed in|Gre89, Gre91 | that
the appropriate context for the study ofp-adic variation of special values of -functions and
Selmer modules was the universal deformation of a Galois repentation of geometric origin.
Second, the conjectures formulated by Bloch, Kato irBK90, Kat93 | considerably deep-
ened our understanding of the behavior of special valuesloffunctions. In particular, they
made clear that special values df -functions should be linked to some integral basis in the
determinant of the Galois cohomology complex of motives witcoe cients. Seen from this
dual perspective, the proper extension of lwasawa's and Mas classical control theorem
should be that specialization of some integral basis in theeterminant of the Galois coho-
mology complex of motives with coe cients in universal defomation rings at an arithmetic
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point x should be equal to the integral basis of the determinant of éhGalois cohomology
of the motive overQ corresponding tox coming from the conjectures on special values of
L-function. As in [Kat04 ], one can check for instance that this formulation appliedat the
motive Q(1) recovers exactly lwasawa's control theorem and that norijme ~ 6 p can make
a contribution to the error term in the setting of Z,-extensions. However, in the simplest
example ofp-adic universal families of rank 2 motives, that igp-adic families of ordinary
eigenforms parametrized by the Hida-Hecke algebra, even a @se formulation of the con-
jectural form of the control theorem has been heretofore laiag.

The reasons for this are twofold. To start with, universal dermation rings are typi-
cally not known to be regular rings, so complexes of Galoishmmology ofp-adic families
with coe cients in universal deformation rings are usuallynot known to be perfect com-
plexes, precluding the possibility of taking unconditiondy their determinants. Even in the
more classical formulation of Greenberg@re91]), one needs to consider the characteristic
ideal of some modules and this requires at least the ring to lm@rmal. This for instance is
presumably why there is no de nition of an algebraic count@art to the analytic p-adic L-
function for Hida families in EPWO06 | by Emerton, Pollack, Weston. Moreover, even when
the complexes are known to be perfect, the error terms ubigous in control theorems since
[Maz72] can be very hard to explicitly control in the universal defanation. This happens
for instance in works by Fouquet, Ochiai (Och06] FO12 ]) and is related to the variation
of the inertia invariants in families.

In this manuscript, we prove a perfect control theorem at attimetic points on a branch
of the Hida family for GL,(Q) and de nite unitary groups with no assumption on the nature
of the universal deformation ring, and thus construct uncatitionally an algebraic p-adic L -
function for the Galois representations attached to these Ha families. The fundamental tool
allowing this progress is the recognition of the crucial relplayed by the weight-monodromy
conjecture in the variation of special values df -function (an idea which we learned from
Nekow [INek06 ] and Ochiai [Och06]). The philosophy behind the conjectures of Bloch,
Kato, Fontaine and Perrin-Riou (BK90, FPR94 ) is that special values ofL-function
should encode extension of motives which are not too much raed. This implies that
the local conditions at™ 6 p conjectured to appear in the de nition of algebraicp-adic
L-functions will involve rami cation. The weight-monodromy conjecture allows to relate
inertia invariants of pure modules with eigenvalues of therBbenius morphisms and this
allows at the same time to de ne unconditionally an algebraip-adic L-function as well as
proving it satis es a control theorem at arithmetic points.

Statement of results

In this section, we summarize the results obtained in chaptd], [3,[4.

Purity for big Galois representations. Let p be a rational prime andK denote a
nite extension of Q- with * 6 p. Let R be a characteristic zero domain containing, as a
subring. Denote the fraction eld of R by K and x an algebraic closureK of K. Denote
the integral closure ofR in K by Og. Note that any ring homomorphism from R to an
algebraically closed eld of characteristic zero extendso Og[1=p|, we X such an extension

XVi



and denote itby by abuse of notation. Observe thaQ is contained insideO[1=p. Suppose
that Gk = Gal(K=K ) acts on a freeR-module T such that its action is monodromic {e.,
a nite index subgroup of I ¢ acts through its Z,-quotient via the exponential of a nilpotent
matrix, see De nition [[.1.7). Let M denote the associated monodromy ltration onT .
Denote the Gk -representationT g K by V. For a Z,-algebra homomorphism : R! Gp,
the Gy -representationT . Qp is denoted byV . The Weil-Deligne parametrization ofV
(resp. V) is denoted by WD(V) (resp. WD(V )). For a Weil-Deligne representationV, its
Frobenius semisimpli cation is denoted byv F-ss,

Theorem A (Purity for big Galois representations) Suppose that : R! Qp is a Zp-
algebra homomorphism such that th& -representationV is pure of weightw (see ¥1.0.1]
or de nition 1.1.47). Let p denote the kernel of . Then the following hold.

(1) The terms and gradings oM become free oveR, after localizing them atp and
for any i 2 Z, the map induces isomorphisms
M R: Gpl M;i; GriM R: Gp' GriM;
of Wk -modules.
(2) There exist
(a) anintegerJ 1,

(b) integers0  t; < <tjy,
(c) an integer 1,

(d) () unramied characters 1; ;| Wk 1O
(i) irreducible Frobenius-semisimple representations
1- WK ! GLdl(G), sl WK ! GLdl (6)
with nite image and
(e) integersn; Ofor1 i [I;1 j J such that the following hold.

There are isomorphisms of Weil-Deligne representations

MM
WD(V)™ S (i i)
i=1 j=1
M M )
WD(V )7 sp( (i N

:Q "
i=1 j=1 :

The representation (i i) W I GLy (ﬁp) has image contained in
GLg(Q) forall 1 i 1.
Furthermore, the integersl; J;t;; n; and the representations ;; ; depend onV, but
not on

(3) The -specialization of the central irreducible summands &/D(V)" s (considered
over Og[1=p]) are strictly pure of weightw.

(4) The polynomial Eul(V) * has coe cientsin Ok\R , , its -specialization isEul(V ) .

Xvii



(5) The Ry -modules.TpIK , To :Tp'K are free and the map induces an isomorphism
T R Qp'T ¢ Rr,; Q' V'*:

Consequently, the complexT '« ! T '«] concentrated in degree 0, 1 descends
perfectly to the complexfV '« ! ! V'%] concentrated in degree 0, 1, i.e.,

Tt ] e @y v Vg

For a more general version, we refer to theorem 1.p.4 whichtli® main result of chapter
[A. The main upshot of purity for big Galois representationssithat using this one can prove
control theorems at pure specializations for (the local femrs outside p of) the algebraicp-
adic L-functions that we construct in chaptef 3[ 4. Using the same @ and Ber13] Lemma
5.5], we also hope to construct an algebrageadic L -function along irreducible components of
eigenvarieties. In fact we expect that using purity of big Gais representations, an algebraic
p-adic L-function can be constructed for any family of Galois represtations and pseudo-
representations interpolating Galois representations e\'/ﬁp whose restriction to local Galois
groups at places not dividingp are pure. We refer to the introduction of chaptef ]l for a
detailed discussion about an appropriate context of purityor big Galois representations, a
sketch of its proof, consequences and explanation of theviability of the hypothesis that
R is a domain.

Algebraic p-adic L-functions for the Hida family for GL,(Q). The results obtained
in chapter[3 are summarized here. In this chapter, we constiualgebraicp-adic L-functions
LS'%r( ); LSL?G,( ); ngﬂato( ). Using and purity of modular Galois representationsye
show that they satisfy control theorems at arithmetic spealizations (under some hypothe-
sis). We also relate our construction with Greenberg's sti Selmer group (using/Kat04 |,
Theorem 17.4],[Nek06, Theorem 7.8.6]). Now we state these results referring to giter [3
for details.

Let R(a) denote the quotient of the Hida-Hecke algebrh$™ by a minimal prime ideala.

Suppose that the composite map
h® R(a)! Frac(R(a))

is minimal in the sense offlid88a |, p. 317]. LetT (a) denote Hida's big Galois representation
of Gq.s over R(a) where S denotes a nite set of places 0@ containing p and the place at
in nity. Assume that the residual representation™ associated with theGq.s-representation
T (a) is absolutely irreducible (this is assumptior 3.2]4). Foan arithmetic specialization

of R(a), put

O =Im
and let T denote theGgq.s-representationT (a) gre). O .
Let
T(@w = T(a)Pz,Z,[[Gal(Q: =Q)]I;
T; w = T Zp Zp[[Gal(Ql :Q)]]
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denote the cyclotomic deformation off (a) and T respectively whereQ; denotes the cy-
clotomic Z,-extension ofQ. Put

o =0 gz Z[[Gal(Q: =Q)II;
R(a)w = R(a)bz,Z,[[Gal(Q: =Q)]I:
In de nition we de ne LE% (T (@)w), Lids (T (@), Ligao (T@w), Lo (T:w),
LSL?Gr(T; w) Lg‘!?(ato (T.w) where denotes an arithmetic specialization oR(a).

Theorem B. Let be an arithmetic specialization ofR(a). Then the isomorphisms in

propositions[2.1.2[2.2.1] 2.2.3 induce an isomorphism
LS';%r(T (@w) RrR@w; o = LS';%r(T; w)
when~ is p-distinguished. They also induce isomorphisms
L (T@w) r@w: o = Live(T:w):
Lgl;?(ato (T@w) Rr@w; o = '—S';iato (T: w):

Theorem C. Let be an arithmetic specialization oR(a) such thatO is a DVR. The
Selmer complexR ¢ (T. ) de ned with respect to Greenberg's local condition (see de nition

) is a perfect complex of o -modules andthe map , ( ; ; ) (asin equation(2.1.4))

1
induces an isomorphism betweehg'%r(T; w) and det ; R ¢(T.\) . For any integer
i< landi> 2

qul (T, IW) = O
Suppose thatp does not divide the level of the ordinary form associated with Then
192(T. ) is a torsion o -module and§}(T. ) is zero. The surjective map

BYA W) SeR’
as in Lemmal3.4.4 induces an injective map |
(0.0.2) Dp Sef’, ! BAT.w)
with nite cokernel. Consequently we get a canonical isomorphism
L& (T:w) = (char , De(SeR’,);0)

using equations(2.1.3), (2.1.5) and (8.4.2).

The above two theorems correspond to theorem 3.3.7 (refp4.3). The crucial ingre-
dients of the proof are theorenj 1.2]4 and purity of modular Geis representations (resp.
[KatO4 | Theorem 17.4],INek06, Theorem 7.8.6]).

In ¥3.5, we show that all the cohomologies of the compl&, (T (a),) are zero, except
possibly the second cohomology, which is torsion ov&(a),, (proposition[3.5.6). This result
allows to construct atwo-variable algebraig-adic L-function L pa'g(a) 2 Frac(R(a),w) whose
image under modp reduction generates the characteristic ideal of the Ponagin dual of the
strict Selmer group Sﬁrp;lw for p varying in a dense subset of Sp&' (R(a)) ( p denotes an

arithmetic specialization ofR(a) whose kernel ig). On the other hand, these characteristic
ideals are generated by the analytip-adic L-functions off & (computed with respect to a
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canonical period), which are interpolated by an elemerit’"(a) of R(a)w (as constructed in

[EPWOG6 ]). This suggests a link betweeh pa'g(a) and L7"(a), which leads to the conjecture
below.

Conjecture 1. The elementL pa'g(a) of Frac(R(a)\v) is an element ofR(a)i™ and

L 29(a)R(a)iy = L3"(@)R(@)n

lw Iw

In the aboveR(a)™ denotes the integral closure oR(a) in its fraction eld and R(a)int
denotes the completed tensor produdR(a)™ bszp[[Gal(Ql =Q)]]. Assuming Greenberg's
conjecture on vanishing of -invariants of modular forms (with absolutely irreducible ad

p-distinguished residual Galois representation), we prowis conjecture in theoreni 3.5.22.

Algebraic p-adic L-functions for the Hida family for de nite unitary groups.

The results obtained in chaptef 4 are summarized here. In thichapter, we construct alge-
braic p-adic L-functions LSL?Gr( ): L‘;";?(ato ). Using and purity of Galois representa-
tions associated with automorphic representations (whicre of dominant weight and stable)
for de nite unitary groups, we show that they satisfy contré theorems at arithmetic special-
izations of regular dominant weight whose associated Gadaiepresentations are crystalline
at each place lying above and associated automorphic representations are stable. Nowe
state this result referring to chapter 4 for details.

Let R(a) denote a partial normalization (as de ned in¥4.3) of the quotient of the Hida-
Hecke algebran, ;Sg’(U(pl ); Ok ) by a minimal prime ideala (hereK denotes a nite exten-
sion of Qp). Let T (a) denote Hida's big Galois representation oGg.s over R(a) where S
denotes a nite set of places of a CM eld- containing the places above and the places at
in nity. Assume that the residual representation™ associated with theG.s-representation
T (a) is absolutely irreducible (this is assumptionf 4.3]1). Foan arithmetic specialization
of R(a), put

O =1Im
and let T denote the Ge.s-representationT (a) ra: O . Denote the automorphic repre-
sentation attached to by

Let

T(a)lw
T;lW

T(a) z, ZpllGal(F1 =F)]I;
T 2z, Zp[[Gal(Fy =F)]]

denote the cyclotomic deformation off (a) and T respectively where~; denote the cyclo-
tomic Z,-extension ofF. Put

o =0 gz Zy[[Gal(F, =F)]]:

In de nition we de ne L% (T (@), Laao (T (@), Lot (Tiw), La%ao (T:w) Where
denotes an arithmetic specialization oR(a) of regular dominant weight such thatV jg,
is crystalline for any placew of F lying above p. By lemma(4.3.5, the kernels of such

specializations form a dense subset of SpR¢Q)).

Theorem D. Let be an arithmetic specialization oR(a) of regular dominant weight such
that is stable andV jg,., is crystalline for any placew of F lying abovep. Then the
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isomorphisms in propositions 2.1J2, 2.2]1, 2.213 induce isomorphisms
Lo (T@w) r@w: o = Liog (Tim):
Lgl;gKato (T (@w) R@w; O = LS!gKato (T w):

The above theorem corresponds to theorein 4.B.6. The cruciagredient of its proof is
theorem[1.2.4 and purity of Galois representations assotgd with the automorphic forms
(which are of dominant weight and stable) for de nite unitay groups. Note that though
such Galois representations are not known to be motivic, i®in92 |, Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic neresentations, for example the
weight-monodromy conjecture, which is known byQJar12].

Organization

This thesis is arranged in four chapters.

The rst chapter is the technical heart of this manuscript. Hee we develop a tool
(theorem[1.2.4) to understand the variation of the inertiarivariants (as a Frobenius module)
in a family, which we call purity for big Galois representations This describes the Weil-
Deligne parametrization of a pure specialization of a big G&s representation in terms
of the Weil-Deligne parametrization of the big Galois repsentation and thus describes
the variation of the inertia invariants at pure specializatons. This allows to prove control
theorems for (the local factors outside of the) the algebraic p-adic L-function that we
construct in chapter[3,[4.

The second chapter recalls the notion of Selmer complexegldhe notion of determinant
functors as introduced in[Nek06,) KM76 | respectively.

In the third chapter, we construct algebraicp-adic L -functions along irreducible compo-
nents of the Hida family of ordinary cusp forms and prove thathey satisfy perfect control
theorems at arithmetic specializations. We also relate owonstruction with Greenberg's
strict Selmer group. In the nal section, we conjecture a lik between our construction and
the analytic p-adic L-function as constructed in [ EPWO0G6 .

In the fourth chapter, we construct algebraigp-adic L-functions along irreducible com-
ponents of the Hida family for de nite unitary groups and proe that they satisfy perfect
control theorem at arithmetic specializations which are akgular dominant weight and whose
associated Galois representations are crystalline at alié places above.

Notations

For each eld E of characteristic zero, we x an algebraic closurE once and for all and

denote the absolute Galois group GaE=E) by Ge. We also x embeddingsC *-Q )’ Qp
once and for all.

Let F be a number eld andv denote a nite place ofF. Then the decomposition group
and inertia group of F at v will be denoted by Gg,, |¢, respectively. When no confusion
arise, they will be denoted byG,, I, respectively. The geometric Frobenius element &, =I,
is denoted by Fi,.

Throughout this manuscript, the reciprocity isomorphism 6 local class eld theory is
normalized by letting uniformizers correspond to geometriFrobenius elements.
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CHAPTER 1

Purity for big Galois representations

1.0. Introduction

1.0.1. Weight-Monodromy Conjecture. Let p be a rational prime, K be a nite
extension ofQ- with ~ 6 p. Denote the residue eld of the ring of integers oK by k. Let
denote a lift of the geometric Frobenius taGx . Suppose thatV is a nite dimensional
continuous representation ofGg over Gp. Then the Grothendieck monodromy theorem
(Theorem[1.1.25) gives a nilpotent endomorphisml of V, called the monodromy of V,
attached to which there is an increasing ItrationM onV which is stable under the action
of Gk and is called themonodromy lItration . The Gk -representationV is said to bepure of
weightw 2 Z (pure for short) if the characteristic roots of on Gr;M are #k-Weil numbers
of weightw+ i. The Weight-Monodromy Conjecture (henceforth WMC) stateshe following.

Conjecture 1.0.1 ([llI94]). Let X be a projective smooth variety oveK. Then for any
integer i, the Gy -representationH,, (X5.; Qp) is pure of weighti.

The Galois representations associated with automorphic peesentations are expected
to come from geometry and hence believed to be pure. The WMC isidwn for many
automorphic Galois representations, se€ar86, Treoeme A], [[Bla06, Theorem 2], HTO1,
TYO7, $hill, |Carl2, Sch12, Clo13 | for example.

1.0.2. Local Euler factors.  For a Weil-Deligne representatiorv = (r; N ) of Wi over
an algebraically closed eld of characteristic zero, its bcal Euler factor is de ned as
Eul((npN); X)=det(l X jyen=) 12 ( X)
whereV '« N=0 denotes the subspace &f on whichlk acts trivially and N is zero ¢f. [Tay04 |,
p. 85]).

For a Galois representation : Gal(E=E) ! GL(V) of the absolute Galois group of a
number eld E on a nite dimensional vector space/ over an algebraically closed eld of
characteristic zero, its local Euler factor at a nite placev of E not dividing p is de ned by

Euly(;X ) =Eul(WD( Vig,); X) 2 ( X):

1.0.3. Families. Following works of Bellasche, Chenevier, Coleman, Hida, Mar et. al.,
it is believed that automorphic Galois representations | in families. In precise terms, we
expect to have a tuple

Fo=f ;E;p;R;Spcf"™(R);Tg
which we call afamily, where

(1) is a set of automorphic representations ofG(Ar) (where G denotes a reductive
group andAr denotes the ring of ackles of some number el#) and to each 2 ,

1



there is ap-adic Galois representation ., : Gg ! GLn(ép) associated with it (the
integern 1 does not depend on),

(2) E is a number eld, p is a rational prime,

(3) R is a characteristic zero domain containing, as a subalgebra, usually of large
Krull dimension,

(4) Spcf™ (R) is a non-empty subset of Hom.a(R; Q,) and there is a map

Spcf™M(R)1 ;T

(5) T is a freeR-module equipped with an action of the absolute Galois grougeg =
Gal(E=E) of E and for any 2 SpcP™ (R), the Gg-representationsT r. Q, and

- are isomorphic,
(6) for any nite place v of E not dividing p, the representationT js, iS monodromic

(see de nition[1.1.1).

Let K denote the fraction eld of R. We x an algebraic closureK of K. The integral
closure ofR in K (resp.K) will be denoted by Ok (resp.Og). By V, we will denote the
Ge -representationT g K. For an element of Homz, a4(R; Qp), we set

V =T R: Gp:
In the following v will always denote a nite place ofE. For such a place not dividingp,
we put
Spc("®(R) := f 2 Homz, ag(R;Qp)jV je, is pureg:

We saythe WMC holds forF, at a nite place v of E not dividing p if for any 2 , the
G,-representation . jg, is pure. We saythe WMC holds forF, if the WMC holds for F,
at all nite places of E not dividing p. Note that if the WMC holds for F, then

SpCFrith (R) Spceure(R)
for all v not dividing p.
Hida families of ordinary automorphic representations forarious reductive groups pro-

vide ample examples of families. In chaptéf 3 arid 4, we willegsider the Hida families for
GL,(Q) and de nite unitary groups.

For notations used in the example below, we refer to chapter 3
Example 1.0.2. Hida theory of ordinary forms forG = GL ,(Q) shows that
Fo=f ;Q;pR;SpcP™(R);Tg
is a family whereR = R(a) = h¢“=a, Spcf"™ (R) denotes the set of arithmetic special-
izations of R(a), denotes the set of ordinary automorphic representatios of GLy(Q)
corresponding to the ordinary eigen cusp forms lying on theomponent Sped($=a) of

Specp$™), T denotesT (a). The set Spct™ (R) of arithmetic specializations is dense in
Homz,-aig(R; Qp). Moreover the WMC is known for this family (see Prop 3.1]1).

We refer to chapter[ 4 for the notations and terminologies uden the example below.
2



Example 1.0.3. Let F be a CM eld and F* be its maximal totally real sub eld. Let G
be the de nite unitary group de ned over F* (as in ¥4.1.1). Letp be a prime,R = R(a),
Spcf™ (R) denote the set of arithmetic specializations dk(a), denote the set of ordinary
automorphic representations o6G(Ag+ ) of dominant weights corresponding to the arithmetic
specializations ofR(a), T denoteT (a) as in chapter[4. Then

Fo=f ;F;p;R;SpcfF™(R);Tg

is a family. The set Spd™ (R) of arithmetic specializations is dense in Hom_a|g(R;6p).
By [Carl2], Theorem 1.2], WMC is known for the arithmetic specializatios of T which are
of dominant weight and whose associated automorphic repeggation is stable.

1.0.4. Local Euler factors in families. Given a family F,, we may wonder if the
local Euler factors of its specializations are interpolateby the local Euler factors ofV, i.e.,
we may ask if

Eul,(V;X) *20k[X];  (Euly(V;X))=Eul ((V ;X)

holds for allv-pand 2 Homzp_a|g(R;6p). First of all, this need not hold. For example, if
G, acts unipotently on T, then its rank of | ,-invariants, i.e., the degree of Eul(V; X) 1, is
equal to the dimension of null space of the monodromy @fjs,, which might increase under
a specialization of R, making the degree of EyV ;X) ! larger than that of Eul,(V; X) 1.

However the arithmetic specializations oR are of our interest and we may ask if the
local Euler factors of the arithmetic specializations df, are interpolated by the local Euler
factors of V, i.e., if

(Eul-Interp) Eul,(V;X) 120k[X];  (Euly(V;X))=Eul (V ;X)

holds for allv -pand 2 Spcf™ (R). By the theorem below, this is true when the WMC
holds for F .

1.0.5. Main result. Let R be a characteristic zero domain containing, as a subal-
gebra. Denote the fraction eld ofR by K and x an algebraic closureK of K. Denote
the integral closure ofR in K by Og. Note that any ring homomorphism from R to an
algebraically closed eld of characteristic zero extenddo Oy [1=p], we X such an exten-
sion and denote it by by abuse of notation. Observe thaQ is contained insideOx{1=p].
Suppose thatGk acts on a freeR-moduleT such that its action is monodromic (.e., a nite
index subgroup ofl x acts through its Z,-quotient via the exponential of a nilpotent matrix,
see De nition[1.1.]). LetM denote the associated monodromy ltration onT. Denote
the Gk -representationT g K by V. For a Z,-algebra homomorphism : R! Gp, put
V =T g, Q. SinceT is monodromic,V is also monodromic. Denote the associated
monodromy ltration on V by M. .

Theorem 1.0.4 (Purity for big Galois representations) Suppose that : R ! Qp is a
Zy-algebra homomorphism such that th& -representationV is pure of weightw. Let p
denote the kernel of . Then the following hold.

(1) The terms and gradings oM become free oveR, after localizing them atp and
for anyi 2 Z, the map induces isomorphisms

IVli R; épl I\/I;i; Gril\/I R; Gp' GriM;
3



of Wk -modules.

(2) There exist
(@) anintegerJ 1,
(b) integers0  t; < <tj,
(c) aninteger| 1,

(d) (i) unramied characters q; ;| Wk 1O
(i) irreducible Frobenius-semisimple representations
12 Wi ! GLg,(Q); 5 1 Wk ! GLg (Q)
with nite image and
(e) integersn; Ofor1 i ;1 | J

such that the following hold.
(I) There are isomorphisms of Weil-Deligne representations

Fr-ss M M njj
WD(V)Tss sp (i )
i=1 j=1
Fr-ss M M Nij
WD(V )" > S (i g
i=1 j=1
(I) The representation (i i) Wk I GLy, (Qp) has image contained in

GLy(Q) forall1 i I.
Furthermore, the integersl; J;t;; n; and the representations ;; ; depend onV, but
not on

(3) The -specialization of the central irreducible summands (see de nitidn 1.1]24) of
WD(V)™ s (considered overOg[1=p]) are strictly pure of weightw.

(4) The polynomial Eul(V) * has coe cientsin Ox\R , , its -specialization isEul(V ) *.

(5) The R, -modulesT,*, T, =T,¥ are free and the map induces an isomorphism
p p p p
T R, Qp'T )¢ ry: Qp' VX
Consequently, the complefT '« ! T '«] concentrated in degree 0, 1 descends

perfectly to the complexVv '« ! ! V'€ ] concentrated in degree 0, 1, i.e.,

1

[TlerT? 'K]LR;GP' \ANTERALY

For a more general version, we refer to theorem 1.2.4 whichtiee main result of this

chapter. Its proof is obtained by using theorem 1.2.1, 1.2.2.2.3 (see equation[ (1.2.1) for
the logical order of these results). We establish these fotireorems from a sequence of ten
main propositions (proposition 1.3./1, 1.3|4, 1.3.5, 1.4/12.4.3,1.4.5 1.4l6, 1.5.1, 1.5.3, 1.6.8)
among which propositior] 1.3}4 is the crux of the proof, whictve call purity for big Galois
representations Since the full strength of propositior] 1.314 is realized itheorem[1.2.4, we
will also refer to theoren{ 1.2.4 bypurity for big Galois representations The (philosophical)
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reason behind such a terminology is explained below.

By theorem[1.2.4, the shapes of the indecomposable summaatithe Frobenius semisim-
pli cation of the Weil-Deligne parametrization of a pure sgcializationV of the big Galois
representation T determines the shape of the indecomposable summands of WIJ{S.
Conversely, the shape of the indecomposable summands of WIF{s determines the shape
of WD(V )™s for any pure specialization . Moreover for such , the central irreducible
summands (see de nitior] 1.1.74) of WD{ )™* are interpolated by the central irreducible
summands of WDY) s by the same theorem. On the other hand, the purity of a Weil-
Deligne representation oveﬁIo Is solely determined by its central irreducible summands.

So by theorem| 1.2}4, the central irreducible summands of WEJ™s* interpolates the
central irreducible summands of WDY )™, i.e., the purity determining data of WD(V )™ss
for any pure specialization of R. For this reason, we call this theorenpurity for big Galois
representations

1.0.6. Consequences. We explain some consequences of theorem 1.0.4.

1.0.6.1. Algebraic p-adic L-functions. Theorem[1.2.4 is the technical tool that we de-
veloped and successfully use in chaptgf B 4 to construct atgebraic p-adic L-function
along irreducible components of Hida families of ordinary fims for GL,(Q), de nite unitary
groups. Using similar techniques andBerl3) Lemma 5.5], we also hope to construct an
algebraicp-adic L -function along irreducible components of eigenvarietietnh fact we expect
that using purity of big Galois representations, an algebraip-adic L-function can be con-
structed for any family of Galois representations and pseoerepresentations interpolating
Galois representations ove@p whose restriction to local Galois groups at places not diviialy
p are pure.

1.0.6.2. Rationality in automorphic families. Given a family F, satisfying the WMC, the-
orem(Z)(I) shows that the indecomposable summandsfal/D(V )™ -ssg 25pcin (r) are
interpolated by Weil-Deligne representations de ned oveDg[1=p| and by theoren{ 1.0.4(2)(Il),
the specialization of any of these representations undenan has image contained in Gi(Q)
for some integerd (depending on the representation). In particular, the strature of the
Frobenius semisimpli cation of the Weil-Deligne parameieations of arithmetic specializa-
tions are rigid in a family satisfying the WMC.

1.0.6.3. Euler factors. Given any family F, satisfying the WMC, we have
Eul,(V;X) Y2 0k[X];  (Bul,(V;X))=Eul (V ;X)

forall v-pand 2 SpcP™ (R) by theorem[1.0.4(4),i.e., (Eul-Interp) holds.
Remark 1.0.5. For the Hida family as in example 1.0,2, (Eul-Interp) is prove in [Nek06].

Remark 1.0.6. Our proof of this theorem does not assume

SpcP®(R) = f 2 Homgz,.ag(R;Qp)jV jo, is pureg
5



to be dense in Horgp_a|g(R;6p). Note that given a family F, for which Spcf™ (R) is dense

in Homz,.ag(R; Q,), using Hilbert's nullstellensatz, [Eul-Interd) can be preed for in a
dense subset of Spf" (R).

1.0.7. Sketch of the proof. The main idea of the proof of purity for big Galois rep-
resentations (theoreni 1.0]4) lies in the proof of propositi [1.3.4. For simplicity, assume
that ¢ acts unipotently on T. Then this proposition says that thecentral elementsof
WD(V )Fss are the -specialization of thecentral elementsof WD(V)™S whenV is pure.

Its proof is outlined in ¥1.3.2.1. We explain how this proposition implies theorefn @4(2).

By the conjugation relation of the Frobenius in the tamely reni ed Galois group of K,
factors of powers of # appear in the elements of the multisetCR of the characteristic
roots of on V according to the sizes of the Jordan blocks of the monodromy. ter a
ﬁp-specialization , the monodromy might degenerate and possibly go to zero magithe
Jordan blocks of (N) of size 1 1. However, these factors of powers ofk¢present in the
elements of the multisetCR remain intact under such a specialization and the speciadition
of this multiset gives the multiset CR of the characteristic roots of onV . WhenV is
pure, its monodromy can be read o from the amount of factorsfopowers of #k in the
elements of the multisetCR compared to its central elements.

Since the central elements of WD({ )™ are the -specialization of the central ele-
ments of WD(V)Fss (by proposition [1.3.4), the indecomposable summands of WID()™-ss
are forced to be interpolated by the indecomposable summandf WD(V)™S (by lemma

1145).
This gives theoren{ 1.0J4(2). The proof of propositign 1.3i4 outlined in ¥1.3.2.1.

1.0.8. Inevitability of the hypothesis that R is a domain. In the proof of theorem
[1.2.4, we crucially use (through proposition 1.3.1) the hygthesis that the ringR is a domain.
We cannot expect to prove theoremy 1.2.4 when the rinB is replaced by a more general
ring, an example being a ring with nitely many minimal primes.

In fact a crucial step in our proof of theorenh 1.2]4 is to pin den the factors of powers #
in the characteristic roots of on the semistable part ofV and the amount of these factors
in them is governed by the size of the Jordan blocks of the monodny of the semistable
part of V. When the coe cient ring R of T is not a domain, then the shapes of the Jordan
blocks of the images of its monodromy in the stalks of Sp&) at the generic points need
not be independent of the generic points. Thereby making itripossible to pin down the
factors of powers of & in the characteristic roots of on the semistable part ofV in a
reasonable manner. In fact one can provide a counterexamgeen in the very simple case

whereR = Qu[[X]]  Qpl[X1]  Qpl[X]] by taking

0(0;0;0) (X;0;0)  (0;0;0)
N = @Q0;0;0) (0;0,0) (0;X 1,0)A;
(0;0,0) (0;0;,0) (0;0;0)
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letting |k act unipotently on T = R3 (consequentlyV is its own semistable part) and act
on T via a matrix

0 1
(111 (060  (0,0,0)
@ (0;0,0) (2 20 2) (0;0,0) A 2 GLs(R):
(0;0,0)  (0;0,0) (3 3 3)
By the Iwasawa relation (as in equation[(1.1]1)), we are foed to have

1 —

1= 20 7 2= 3q13

Let

a; = f0g  QplX]l  QplIX1L;
a = Qpl[X1] f 0g QulIXIL;
az = Qpl[X]]  Qpl[X]] f Og
denote the minimal primes ofR. Note that the Jordan decomposition of the image dX in

Frac(R=a,), Frac(R=a,), Frac(R=a3) is
0 1

0 10 1
0 X|0 0/0 0 o|o|o0
@0 0|0A: @00 X 1A:@O0|0|0A
0 0|0 0/l0 O 0/0/0

respectively. Thus the behaviour of the monodromil is not uniform along the irreducible
components of Spe®) and this prohibits us from pinning down the factors of powey of q
in the roots of

(T (oo T (2520 2T (3 3 3)

in a uniform manner, i.e., from obtaining an integere; for i 6 j such that
Cis i )=d"Cy5 45 4)

Thus we cannot hope to track the ‘right' factors of powers of K in the characteristic
roots of on the semistable part ofV unlessR is domain. Thus it seems hard to have a
reasonable formulation of the statement of proposition 13 (together with a proof) that
could lead to a proof of theorenj 1.2]4 for more general rings. So we are compelled to
assume thatR is a domain.

1.0.9. Organization. In the proof, one needs the notion of Weil-Deligne represent
tions, Weil-Deligne parametrization of Galois represent®ns etc. with coe cients in a do-
main. This has been given in the rst section in a way analogauto [Del73b/, 8.4{8.6],
[TayO4 | p. 77{78].

The organization of this chapter is as follows. First we redahe structure of the absolute
Galois group of -adic elds. Second, we describe the notion of Weil-Deligmepresentations,
Grothendieck monodromy theorem, Weil-Deligne parametréion, pure modules. In section
[1.2, we state the main results of this chapter, which are theem[1.2.1[1.2.P[ 1.2|]3,1.2.4. In
the subsequent sections, we present the proof of these theuos.
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1.1. Local Galois representations at v -p

1.1.1. Structure of Gg. Let ~ be a rational prime. Only for this chapter, letK E]
denote a nite extension ofQ- and Ok denote its ring of integers and its residue eld.
Denote the cardinality ofk by g. Let $ denote a uniformizer ofOx and vak : K Z
be the $ -adic valuation. Letj jx:= # k) ¥« () be the corresponding norm. The action
of Gk on K preserves val (by [Neu99), Theorem 4.8, Chapter Il] for instance) and hence
induces an action ofGx on k, so that we have a homomorphisnGx ! Gg. The inertia
group I ¢ is de ned as the kernel of this map and is equipped with the sgpace topology
induced from Gk . Note that we have a short exact sequence

0! I ! GKI Gk' 0:

Let Fry 2 Gy be the geometric Frobeniuselement. Then the Weil groupWy is de ned as
the subgroup ofGx consisting of elements which map to an integral power of Fn G. Its
topology is determined by decreeing thalty is open, and has its usual topology.

The Artin map
Artg (K 1 Wb
is normalized so that the uniformizing parameters go to geatric Frobenius elements. Let
Py := Gal(K=K @m¢)
denote the wild inertia subgroup where

K tame — [ Kur($ 1=n); Kur = KIK

“n

(see INeu99|, Proposition 7.7, Chapter Il] for example). Then given a copatible system
=( n)-.n Of primitive roots of unity, we have an isomorphism
Y
t 1k =P! Zp
pé "
where
(31" _ « ()ymodn).
$1=n " : Q
Any other compatible system of roots of unity is of the form " for someu 2 = .7, and
we have

v Ut
By [NSWO08 | Theorem 7.5.2], for all 2 W and 2 I, we have
(1.1.1) t( H=r0)n ()
where % %
= oGk ! Z,
p6" p6"

1The same notation is introduced in to denote an extension ofp.
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is the product of the cyclotomic characters. For a prim@ 6 °, let t., denote the composite

map
Y
(1.1.2) to il ! Ix=R! Z,! Z,
p6 "
where the rst map is the quotient map and the third map is the pojection map. Finally
denevg :Wx ! Zby
jK a = Fr \|:K( )
forall 2 Wk.
We end this section with the following de nition.

De nition 1.1.1. Let A be a commutativeZ,-algebra of characteristic zero. Suppose that
M is a free A-module with anA-linear G -action
: Gk ! AUtA(M)

on it. We sayM is monodromicwith monodromyN overK °if there exists a nite extension
K%K and a nilpotent elementN 2 Endap=;(M A A[1=f) such that for all 2 Io

() =exp(t,p( )N)
in EndA[]_:p](M A A[:L:d)

Remark 1.1.2. Note that N is unique when it exists sinceA is of characteristic zero

(cf. Theorem|1.1.25).

1.1.2. Weil-Deligne representations.

De nition 1.1.3 ([Del73b} 8.4.1], [Tay04 | p. 77{78]). Let A be a commutative domain of
characteristic zero.

(1) A representationof Wy over A is a representation ofWx on a free A-module of
nite rank which is continuous if the module is endowed with the discrete topology
(i.e., a representation with open kernel).

(2) A Weil-Deligne representatiorof Wy on a freeA-moduleM of nite rank is a triple
(r; M; N ) consisting of a representatiorr : Wy ! Aut,(M) and an endomorphism
N 2 Enda(M) such that for all 2 W,

r( Nr( ) *=@# k) "N
in EndA[lf](M A A[lz‘]).
Note that a Weil representation can be considered as a Weil-liyne representation with
zeroN and these two representations will often be identi ed.

De nition 1.1.4. Let A be a domain of characteristic zero.

(1) A representation oflx on a free A-module of nite rank n is said to semistablethe
characteristic polynomial of is (X 1)" forany 2 Ik.

(2) A representation of [x on a free A-module of nite rank is said to totally non-
semistableif there exists an element 2 I such that the characteristic polynomial
of does not vanish at 1.



(3) A representation of W or a Weil-Deligne representation ofWy is said to be
semistable(resp.totally non-semistablg if its restriction to | is semistable (resp. totally
non-semistable).

Remark 1.1.5.

(1) Sincely is compact and open iW, if r is a representation oWy thenr(lx) is
nite.
(2) For a Weil-Deligne representation i N ) of Wi, N is necessarily nilpotent.

Lemma 1.1.6. Let R be aring andr : W ! GL,(R) be a group homomorphism under
which I has nite image. Thenr is trivial on some open subgroup dfVx and hence has
open kernel.

Proof. It su ces to show that ker r contains an open subgroupl of Wy because then ker

would be the union of all the translates oH of the form gH with g in kerr. Now H can

be taken to be kerj,, , which being of nite index in I is open inlx and hence open in
W .

De nition 1.1.7.  Given two Weil-Deligne representationgri; M1;N;) and (ro; M,; N,) of
Wy over a domainA, their sum and tensor product is de ned by
(ri;Mg;Ng)  (r;Mg;N2) =(rp ra;Ma Ma;Ng Np);
(ri;M1;Ng)  (r2;M2;N2) =(ry rp;Myp Myjidy,  No+ Npoidw,):

Note that the sum and tensor product of Weil-Deligne represéations de ned over a
domain A are Weil-Deligne representations oveh (cf. [Del73al, 3.1.2]).
De nition 1.1.8.  For a nite extension K =K, the restriction of a Weil-Deligne represen-
tation (r;M; N ) of Wi to Wko is de ned by

(rMIN )jw, 0 = (Tjw, o MIN):
Notice that the above restriction is a Weil-Deligne represéation over Wy o.

1.1.2.1. Inertia invariants as Wy -summand. Let V = (r; N ) be a Weil-Deligne represen-
tation of W with coe cient in a eld (necessarily of characteristic zeio by the de nition of
Weil-Deligne representation given above) and 2 GL(V) denote the element

1
-1 g2 End(V):
#Im( r(l«)) g2im(r(Ix )

Lemma 1.1.9. The element is an idempotent and thusv decomposes into an internal
direct sum of subspaces
(1.1.3) v=V (1 )V
with
AERALE
The above decomposition is an internal direct sum My -stable subspaces and these sub-
spaces are stable undelN. Moreover (rjyix ;Njyic ), (Fjyice; Njyix <) are Weil-Deligne
representations and
(FN) =(rjyre i Njyik ) (Flyrce; Njyrgee)
10



as Weil-Deligne representations where denotes the internal direct sum and/'« ¢ denotes
a V.

In V'x i€ the letter c stands for complement. We calV '« i€ the complement of the inertia
invariant of V.

Proof. Since for any 2 I,

r¢) =
r()x )=r(C) r()
=r()
=r() r()
=@ ()

the spacesv'x = V andV'k¢=(1 )V are stable under the action of .
Sincelk is a normal subgroup ofWg, V'« is stable underWy . To prove that V'«:c
is stable underWg, it su ces to show that it is stable under the action of . Let s =

#im(r(lg)) andf 1; ; sgbe asetoflifts ofr(Ix) in Ix. Then
r¢H)a )= (@«C) rC))
= @ r()r() Hr()
1% '
= 1 - (i N ()
Si:1 |
1% '
= = (o h ()
Si=1 |
1%
= s r¢ ) (sincely is normal in W)
i=1
=( ()
=0:

So annihilatesr( )(2 )V and hencer( )(1 )V is containedin (1 )V.

Sincer is a Weil-Deligne representation, commutes withN and henceV'« and V'« ¢
are stable under the action olN. Thus the decomposition in equation|(1.1]3) is an internal
direct sum of W -stable subspaces and these subspaces are stable umtler

As a consequence of the above, we have
Fivie CONJyie iy () 2= @ k) " ONjyic;
Fivice( INJyrceljyice( ) 1= @# k) " ONjyice
for all 2 Wy . Since ker is open inWy, the kernels

[
ker(rjyic ) = gkerr;  Kker(rjyigc) = gkerr
g2ker(rj, 1, ) g2ker(rj, 1y )
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are open subgroups ofVx . So the restriction of {;N) to V'« and V'« ¢ are Weil-Deligne
representations and i{ N ) is equal to the internal direct sum of these restrictions agveil-
Deligne representations.

1.1.2.2. Frobenius semisimpli cation. Let  denote a lift of Fry in Wy . Suppose that
(nN)=(r;V;N) is a Weil-Deligne representation with coe cients in a eld L of character-
istic zero which contains all the characteristic roots of hthe elements ofr (W ). Let

r()=r()*u=ur()*

be the Jordan decomposition of ( ) as the product of a diagonalizable matrix ( )% and a
unipotent matrix u. Following [Del73b/ 8.5], [Tay04 | p. 78], de ne

M) =r(u O
forall 2 Wk.
Lemma 1.1.10 (cf.[Del73b}, 8.5]). (rV;N) is a Weil-Deligne representation.

Proof. First we show thatu and N commute to deduce the appropriate conjugation action
of ~ron N. Let GL(V) act on End_ (V) by conjugation and denote this representation by

:GL(V)! GL(End_(V)):
From now on the representation will be considered as ar. -algebra homomorphism
:LIGL(V)]! End.(End_(V)):

The relation
r(INr() *=@k) 'N
shows that
(1.1.4) (r( )) N=#k) IN;
i.e., N 2 End_ (V) is an eigenvector for ( ) under the representation . Note that
(1.1.5) (r¢N= ()= (@r()*)= (u) (r()>

where (r( )%) is semisimple. Since is a ring homomorphism and ¢ 1)¥™V = 0, the
operator (u) is unipotent.

SinceN is an eigenvector for (r( )), itis also an eigenvector for (r( )®°) with the same
eigenvalue (#k) 1. So equation [(1.1.4) and[(1.1]5) give
(u) N = N:
In other words u commutes withN. So for all 2 Wk we have

HONK ) t=@ k) ON:

Sincely is normal in Wy, r(lx) is normal in r(Wgx ) and hencer( ) acts onr(l) by
conjugation. Asr(lx) is a nite group, its automorphism group is nite and hencer( )¢
commutes withr (I ) for somed 1. Sor( )¢ commutes withr(Wy ). By the same reason-
ing as above it follows thatu® commutes withr (W ).
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Recall that (u) is a unipotent operator on End (V). Note that from the Jordan de-
composition of a unipotent matrix M, it follows that M xes a vector v if and only if each
positive power ofM xes v. So

ker( (u)¢ 1)=ker( (u) 1)
and henceu commutes withr (W ). This shows that for any ; 2 W,
M1 2)=r(1u (2
r( r( u iy w2
r(au e CIr()u

=+( )N 2):

Sor~is group homomorphism. To establish the lemma it remains tdew that kerris open
which follows from lemma_1.1J6.

We continue to follow the notations as above and the assumph that L is a eld of
characteristic zero containing all the characteristic ras of all elements ofr (W ).

De nition 1.1.11  (cf.[Del73b] 8.6]).

(1) The Weil-Deligne representation(r; V; N) is called theFrobenius semisimpli cation
of (r; V;N) and will be denoted by 7SS,
(2) (r;N) is said to beFrobenius-semisimplaf ~=r.

1.1.2.3. Structure of Frobenius-semisimple Weil-Deligne representationset denote
an algebraically closed eld of characteristic zero.
De nition 1.1.12.

(1) A Weil-Deligne representation over is said to beindecomposablédf it is not iso-
morphic to a direct sum of two nonzero Weil-Deligne representations over

(2) A representation M of Wx over a commutative domainA of characteristic zero
is said to beirreducible (resp.Frobenius-semisimpleif the action of Wy (resp. the
action of ) on M A Frac(A) is irreducible (resp. semisimple).

Lemma 1.1.13. Let :G! GLn() be a representation of a nite groupG. Then there

exists a representation °: G! GL,(Q) such that is a conjugate of the composite map
:G! GLn(Q)! GLy() :

Proof. It follows from [Tay91 | Theorem 1].

Proposition 1.1.14. Given an irreducible Frobenius-semisimple representation: Wy !
GLn() of W over , there exists an unrami ed character

Wk !
such that the representation * r:Wg ! GL,() has nite image. Moreover, there exists
an irreducible Frobenius-semisimple representation: Wx ! GL,(Q) with nite image such
that

r' =
where - denotes the map followed by the magGL,(Q)! GL,() induced by an embed-
ding of Q in

13



Proof. The rst part follows from the proof of [BHO6 | 28.6 Proposition]. The rest follows
from lemmal1.1.1B.

De nition 1.1.15. For an integert 0, a characteristic zero commutative domaim\ with
"2 A, arepresentation(r; M ) of W over A and a choice of a square root af in A, let
Sp(r)=a denote the Weil-Deligne representation with underlying modul** on which Wy
acts via

FjArt Kljthz rjArt Kle(t 2)=2 rjArt Klj& t+2) =2 rjArt Kletzz
and the monodromyN induces an isomorphism frorrrjArtKljiK "2 to rjArtKljiK+l =2 for all
0 i t 1andis zero onrjArt, Y2,

When A is an algebraically closed eld and th&V -representationr is irreducible, the
representationr is called thecentral irreducible summandof Sp (r)=a.

When A is understood from the context, we will write SH(r) to denote SR(r)=a.

Remark 1.1.16. Note that the above de nition is independent of the choice of aquare
root of q whent is even.

Remark 1.1.17. Let r be a Frobenius-semisimple representation &/ over . Then
Sp(r)= is indecomposable if and only if is irreducible.

De nition 1.1.18.  Suppose that an indecomposable Weil-Deligne representatdrover
is isomorphic toSp(r)= . Thenr is called thecentral irreducible summandof V.

Whenr is one dimensional, the element( ) is called thecentral elementof V.

Remark 1.1.19. In the above, we should have de ned the central irreducible sumand of
V as the W -isomorphism class of. However we will usually x an isomorphism between
V and Sp(r)= for somer. So calling thisr the central irreducible summand ofV will not
cause much confusion.

Remark 1.1.20. The above de nition of Sp(r)- diers from the de nition of Sp (r) given
in [TYO7, p.471]. In fact we have

Sp(rjArt 7%= = Sppy (r):
The reason behind introducing this \twisted" de nition is to make the expression of the
characteristic roots of look symmetric.

Theorem 1.1.21. Any Frobenius-semisimple Weil-Deligne representation over is isomor-
phic to M
Sp, (ri)-
i21
for some irreducible Frobenius-semisimple representations : Wx ! GLpy () and this
decomposition is unique up to reordering and replacing factors by isomorphic factors. In this
decomposition, ther; are unrami ed characters if the original representation is unrami ed.

Proof. This follows from the proof of Del73al, Proposition 3.1.3 (i)] and remark 1.1.20.

Remark 1.1.22. We will often drop the subscript= whenever is understood from the
context.
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In the above we would like to call the Sp(r;) indecomposable summands &f. However
they depend on the isomorphism class of, so we make the following de nition.

De nition 1.1.23.  An indecomposable summandf a Frobenius-semisimple Weil-Deligne
representationV over is a Weil-Deligne subrepresentation o¥ isomorphic to a summand
Sp, (ri)- via the isomorphism M
A Sp, (ri)=
i21
as in theorem1T.1.21.
Notice that V has #| indecomposable summands.

De nition 1.1.24.  Given a Frobenius-semisimple Weil-Deligne representatiod of Wy
over , the central irreducible summands of its indecomposable summands are called the
central irreducible summandsof V.

Given a semistable Frobenius-semisimple Weil-Deligne representatignof Wy over
the central elements of its indecomposable summands are calleddéstral elementsof V.

1.1.3. Grothendieck monodromy theorem. The following theorem is well-known
(seeBT68], p.515] for instance).

Fix 2 Gk a lift of Fr and a compatible system (,)-., of primitive roots of unity. Let
t, 1k ! Z,denote the map (as in equation|(1.1]2)) associated to this mopatible system.

Theorem 1.1.25 (Grothendieck monodromy theorem) Let R be a commutativeZ ,-algebra.
Suppose thaR is a local domain with maximal ideain and nite residue eld of characteristic
p. Assume thatp 6 0 in R and R is complete with respect to then-adic topology. Let

: Gk ! GLny(R) be a continuous representation and : GL,(R) ! GL,(R[1=p]) denote
the inclusion map. Then there is a nite extensionrK =K and a unique nilpotent matrix
N 2 GL,(R[1=p) such that for all 2 Ixo, we have

i( () =exp(t,p()N)
in GL,(R[1=p]). For all 2 W, we have
(1.1.6) (N () *=@#k) *“ON
in M,(R[1=p]).
Before going through the proof, we recall that for any nilp@nt matrix in M,(R), its
matrix exponential is an element oM ,(R[1=p]). Also for a unipotent matrix in M, (R[1=p])
(i.e., an element ofM, (R[1=p]) which di ers from the identity matrix by a nilpotent matri x),

its logarithm is an element ofM,(R[1=p]). Moreover the composite maps explog and
log exp are identity maps on the respective domains.

Proof. First we prove the uniqueness oN. Suppose that there is a nilpotent matrixN ©
and a nite extension K ®°of K such that for all 2 I«

i( () =exp(tp( IN9
in GL,(R[1=p)). Then for all 2 Ik o 0o, We have
exp(tp ( )N) =exp(tp( INO:
15



SinceK K %is a nite extension ofK , t ., () is nonzero for some 2 I« 0. Hence by taking
logarithm, it follows that
N =N
Now we show the existence dfi. Let Gk, denote the kernel of the composite map
Gk ! GLy(R)! GL,(R=m)

where the last map is modn reduction. SinceR=mis a nite eld, K,=K is a nite extension.
The image of the subgroupgGk,, under is contained in

1+ mM,(R)=ker(GL,(R)! GL,(R=m))

and hence is a prg-group. Note that the kernel of the mapt ., ts into an exact sequence
Y
0! Px! kert,! Zn! O
mé “p
So the cardinality of kert ., (as a supernatural number) is not divisible byp as Px is a
pro-"-group. Hence is trivial on Ix,\ kert,,. Thus j;, factors through

t ?Pj|K0 . |K0 It ;p(IKo):
Choose 2 Ik, such thatt,( ) generatest., (Ix,). By Iwasawa's relation [1.1.1), the
characteristic roots of ( ) are roots of unity. Since (Ix,) 1+ mM,(R) and R=mis a
nite eld of characteristic p, the characteristic roots of ( ) are p-power roots of unity. So
there exists a nite extensionK =K, such that all the characteristic roots of the elements of
(Iko) are 1,i.e., the elements of (I o) are all unipotent.
Let
tp(lko) ! GLa(R)
be the unique continuous group homomorphism such that theatiram

w
&&

tp(lk)) —/GLA(R)

ko

tp

commutes. Take ¢ 2 lko such thatt.,( o) generatest ., (Iko). Since ( o) is unipotent,
there exists a nilpotent matrix Ng 2 M, (R[1=p]) such that

(0)= (t;p( o)) =exp(No):
SinceK =K is nite, t.,( o) is nonzero. Recall that it is an element oZ, by de nition of

the mapt ., associated with the compatible system ()-.,, of primitive roots of unity. So the

element
1

tp(o)

N = No 2 My (R[1=p)

is well-de ned. Then
()= (tp(o))=exp(t;p(o)N):
So for anym 2 Z, we have

(Mt 5 ( 0)) = exp(mt ,( o)N):
16



Hence
(zt;p( 0)) = exp(zt;p( 0)N)
forall z2 Z,, since is continuous.
Note that for any 2 Ixo, t.n( )=tz ( o) 2 Z, and hence

()= (tp())
to()
tp(o)
to()
tp(o)
=exp(t,p( IN):

It remains to show the conjugation action of ( ) on N for 2 Wk . SinceK %K is
nite, there exists 1 2 Ixo such thatt ,( 1) 6 0. Then forany 2 Wy, we have

exp( (tp(IN () = ()expltu(IN) () *
() () ()*
(19

# k) vk ()
A

t;p( 0)

=exp to(o)N

since s trivial on I, \ kert

=exp(t ({9 "N)

= exp((# k) Ot 5 ( IN):
Sincet ., ( ) is nonzero, by taking logarithm we obtain the desired resul

Remark 1.1.26. The endomorphismN above is called thdogarithm of the unipotent part
of the local monodromy(cf. [l1194 |, p. 13].

1.1.4. Weil-Deligne parametrizations.

1.1.4.1. Weil-Deligne parametrization for T[1=p|. Suppose thatR is a commutative Z,,-
algebra and is a domain of characteristic zero. Denote itsafition eld by K . Let T be a
free R-module with an R-linear action of Gk on it via . We assume thatT is monodromic
with monodromy N over K . Notice that for all 2 Wk

(ON () *=@ k) "ON
in Endgrp=(T & R[1=p]). Let T[1=p denote theGk -representationT g R[1=0).

De nition 1.1.27  ([Del73b), 8.4.2]) The Weil-Deligne parametrization WD(T [1=p]) of
T[1=p is a Weil-Deligne representation given by the pafr; N ), wherer : Wy !  Autrp=(T[1=p])
is a group homomorphism de ned by

r()= ()exp( tp( ") )N)

forall 2 Wy and N denotes the nilpotent endomorphism iEndg;-5(T (1=p]) mentioned
above.

The lemma below shows that WD{ [1=p]) is well-de ned.
17



Lemma 1.1.28. The mapr is a group homomorphism and the Weil-Deligne parametrization
WD(T[1=p]) is a Weil-Deligne representation.

Proof. Let ;= '; ,= 1 be two elements oWy with i;j 2 Zand ; 2 Ix. As

equations m) mé) give
("exp( tp( 7 ON) () t=exp (V) tp( P ON () ?
=exp  tp( 1) (TON (1)
=exp g™ Dty() gCN

=exp dtp() q’N
=exp(t,p( )N);

we have
(1.1.7) (1 )exp( ton( b )N = exp( tp(IN) (')
Then
r(r2)=r(" 1)
= r( i+] oo )
= (™ T Jexp( tp( 7 T )N)
= (' Texp( tp( 7T )N)

(") (7)exp( tp( ! N) exp( tip(IN)
= (") exp( tp()N) (1) exp( t;( )N) (by equation (1.1.7))

= (" )exp( tp(IN) (1 )exp( tp(IN)
=r( Jr( 2):

Sor is a group homomorphism. Note that is trivial on Ixo (with K°as in Theorem
1.1.2%). Sdk has nite image underr and hencer has open kernel by 1.1]6. Also note that
r and N satisfy the appropriate conjugation relation by equation[].1.6). Thus ¢;N) is a
Weil-Deligne representation.

Proposition 1.1.29. The element
1 X

~ #m(r(ix) J

92Im(r(lk ))
in M,(R([1=p) is an idempotent and we have

WD(T[1=p)'* = WD(T[1=p):
18



The Weil-Deligne parametrizationWD(T[1=p]) of T[1=p] decomposes into an internal direct
sum of W -stable R[1=p]-submodules as
WD(T[1=p) = WD( T[1=p)"*  rp=p WD(T[1=p)'< *
where
WD(T[1=p)'*°:=(1  )WD(T[1=p):

The above summands are stable under the actioNof When WD(T [1=p))'« and WD(T[1=])'« €
are free overR[1=p|,

(1.1.8) (N = (riwo(r=py'« s Ndworp=my'c ) (Mo tz=py'c o3 Niwp( =gy« <)
is a decomposition of Weil-Deligne representations. Moreover for any prime idgabf R[1=p],
the R[1=pl,-modulesWD(T[1=p));¢ , WD(T[1=p]) % * are free.

Proof. The proof of lemma 1.1.0 withV (resp.V'«, V'« ) replaced by WD(T [1=p]) (resp.
WD(T[1=p)'«, WD(T[1=p)'% ) throughout proves the proposition except the last state-
ment. SinceR[1=p|, is local, the freeness of W[]([lzrj),'o'(, WD(T[lzp])I'OK “ over R[1=p],
follows.

We have an immediate corollary of the above propositign 129.

Corollary 1.1.30. Let T be as in theorenj 1.1.35. Thef [1=p decomposes into an internal
direct sum of Gk -stable R[1=p-submodules

T[1=p = T[1=pss R[1=p] T[1=plinss

The action oflx on T[1=pss rK Is semistable and its action oA [1=plnss r K IS totally
non-semistable. TheR[1=p|-submodulesT [1=plss and T[1=plnss Of T[1=p are de ned by

T[1=plss = WD( T[1=p)'%;  T[1=plnss = WD( T[1=p])'*
and the G -action is de ned by
7' Piwogr=g'« ( )exptp (YO INjworp=gic )i
7 erD(T[1=p])'K?C( )exp(t . ( vk () )NjWD(T[1=p])'K?°)
respectively.

Proof. The rst part follows from equation ([L.1.8). It remains to prove the statement about
|k action on T[1=pss and T[1=pmss. Sincelk acts trivially on WD( T[1=p))' , its action on
T[1=pss r K is semistable. Now suppose thal [1=plss iS Nonzero and pick a prime ideal
p of R[1=p]. By the above lemma, WD(I'[lzq)'pK “ is free. So for some element2 I, the
characteristic polynomial of on WD(T[1=Q):JK “ is a non-constant polynomial and does not
vanish at 1.

Let
r°= wo rpsmicey,s N°= Njworpspiecs),’
SinceN° commutes with rq ) by Proposition [1.1.29,rY ) and N° can be simultaneously
upper triangularized over some nite extension of the fraocdbn eld K of R (by [RROO
Theorem 1.1.5] for instance). Hence the same holds f ) and exp( ., ( )N9. SinceN°
is nilpotent, the eigenvalues of exp(,( )N9 are 1. So the characteristic polynomial of
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rq{ )exp(t., ( )N9 is equal to the characteristic polynomial of { ) which does not vanish
at 1 by the choice of and hence the lemma.

1.1.4.2. Weil-Deligne parametrization forV. We rst prove a short lemma.
Let A be aring,n 1 be an integer and

A"=P Q

be a decomposition oA" into a direct sum of its A-submodulesP and Q. For any ring
homomorphismf : A! B, we will identify A" A B with B" and will denote by if (P)i
(resp.if (Q)i) the B-submodule ofB" generated by the image oP (resp.Q) in B underf,

i.e., under the composite maP ! A" "o (resp.Q! A" " B").
Lemma 1.1.31. Letf : A! B be aring homomorphism. Then the map
X af B! A" s B=B"
induces an isomorphism betweed ¢ B and its imagehf (X)i in B" for X = P; Q.

Proof. It su ces to prove the lemma for X = P. SinceQ is projective, it is at. Hence the
map

P At B! A" A, B=B"
induces an isomorphism betweeR ¢ B and its image inB", which ishf (P)i.

Recall that K denotes the fraction eld of R. Let V denote the Gk -representation
T rK =T[1=g rp-g K . De ne its Weil-Deligne parametrization WD(V) as the pair
consisting of the group homomorphism

Wi ! Auti (V); 70 (O ))exp( tp( O )N)
and the endomorphismN considered as an element of ERd(V).

From lemma[1.1.9, we have the decomposition
WD(V) =WD( V)'*  WD(V)'x©
of WD(V) into an internal direct sum of Weil-Deligne subrepresentans.
Lemma 1.1.32. We have
WD(V) =WD( T[1=p) rp=pK ;
WD(V)'* =WD(T[1=p))'* ru=p K ;
WD(V)'* ¢ =WD( T[1=f)'*° grp=g K :
Proof. Follows from lemma1.1.31.
We have a corollary in analogy to corollary 1.1.30.

Corollary 1.1.33. Let V be as above. TheW decomposes into an internal direct sum of
K [Gk ]-submodules
V= Vss k Vinss:
The inertia group | ¢ acts unipotently onVss and its action onVy,ss is totally non-semistable.
TheseK [Gk ]-submodules are de ned by
Vss = WD(V)'®; Vinss = WD( V)'%©
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as K -vector spaces and th&y -action is de ned by

7! Thwpvyk () exp(tp ( v ) INJwo(vyx );
7! Tiwpvyke () exp(tp ( v () INJwo(vyk )
respectively.

1.1.5. Semistable part giving inertia invariant.

Proposition 1.1.34. Let V be as above. Then

VIK — (VSS)IK
and the dimension ofV'« over K is equal to the number of indecomposable summands of
(WD(V)'x ¢ K )Fss. Suppose tha{WD(V)'x ¢ K )T *is isomorphic to i, Sp, (ri) as

Weil-Deligne representations where theg are irreducible Frobenius-semisimple representation
of Wi with coe cients in K . Then the characteristic polynomial of on V'« is

Y )
(1.1.9) (X ri()g i7):

i21
Proof. Let v be an element of Vinss)'* . Sov is also an element of\(,ss)'«° and hence
erD(V)'K o ( ()eXp(t p ( v (9 0)Nij(v)'K ) V=V

forall °2 Ixo. Sincerj, , is trivial, we get

expt p( 7 INjwovyke) V=V
forall °2 Ixo. SinceK =K is nite, there exists o2 Ixosuch thatt .,( o) 8 0. So we have
Njwo(vykeV = 0:
Sincev 2 (Vinss)'%, for all 2 1, we have

rjWD(V)'K?C( )eXp(t ;p( v () )NjWD(V)'K?C) V=1V,

erD(V)lK;C( ) V: V:
Sincev 2 Vyss = WD(V)'k €, we getv = 0. So

VI = (Ves)'
21



Recall that the underlying vector spaces of the representansVss, WD(V)'« and (WD(V)'« )Fr-ss
are the same. Notice that

\VALS :(Vss)lK
= fv2 Vesj Fwpevyx () expltp( O INjpyy) V=v8 21kg
= fv2 Vs Tjwpoevyk () expltp ( )Njwpvyx) V=Vv8 21kg
= fv2 Vej explt p( )Njwpcvyx) V= Twpvyi ( Y8 2lIkg
= fv2 Vsj explt p( )Njwpvyx) Vv=Vv8 21kg
= fv2 Vs Njwpvyx V=08 21kg
= fv2 WD(V)'%j Njwpevyx V=09
=ker Njwpivyx : WD(V)'® I WD(V)' ;
ie.,
(1.1.10) V'K =ker Njypcvyx 1 WD(V)'® I WD(V)'«
The above equation gives
dimV'< =dimker Njypyyx : WD(V)'* I WD(V)'
=dimker Njuyprvyx «k K tWD(V)'* ¢ K I WD(V)'* ¢ K
=dimker Njypvyx k K (WD(V)'®  K)T1 (WD(V)'* ¢ K)FFss

Hence the dimension o¥'« over K is equal to the number of indecomposable summands
of (WD(V)'x ¢ K )ss by theorem|1.1.211.

Now it remains to_nd the characteristic polynomial of onV'«. Consider the following
list of polynomials of K [X].
(1) The characteristic polynomial of on V'«
(2) the characteristic polynomial of on ker Njyp vy« : WD(V)'® I WD(V)'«
(3) the characteristic polynomial of on
ker Njwpvyx  «k K TWD(V)'™® K I WD(V)'* K ;
(4) the characteristic polynomial of on
ker Njworvyx  k K 1 (WD(V)'®  K)F 1 (WD(V)'* ¢ K )

We claim that any two consecutive items of the above list aregeal. The rst equality follows

from the fact that the action of on Vs and on WD(V)'« are the same via the maps andr

respectively and from the equation[(1.1.10). The second edlity follows from the atness of
K overK and the last equality follows since the characteristic pohomial of any operator
and its semisimpli cation are the same. By theoreri 1.1.21he lemma follows.

From the above proof we have the following corollary.
Corollary 1.1.35. The characteristic polynomial of on the spaces
VI ker Njwprvyx  k K D (WD(V)'® « KD (WD(V)'® ¢ K )T
are the same.
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1.1.6. Indecomposable summands from monodromy Itration. In the following,
we recall the de nition of monodromy Itration and explain how the structure of a Frobenius-
semisimple Weil-Deligne representation is determined bisimonodromy lItration.

1.1.6.1. Generalities on ltrations. Following [SZ85/ p. 495{496], we introduce some no-
tions on ltrations.
De nition 1.1.36.

(1) An increasing ltration M on a moduleV is a collection of submodule§M;g;,z,
such that

Mi 1 M
foralli 2 Z.

(2) A increasing lItration M onV is said to be nite if M; =0 for i su ciently small
and M; = V for i su ciently large.

(3) A decreasing Itration M on a moduleV is a collection of submodule$M;gi,z,
such that

Mi 1 M;
forall i 2 Z.
A decreasing lItration M onV de nes an increasing ltration M onV given by
Mi=M '
foralli2 Z.

For an increasing Itration M onV, we put
GriM = Mi:Mi 1-

De nition 1.1.37.  Given two increasing Itrations M and N on a module, their convo-

lution product M N is de ned by X
M N)= M;j\ N

jtk=i
1.1.6.2. Monodromy Itration.

Proposition 1.1.38. Let N be a nilpotent endomorphism of a nite dimensional vector
spaceV. Then there exists a unique nite increasing lItration M such thatNM; Mi -
for all i and N¥ induces an isomorphisnGrM ! Gr (M forall k O.

Proof. SeelDel80), p.165].

We will call M the monodromy Itration associated with the nilpotent endomorphism
N of V (cf.[lll94 ], p.13]).

Remark 1.1.39. There is an explicit formula for the above lItration M (cf. [SZ85] p. 499]).
Let K and| denote the kernel Itration and the image lItration de ned by

Ki=kerN™': |"=ImN'; i2Z:
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Note that K is an increasing Itration and | is a decreasing Itration. Consider the
increasing lItration | associated withl . Then M is equal to the convolution product

K I ,ie,foranyk?2 Z,
X X

(1.1.11) My = kerN'*t\ N v = N J(kerN"™ 1y=" N' KkerNZ* k).
i+j=k i+j=k i

Remark 1.1.40. More generally, given a nilpotent endomorphisnN on a moduleV, we

will de ne the associated kernel lItration K , image lItration | , monodromy Itration M

onV by the above formulas,.e.,

Ki=kerN*': |'=ImN'; i22Z:
M =K |
wherel is the increasing Itration associated withl .
The following example is taken fromiDel80), 1.6.7, p. 166].

Example 1.1.41. Let V denote a vector space of dimensiah+ 1 (d 0) with a nilpotent
operator N on it which is equal to0

010 0 01
0 01 0
00O 0
0 0O (O &
000 00
with respect to a basis ofV of the form fe 4;e g+2; 1€y 2,€40, i.e., Ne 4 = 0 and
Neg 5i =€ 2 oforallO i d 1. From now on, we seg to be zero if it is not already
de ned. The associated ltrations K and| of N are given by
K 1=1f0g Kop=he g Ki=hegq € 24 il Keg=V ;
I ¢ 1=f0g | 4= heyi li=he g ;eqil lo=V
The ltration M is given by
M; = hg jj ii:
Note that
GrM = Hei:
Also
(1.1.12) dimN2V =maxf0;d+1 ag for anyintegera 1;
. . i+d .
(1.1.13) dimM; =max 0O;min — +1;d+1 foranyi 2 Z:

Example 1.1.42. Let be a characteristic zero eld containing a square root & g. Let
t 0 denote an integer and : W !  denote a character. Suppose thatM Sp(r)-
denote the monodromy Itration on Sp(r)- associated with its monodromy. Then

rjArt, 4,~2 ifi tmod2and t i t

GriM Sp(r)- '
' A(r) 0 otherwise.
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Remark 1.1.43. In general, given a nilpotent endomorphism of a vector spadg, V is a
direct sum of subspaces stable undéf and the restriction of N to these subspaces is (a
conjugate) of the above form. The Itration M on V given by proposition[1.1.3B is the
direct sum of the Itrations on the subspaces.

Remark 1.1.44. Given a Frobenius-semisimple Weil-Deligne representatiaf Wy over a
eld, the terms of the kernel and image lItration on it assocated with its monodromy are
stable underWy (by the conjugation relation between the monodromy and th&V -action).
So the monodromy ltration is also stable undefWy .

1.1.6.3. Indecomposable summands froi .

Lemma 1.1.45. Let V be a Frobenius-semisimple Weil-Deligne representation bfx over
an algebraically closed eld of characteristic zero. LetM denote its monodromy lItra-
tion. Let C denote a set of pairwise non-isomorphic irreducible Frobenius-semisimjé -
representations such that each element @ is isomorphic to a central irreducible summand
of V and each central irreducible summand &f is isomorphic to an element ofZ. Then

M M 1.(t+2) =2.

. 1:.t=2, .
VA Sg(r)m(”A“K ik 5Gr «M ) m(rjArt, i Gr t 2M )

r2Ct 0

as Weil-Deligne representations where
. — A . W
m( 1; 2) =dim Hom _jnear( 1; 2)7%
for nite dimensional W -representations ;; , over

Proof. By theorem[1.1.2]l, there exist a nite set of non-negative iagers| and integers
ng Oforr2 C,t21 such that there is an isomorphism of Weil-Deligne represetions

M M
VA Sp(r)™:
r2C t2l
So
M M
M M Sp(r)™
r2C t2l

As any two elements ofC are pairwise non-isomorphic, for an integer 0 and anyr 2 C,
we get

n, ift2l;

m(rjArt 552 Gr M m(riArt 22 Gr . LM ) =
(rjArt g M) (rjArt i t 2M ) 0 otherwise

Thus
M M

, . 1.t=2. . 1:(t+2) =2,
\Vj Sg(r)m(”A’tK Jk 5Gr M ) m(rjArt  7j

K xGr t 2M ):

r2Ct O
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1.1.7. Pure modules.

De nition 1.1.46.  Let Q be a positive integral power of a rational prime. RQ-Weil number
of weightw 2 Z is an algebraic number 2 Q such thatQ' is an algebraic integer for some
i2Zandj ()j=Q"2foral :Q) C.

We will often call them Weil numbers whenQ is clear from the context.

De nition 1.1.47.
(1) (cf. [Sch1l] p. 1014} A Frobenius-semisimple Weil-Deligne representatiol of Wy
overép is said to bepure of weightw if the eigenvalues of one (and hence any) lift
of the geometric Frobenius element 06r;M are # k-Weil numbers of weightw + i
whereM denotes the monodromy Itration onV.

(2) A p-adic representation of Gx is said to be pure of weight w if the Frobenius
semisimpli cation of its Weil-Deligne parametrization with respect to one (and hence
any) choice of and is pure of weightw.

(3) (cf. [TYQ7 ], p.471) A Weil-Deligne representationV of Wy over Qp is said to
be strictly pure of weight w if the eigenvalues of one (and hence any) lift of the
geometric Frobenius element oW are # k-Weil numbers of weightw.

Lemma 1.1.48. An indecomposable Frobenius-semisimple Weil-Deligne representatiérof
W over Q, is pure of weightw if and only if for any nite extension K%K, Viw,, Is pure
of weightw.

Proof. SeelBla06/, p.42] for instance.

Remark 1.1.49. The weight-monodromy conjecturé 1.0]1 predicts that any Gais represen-
tation arising from geometry {.e., from theetale cohomology of projective smooth varietigs
is pure of integral weight.

1.2. (Statements of) Purity for big Galois representations with i ntegral models

In this section, we state a generalization of the result abbweonstancy of dimension of
inertia invariants under arithmetic specializations (moe precisely at the specializations sat-
isfying the Weight-Monodromy conjecture) along irreducile components of Hida families of
ordinary cusp forms (as inlfoul3), Lemma 3.9] for example). We also prove that the inde-
composable summands of the Frobenius semisimpli cation tfe Weil-Deligne parametriza-
tion of the pure specializations are of the same shape andarpolated by \big integral
Weil-Deligne representations”. We call thigigidity of Galois typesand it is the analogue of
rigidity of automorphic types proved inloc. cit. for example.

1.2.1. Notations. Let R & 0 be a commutative Z,-algebra. Suppose thaR is a do-
main of characteristic zero. Denote the fraction eld oR by K and x an algebraic closure
K of K. The integral closure ofR in K will be denoted by Ox. The algebraic closure of
Qp in K is denoted byQ, and the integral closure ofZ, in Q, is denoted byZ,. Note that
Z, O g. The algebraic closure ofQ inside Q, will be denoted by Q. Notice that Q is
contained insideOg[1=p. Recall that K denotes a nite extension ofQ- with ~ 6 p and q
denotes the cardinality of the residue eld oDk . By g2, we will denote a square root ofjin
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Q and for anyn 2 Z, ¢"=* will denote (¢')". This determines a choice of a square root gf
in K which is required to express WD{)™S as a direct sum of Weil-Deligne representations
of the form Sp(r)_« when it has a nonzero indecomposable summand of even dimensi

Observe thatg' is an element ofO, as” 6 p.

For a vector spacdJ with an action of (which denotes the lift of the geometric Frobenius
to Gk as chosen inf1.0.1), the multiset of characteristic roots of on itis denoted byCR(U).
The multisets CR(WD(V)Fss), CR(WD(V )7%) are denoted byCR;CR .

1.2.2. Statement of theorems. Let : R'! Gp be aZy-algebra homomorphism.
Then extends to aZ,-algebra homomorphism fromOg[1=p to Gp. We x one such
extension and denote it by again. We will use the image o6 in Gp under as square
root of g in Q,. Denote byO the image of the map :R! Q,.

Let p denote the kernel of : R! Gp. Note that extends to aZ,-algebra ho-
momorphismR[1=p, ! Q,. By abuse of notation, this map will also be denoted by.

Leti:R!K denote the inclusion map. Then by abuse of language, the malds, (i) :
Mp(R) ! Mu(K), GLu(i) : GLy(R) ! GL,(K) will also be denoted byi. Similarly the
mapsM,( ), GL,( ) will also be denoted by .

Letn 1beanintegerand : Gk ! GL,(R) be a representation which is monodromic
with monodromy N over K °. By de nition N is an element oR[1=p. Dene T = R"
and let Gk act on it via . Denote by T [1=p the Gk -representationT g R[1=p|. Let T
denote theGy -representationT g. O andV denote the representatiom o Gp. De ne

the Gk -representationV to be T i K.

The kernel ltration, the image ltration and the monodromy Itration on T (resp.V)
obtained from the nilpotent operatorN onT (resp. (N)onV ) will be denoted byK ;1 ;M

(resp.K . ;1 ;M ) respectively cf. Remark[1.1.40) [

In the following we say thatthe powers of the monodromiN do not degenerate under
if the inequality [J

rkN® rk (N?)
is an equality for all integera 1, i.e., if we have

(mono-non-deg) dimg N2V = dim Q (N®)V 8a22Z ;:
If we have
(mono-non-deg-1) dimgNV =dim Q (N)V;

2Recall that we have used the notationsKk and K to denote a nite extension of Q- and the fraction
eld of R respectively and they do not carry any bullets.

3If r, denotes the rank ofN 2, then all the minors of N2 of sizer, + 1 have determinant zero. So all the
minors of (N?2) of sizer, + 1 have determinant zero,i.e., rk (N2) rg:
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then we say thatthe monodromyN does not degenerate under. When
(mono- I-dim) dimgM; g K =dim 5, M 8i2 Z;
we say thatthe dimensions of the monodromy lItrationsM , M. match termwise

Theorem 1.2.1 (Non-degeneracy of monodromy)Suppose thal is pure. Then the condi-
tions (mono-non-deg) (mono- I-dim) hold, i.e., the powers of the monodromi do not de-
generate under and the dimensions of the monodromy lItrationdM , M . match termwise.

Theorem 1.2.2 (Compatibility and freeness of Itrations). If the condition (mono-non-deg)
holds, then

(1) the terms of the ltrations K ;1 on T become free oveR after localizing them
at p and under the map , they specialize perfectly to the respective terms of the
corresponding ltrations K. ;I onV,ie., foranyi 2 Z, we have isomorphisms

Ki o Q' Kijs I' g Qp' I

of Wk -modules.

(2) the gradings ofK ;1 become free oveR, after localizing them atp and under the
map , they specialize perfectly to the corresponding gradingskof ;1 respectively,
i.e., forany i 2 Z, we have isomorphisms

GriK g, Q" GrK.; Grl & Q," Grl
of Wk -modules.
If both the conditions (mono-non-deg) (mono- I-dim) hold, then

(3) the terms and gradings ofM become free ovelR, after localizing them atp .

Moreover for anyi 2 Z, the map induces isomorphisms
Mi R: Qpl M;i; GriM R: Gp' GriM;
of Wk -modules.

Theorem 1.2.3 (Rationality and interpolation of summands) Suppose that both the con-
ditions (mono-non-deg) (mono- I-dim) hold. Then there are isomorphisms of Weil-Deligne
representations

Fr-ss M M Nij
WD(V) Sp (i i)
i=1 j=1
. M M o
WD(V )" sp( (i )%
i=1 j=1 P
for
(1) anintegerJ 1,
(2) integers0  t; < <tjy,
(3) aninteger| 1,
(4) pairwise non- |somorph|cWK -representations 1, .o | where

1. 1 Wk 10 _ are unrami ed characters,
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1 WK ! GLdl(G), v :WK ! GLdl (6)
are irreducible Frobenius-semisimple representations with nite image

and
(5) integersn; Ofor1l i ;1 j J.
Consequently, the representation ( i) W I GLy, (ﬁp) has image contained in
GLg, (Q) forall1 i 1. Moreover, the integersl;J;t;; n; and the representations ;; ;

depend onV, but not on

Theorem 1.2.4 (Purity for big Galois representations) Suppose thatv is pure of weight
w. Then the following hold.

(1) The conditions (mono-non-deg) (mono- I-dim) are satis ed.

(2) The terms and gradings oM become free oveR, after localizing them atp and
foranyi 2 Z, the map induces isomorphisms

of Wk -modules.
(3) There exist isomorphisms of Weil-Deligne representations

. M M .
WD(V)™ " S (i i)
i=1 j=1
M M N
WD(V )-ss Sp( (i D3
i=1 j=1
for
(@) anintegerJ 1,
(b) integers0  t; < <ty,
(c) aninteger| 1,
(d) pairwise non- |somorph|cWK -representations 1, c | where
1; .1 Wk 'O _ are unrami ed characters,

1. WK | GLdl(G), v :WK ! GLd| (6)

are irreducible Frobenius-semisimple representations with nite image
and
(e) integersn; Ofor1 i I;1 j J.
Consequently, the representation ( i) W I GLyg (Qp) has image con-
tained in GLq (Q) for all 1 i |. Moreover, the integersl;J;ti;n; and the
representations j; ; depend onV, but not on

(4) The -specialization of the central irreducible summands &¥D(V)™ S (considered
over Og[1=p]) are strictly pure of weightw.
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(5) The Ry -modules.TpIK , To :Tp'K are free and the map induces isomorphisms
TIK R; éplTle Rp Gpl VIK:
Consequently, the complexT '« ! T 'v] concentrated in degree 0, 1 descends

perfectly to the complexfV '« ! ! V'%] concentrated in degree 0, 1, i.e.,

ThaTh ] e @yt V1 VK,

(6) The polynomial Eul(V) * has coe cients in Ox \R , and its -specialization is
Eul(V) 1.
Proposition 1.2.5. The polynomial Eul(V) ! has coe cients in Ox and we have the in-
equality
o /| O Ik .
dimg V'« dIme Vi
The proof of the above theorems rely on few propositions spceover the next sections.

In x1.m, we prove theorem 1.2c0 2) for m = 3;4;5;6. Their logical dependence is given
below.

(1.2.1) Theorem 1.2.11 Theorem[1.2.2

Theorem[1.2.8

Theorem[1.2.4
The above proposition is proved in{1.6.3. This proposition is also proved ifBC09], x7.8.1].
Before we go through the proofs, some remarks are in order.
Remark 1.2.6. In theorem[1.2.4, we do not claim that the direct sum

M M
S i D-oppa=p

i=1 j=1
is isomorphic to (WD(T [1=p))™° =y Og[1=pl. In fact this is not true, otherwise it would

imply that monodromy never degenerates unde@p-specializations ofR which is false, for
example whenN is nonzero and goes to zero under@p-specialization ofR.

Remark 1.2.7. The proof below does not requird&k to be noetherian.

Remark 1.2.8. In the following, we do not requireV to be pure unless explicitly mentioned.

1.3. Non-degeneracy of monodromy at pure specializations

1.3.1. Integrality over  Oy[1=p| and g-power factors in -characteristic roots.
Let (r; N ) denote the Weil-Deligne parametrization off [1=p].

Proposition 1.3.1 (Rationality over Og[1=p]). Suppose thatV is semistable. Then there
exist
() an integer m 1,
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(ii) integers 0 t; < <tm,
(i) an integer M 1,

(iv) M distinct unrami ed characters ry; iry of with j:=ri( )2 OK and
(v) integersn; Oforl i M;1 j m(with M n; 1foreachj)
] i=1 "
such that
Fr-ss T I\W Nij
(1.3.1) WD(V) ng (ri):K
j=1 i=1

as Weil-Deligne representations. The map gives an equality
(CR)= CR
of multisets.

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma[1.1.2B. By lemmd 1.1.10, WD{)™S is a Weil-Deligne representation. Hence by
theorem[1.1.2]1, there are

(1) integersm 1,0 t;<t,< <tm,

(2) one-dimensional unrami ed distinct Weil representaonsr 4; ry of Wy over K
for some integeM 1,
(3) integersn;  Oforl i M;1 |J m
such that we have an isomorphism
. N NY o
WD(V)"s S, ()
j=1 i=1

of Weil-Deligne representations. It remains to show that tar;( ) are elements ofO..

The characteristic roots of on WD(V)™S are elements o0, since the characteristic
polynomial of on WD(V)Fs and WD(V) are the same and WDY) is de ned overR. So
the characteristic roots of on the Spj (ri) are elements ODK.

If r; comes from an indecomposable summand of odd dimensiae.( there exists 1
j muwith t; +1 odd and nj € 0), then ri( ) 2 O... On the other hand, if it comes from

an indecomposable summand of even size, thef )g'™ 2 O . Sinceq"? is a unit in O,
we getri( ) 20

1.3.2. Determining weights of some Weil numbers. The goal of this subsection is
to state and prove propositiorf 1.3J4. In this subsection, weill assume thatV is semistable
and use the notations of propositiof 1.3]1.

Denote the number of indecomposable summands of Wi){* of dimensiont; + 1 by
G . By proposition[1.3.1



forall1 j m. Denote the indecomposable summands of W™ of dimensiont; + 1
by Vi1, Ve

De nition 1.3.2. WhenV is semistable, lIetCE (resp.CE ) denote the multiset formed by
the central elements (as in de nition 1.1.24) of the indecomposable summandsAdD( V) -ss
(resp.WD(V )F-ss),

In the following, the weight of a #k-Weil number will be called the weight of and
will be denoted bywt( ).

Lemma 1.3.3. Suppose thatV is semistable andv is pure of weightw. Let1 J m

be an integer such that the -specializations of the central elements of the indecomposable
summands ofWD(V)F s of dimension at leastt; + 1 are Weil numbers of weightv. Then
ford j m;1 k g, there are distinct indecomposable summandg of WD(V )™ -ss
such that

(1.3.2) dimg Vie t+1; (CR(Vi)) CR(Vi)
forallJ j ml1 k g.

Proof. Sincelk acts trivially on WD(V )%, each indecomposable summand of WE()F-ss

is a twist of Sp(1) (t = t;; ;tm) by an unrami ed character (here 1 denotes the trivial
character of Wx). So for any indecomposable summand of WD(V )7Ss, the elements
of CR(U) are Weil numbers of distinct weights. Thus given any numbeof elements of
the multiset CR of the same weight, these elements come from the same numbgine
decomposable summands of WE()™sS, i.e., each of them is a characteristic root of on
an indecomposable summand of W)™ and these summands are distinct. The lemma
follows.

Proposition 1.3.4 (Purity for big Galois representation) Suppose thaV is semistable and
V is pure of weightw. Then the images of the ; under are # k-Weil numbers of weight
w. Consequently the map gives an equality of multisets

(CB=CE:
Before proving this proposition, we rst give a sketch of itroof.

1.3.2.1. Outline of the proof. The rst part of proposition [[.3.4]is proved using induction

and then the last part is proved in the last paragraph of the mof. The induction goes in
three steps. In step 1, we prove that the -specializations of the central elements of the inde-
composable summands of W)™ of largest dimension are Weil numbers of weight. In
step 2, we formulate the induction hypothesis, which says &éhfor an integer2 J m, the

-specialization of the central elements of the indecompda summands of WDY)™S of
dimension t; +1 are Weil numbers of weightw. In step 3, using the induction hypothesis,
we prove that the -specializations of the central elements of the indecomatde summands
of WD(V)Fss of dimensiont; ; + 1 are Weil numbers of weightw. These three steps prove
the rst part of the above proposition.

We give the outline of the proof of step 1 and 3. Step 1 is provegsing only the three
facts below.
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(1) WD(V )Fss is pure of weightw,

(2) (CR)= CR as multisets,

(3) WD(V )Fss is annihilated by the D-th power of its monodromy whereD denotes
the dimension of an indecomposable summand of WADY™s® of largest dimension.

Thereafter using the induction hypothesis, we prove that thre exists a summandV
(resp.W) of WD(W)Fss (resp. WD(V )Fs%) such that
(1) W is pure of weightw,
(2) (CR(W))= CR(W) as multisets,
(3) W is annihilated by the D-th power of its monodromy whereD denotes the dimen-
sion of an indecomposable summand W of largest dimension.

So by the proof of step 1, it follows that the -specializations of the central elements of
the indecomposable summands oY of largest dimension are Weil numbers of weight. By
the construction of W, its indecomposable summands of largest dimension are psety the
indecomposable summands of W)™ of dimensiont; ; + 1. This proves step 3. The
summandW of WD(V )™ with the above-mentioned properties is obtained by applym
the above lemma.

Proof. Since

we have
N = (N):

For any integers 0, all minors of N*® of size dimy NS(WD(V)™*%) + 1 has zero deter-
minant (since the same holds foN ®). Hence

(1.3.3) dimg N ** (WD(V)™%)  dimg N"™ (WD(V ))

forl | m.

We rst show that the -specializations of the ; coming from the indecomposable sum-
mands of WD(V)™® of largest dimension i(e., of dimensiont,, + 1) are of weight w. Notice
that

(1) WD(V )Fss is pure of weightw,
(2) (CR)= CR as multisets,
(3) WD(V )Fss is annihilated by thet,, + 1-th power of its monodromy, i.e.,

dimg, N'"** (WD(V )™ = 0
(by equation (1.3.1) and [(1.3.B)).

SinceV is pure of weightw, the indecomposable summands of WM()™ S are of di-
mension at mostt,, + 1. These summands are of weightv. So the di erence of the weights
of a highest weight and a lowest element of the multis€&R is at most 2.

Let i; ; denote the central elements of two indecomposable summarafsWD(V)™ss
of dimensiont,, +1. Then ( igm)and ( ;g~2) are elements oCR (by theorem[1.3.1)
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and hence
wt( (g™ ) wt( (9 "F)  2ty;
which gives

wt( (g™ wi( (ja ") =2t +wi( (1)) wi( ()

So ( j)and ( ;) are Weil numbers of same weights.

By the same reasoning, ( ;) (q©2)'™ (resp. ( i) (q¥®) ') is a highest (resp.lowest)
weight element of CR . SinceV is pure of weightw, the Weil-Deligne representation
WD(V )Fss is also pure of weightw and hence its weightw is equal to the average of
the weights of a highest weight and a lowest weight element &R . Notice that this
average weight is the weight of ( ;). So the -specialization of the central element of any
indecomposable summand of WI)™sS of dimensiont,, + 1 is a Weil number of weightw.

Note that if m = 1, then the rst part of the above proposition follows. So asume that
m 2. We will use induction to prove the rst part of the propositon.

Let2 J m be an integer such that the -specializations of the central elements of
the indecomposable summands of W)™ of dimension at leastt; + 1 are Weil numbers
of weight w. To establish the rst part of the proposition, it su ces to show that the -
specializations of the central elements of the indecompaéa summands of WDY)ss of
dimensiont; ; +1 are also Weil numbers of weightv.

Ford j m;1 k g, letVy be as prescribed by lemmia 1.3.3. So we have

(134) dlrﬂép \/jk tJ +1>t; 1 +1
forallJ j m1 k ¢. Let
v M v M
WD(v)Fr—SS =W \/jk : WD(V )FI’—SS =W \/jk
j=J k=1 j=J k=1

be the decomposition of WDY)FsS and WD(V )FS into Weil-Deligne subrepresentations
whereW (resp.W) is the internal direct sum of the indecomposable summand§WD(V)F-ss
(resp. WD(V )Fs5) apart from the Vix (resp.Vik).

Then equation [1.3.1) gives
xn
dimge NB 1 (WD(V)ss) = Gt ty 1)
j=J
Using equation [1.3.B), we get
A t +1
(1.3.5) G(t ty 1) dimg N® " (WD(V )™):

j=2
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This decomposition gives

(1.3.6)
dimg N " (WD(V )F)  dimg N" 1+1W+Xn (t t )+Xn X dimg Vic (t +1)
Qp Qp C] J J 1 Qp jk ]
j=J j=J k=1
where
xn X
j=J k=1
by equation (1.3.4) and also
dimg N" w0
P
Hence
(1.3.7) dil’n@p ij =1 +1
foralJ j m1 k ¢ and
(1.3.8) N® “H(w)=0:

Since (CR(Vjk)) is a subset of CR(Vjc) for all J ] m,1 k ¢, by equation
(1.3.7) we get
(CR(W)) = CR(W)

as multisets. So we have

(1) W is pure of weightw,

(2) (CR(W))= CR(W) as multisets,

(3) W is annihilated by the D-th power of its monodromy whereD denotes the dimen-

sion of an indecomposable summand W of largest dimension.

So the -specializations of the central elements of indecomposatdummands oW of
largest dimension {.e., of dimensiont; ;+1) are Weil numbers of weightw by an argument
similar to the proof of the fact that the -specializations of the central elements of the in-
decomposable summands of WO()FsS of largest dimension i(e., of dimensiont,, + 1) are
Weil numbers of weightw.

Now it remains to show that (CEH = CE . Let CE (resp.CE) denote the multi-
set formed by the central elements of the indecomposable smands of WD(V)™sS of odd
(resp. even) dimension. Note that the multisetCE,, ¢**?CE, are disjoint sub-multisets of
CR (one of them might be empty but not both). So (CE) and (g'™?) (CE) are disjoint
sub-multisets of (CR) = CR . Moreover the equality (CR) = CR also shows that (CE)
(resp. (0+?) (CR)) is the submultiset of CR of Weil numbers of weightw (resp.w + 1) by
the rst part of proposition {.3.4, Since WD )7s is pure of weightw, we get

CE = CR)[ @' (@ (CE)

This gives the desired equality
(CB=CE:
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1.3.3. Decomposition of WD(V )75, The proposition below is a consequence of the
above lemma. This lemma allows to determine the gradings did monodromy lItration of
WD(V )ss from the setCR using purity of V . Then we get the structure of WD )F-ss
from lemmal1.1.4b.

Proposition 1.3.5. Suppose thaW is semistable andv is pure. Then

NP NY
(1.3.9) WD(V )F-ss: Sp, ( ri)%p
ji=1 i=1

as Weil-Deligne representations.

Proof. SinceV and WD(V )Fs have same underlying vector spaces and have same mon-
odromy, the monodromy Itration on WD(V )™ is equal toM . .

Sincel acts trivially on WD(V )8, its action is also trivial on the terms ofM . . So
GrM . is a Frobenius-semisimple unrami ed representation &k for any k 2 Z.

By proposition[1.3.4, the characteristic polynomial of on GryM ; is

Yoy o
(X (g
i=1 1] m
tj kmod2
tj k tj
For 2 ﬁp, let s W ! Gp denote the unrami ed character which sends to . Since
GryM . is a Frobenius-semisimple unrami ed representation &y , we get
N M .
Gr M : ' ( 1)ge2 !
i=Z1 1 ) m
tj kmod?2

t kot

By lemmal[1.1.45, the proposition follows.

1.3.4. Proof of theorem 1.2.1.]

Proof of theorem 1[ZI] SinceT is monodromic overk °(as assumed in{1.2.2), the W o-
representationVjw, , is semistable. Since th&Vy -representationV and W o-representation
Vijw, , have same underlying vector space and have the same monodyotheir monodromy
ltrations are equal. Thus it suces to prove theorem when V is semistable. So
assume that theWy -representationV is semistable. By equations (1.1.12), (1.1.13) and the
equations (1.3.1), [(1.3)9) above (the last two equations ply as V is semistable andv is
pure), the powers of the monodromyN do not degenerate under and the dimensions of
the monodromy lItrations M , M. match termwise.

1.4. Compatibility of Itrations

In this subsection, we prove theorem 1.2.2 in the followingay. Its part (1) and (2)
follow from proposition[1.4.2,[1.4]3] 1.4l5. From propogin below, its part (3) also
follows.
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1.4.1. Image lItrations.

Lemma 1.4.1. Suppose that the conditionmono-non-deg)holds. Then for any integer
a 0, the R, -moduleT, =(N°T), is free.

Proof. Consider the exact sequence
(1.4.1) 0! (NoT)p !'T p IT ,=(N°T), ! O

of R, -modules where the second map is the inclusion map and therthmap is the projec-
tion map. This gives

(1.4.2) kg, To S(N°T)p =dimgV  dimgeNeV:
Applying r, L to the short exact sequence in equatior (1.4.1) yields the aot
sequence oL -vector spaces below.
(N*T)p r, L ! VO (T, =(N?T)p) R, L ! O

Considering the image of the rst term of the exact sequence its second term, we get
the short exact sequence

0! N2VoI VO (T, %(N°T),) g, L ! O

So

dimap (Tp :(N aT)p ) Rp L L Gp =dim Q, V dimép NavV :
Thus
(1.4.3) dim. (T, AN°T),) &, L =dimg V dimg NV :

Since the condition [(mono-non-deg) holds, the equations.413), (1.4.3) show that the
rank and the residue dimension of th&, -module T, =(N®T), are the same. So the result
follows from Nakayama's lemma.

Proposition 1.4.2 (Image ltration) . Suppose that the conditionjmono-non-deg)holds.
Then for any integera 2 Z, (N®T), is free overR, andthe map induces an isomorphism

(1.4.4) (N®T), g, L ' N2V&

Proof. If a 0, thenN?2 =id and hence the lemma follows. So assung 0. Then from
the exact sequence in equation (1.4.1), it follows thalN®T ), is free overR, by applying
Iemma@ and Nakayama's lemma. By Iem.l above, appty R, ; L tothe
exact sequence in equatiori (1.4.1) yields the short exacgsence below.

(1.4.5) 0! (N®T), g, L ! VO VEN2VOI O

This proves
(N*T)p g, L " ker(VoL VENTVY;
showing
(N*T)p g, L ' N2V&

Now using propositionf 1.4.2, we generalize lemrpa 1]4.1.
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Proposition 1.4.3 (Gradings of image ltration). Suppose that the conditioffmono-non-deg)
holds. Then for anya;b2 Z with b a, the R, -module

(N3T), =(N°T),
is free and the map induces an isomorphism
(N3T), (N°T), &, Q' NV =N"V:

Proof. Note thatif r 0 is an integer, thenN" =id. Soifa 0Oandb O, then lemma
gives the result. Ifa 0 andb 0, then the result follows asN® = id. So from now
on, we assume& 0.

Consider the exact sequence
(1.4.6) 0! (NPT), ! (N?T), ! (N2T), (N°T), ! ©

of R, -modules where the second map is the inclusion map and therthmap is the projec-
tion map. This gives

(1.4.7) rke, (N?T)p =(N°T)p, =dimg N2V  dimgN®V:

Applying r, L to the short exact sequence in equatior| (1.4.6) gives the exa
sequence ol -vector spaces

(N’T), ®m, L ! N®VOL (N°T), =(N°T), g, L ! O
by proposition[1.4.2.

Considering the image of the rst term of the exact sequencae its second term, we get
the short exact sequence

(1.4.8) 0! NPVOI N2Vl (N®T), (N°T), , L ! O
So

dimg, (N°T), =(N"T), &, L L Gp:dimeNaV diméprv:
Thus

(1.4.9) dim. (N®T), (N°T), g, L =dimg, NV dimGprV:

Since the condition [(mono-non-deg) holds, the equations.417), (1.4.9) show that the
rank and the residue dimension of th&, -module (N4T ), =(N°T), are the same. So it is
free by Nakayama's lemma. Then equatiorj (1.4.8) gives

(NaT)p :(NbT)p Rp ; Gp' N3V =NPV -
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1.4.2. Kernel ltrations. Fori;j 2 Z, put

sj=ker T \vim TN
% =ker Vo' VO \im vort v

i i
Sy =ker VI V \im v I Vv

Note that
S; =ker(N'T "' N*IT);

. j S
% =ker(N'VOrl' NIV
. j S
Sy =ker(N'V I N™V):
Lemma 1.4.4. Suppose that the conditionjmono-non-deg)holds. Then for anyi;j 2 Z,
(Sj)p Iis free overR, and the map induces an isomorphism

(1.4.10) Gide ro: L " S

Proof. Note that when | 0, then N/ = id and so this lemma follows from proposition
. Wheni 0, thenS; = f0g, S% = f0g, so there is nothing to prove. So from now
on, we willassuma 0;j 0. Then localizing the exact sequence

0!S ! NIT! N™ITI O
at p gives the short exact sequence
(1.4.11) 0 (Sj)p ! (NIT), ! (N"IT), I O

The last three terms of this sequence are free ov, by proposition[1.4.2. So it follows
that (S;), is free overR, by Nakayama's lemma.

By proposition , applying g, ; L to the exact sequence in equatio 1)
yields the short exact sequence below.

(1.4.12) o' (Si)p =&, L ! NIV NIV 0

This proves . .
(Sidp R, L ' ker N'VOI N™IVO =89 -

Proposition 1.4.5 (Kernel ltration and gradings) . Suppose that the conditiorfmono-non-deg)
holds. Then for anya 2 Z, the R, -moduleker (N?: T !'T ), is free and the map induces
an isomorphism

ker(N®:T IT ), Rr,; Q' ker(N*:V I V)

Moreover for a;b2 Z with a b, the R, -moduleker(N2 : T I'T ), =ker(N®: T I'T ),
is free and the map induces an isomorphism

ker(N2:T IT ), =ker(N°: T IT ) rR. - Q' ker(N2:V ! V)=ker(N°:V ! V):
p p p p
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Proof. Note that there is nothing to prove ifa 0. So we assume thaa 1. Consider the

short exact sequence
0! ker(N®:T IT ), IT ot " (N2T), | ©

of R, -modules. From propositior] 1.4]2, the rst part of the lemméollows.

Note that if b 0, then the second part follows from the rst part. So we assuetb 1.
Applying snake's lemma on the commutative diagram

0—tker(T " ) —Ir —NUNPT b
- -

0—tkerm ¥ ) —im NUNaT — b

with exact rows, we get an isomorphism
coker ker(T N )! ker(M® ) * ker N® P:NPT I NAT
of R-modules. So we have an exact sequenceReimodules
0 ker T™ 1 ker 1" 1S L pp! O
By lemma[1.4.4, we are done.
1.4.3. Monodromy Itration;. Note that by eq)téation (1.1.11)

(1.4.13) My = Sisr; j; My = Sii; |
i+j=k i+j=k

forallk 2 Z.

Proposition 1.4.6 (Monodromy ltration and gradings) . Suppose that the conditiongmono-non-deg)

(mono- I-dim) hold. Then for anyk 2 Z, (M \), is free overR, and the map induces
an isomorphism

(M) Rp;ép' M :
Moreover for anyi 2 Z, the R, -module (GriM ), is free and the map induces an
isomorphism
(GriM )y g, Q" GrM,; :
Proof. The exact sequence
(1.4.14) 08 M) !'T ! (T=M ), ! O

of R, -modules show
tkr, (T=M )p =dimgV  dimgM y:

Moreover applying Rp ; Gp to this exact sequence gives the exact sequence

M)y Ry Q! V! (T=M)p &, ; Q! O
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of Qp-vector spaces. Note that lemma 1.4.4 and equatiop (1.4.13josv that the image of
the rst term of the above exact sequence in the second term M ., . So we have an exact

sequence B

0! My ! VI (T=My)p =r,: Q! O
and thus B

dimép(T M)y Ry Q= dimép Vv dimép M ;

e dim, (T=My)p r,; L =dim_ V dim. M y:
Since the condition [(mono- I-din) holds, we get

tkr, (T=M )p =dim_ (T=My)p, =r,; L:
So by Nakayama's lemma,T=M ), is free overR, and hence M ), is free overR, .

Thus applying Rp ; Qp to the exact sequence in equation (1.414) yields

Mp Ry épl Im (M) R, ép! \
Then lemma[1.4.4 and equation (1.4.13) show that
My Ry ; épl M :

Now let i be an integer. Then using the above isomorphism fér= i and repeating the
proof of freeness of [ =M ), overR, with T;M ;V ;M y replacedbyM ;M ; ;M ;M 1
respectively, we get (GM ), =(M =M 1), is free overR, .

Finally the exact sequence

oO'M ; ¢!M ;! GrM ! O
combined with the above equation gives
(GriM )y Rr,: Q' M;=M; 1=GrM, :

1.5. Rationality and interpolation of summands
In this section, we prove theorem 1.2|3. It follows from pragsition[1.5.1[1.5.8.

1.5.1. Rationality. Let (r; N ) denote the Weil-Deligne parametrization ofl [1=p|. By
proposition|1.1.29, the representation WDI [1=p]) decomposes into an internal direct sum
of R[1=p|]-submodules as

WD(T[1=p)) = WD( T[1=p))'x  WD(T [1=p))'* ;
both of which are stable undeWy and N.

Proposition 1.5.1 (Rationality over O¢[1=p]). There exist
(i) an integer m 1,
(i) integers 0 t; < <tm,
(i) an integer M 1,
(iv) M distinct unrami ed characters r; :ry of with j:=ri( )2 OK and

(v) integersn; Ofor1 i M;1 j m (with i'\il n; 1for eachj)
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such that

NP ONY o
(1.5.1) (WD(V)'x )T Spy, (ri)
j=1 i=1
as Weil-Deligne representations. There also exist
(i9 anintegerm® 1,
(i 9 integers0  t9<ty<  <tQ,
(iii 9 an integerM® 1,

(iv9 unrami ed characters 9, ; §o:Wk !0
irreducible Frobenius-semisimple representations
2:Wk ! GLa(Q) i MoiWk ! Gla,o(Q)
with nite image and
(v9 integersn? Oforl i MS%1 j m°
such that
Ik ;c\Fr-ss " v 0 ng
(15.2) (WD(V)'« ) Spo( 7 D
i=1 i=1

as Weil-Deligne representations. So

Fr-ss e N nij A 0 ng

(1.5.3) WD(V) Sp, (1) ¢ ngo( i ?):K

j=1 i=1 j=1 i=1
and the indecomposable summands \WD(V)™ s are de ned over Ox[1=p. The character-
istic polynomial of on WD(V)'« is

N Y

(X Iq( tj +2k)=2)nij .

j=1 i=1 k=0
For any prime ideal p of R[1=p], this polynomial is also the characteristic polynomial of
on the freeR [1=p,-module WD(T [1=[j)|'oK and hence it is an element oR[1=p|[X ]\O [X].

Remark 1.5.2. Henceforth we will consider the indecomposable summands of \(WD)™-ss
as de ned overOg[1=p.

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma|1.1.28. Its inertia invariants WD{/)'« and its complement WD{)'« ° are also Weil-

Deligne representations by lemmga 1.1.9. By lemma 1.1.10, (WD)'« )™ss, (WD(V)'« ©©)F-ss
are Weil-Deligne representations. Hence by theordm 1.1.2fkere are

(1) integersm 1,0 t;<t,< <tm,

(2) one-dimensional unrami ed distinct Weil representatbnsr 4; ‘ry of W over K
for some integeM 1,
(3) integersn; Oforl i M;1 |J m

and
(19 integersm® 1,0 tf<tI< <t?,
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(29 irreducible Frobenius-semisimple representations);  ;r. of Wx over K for some

integerM® 1,
(39 integersn?  Oforl i M%1 j m°
such that we have isomorphisms
NN N . nM° Mm° o
(WD( V)" )Fres Sp, (ri):  (WD(V)'x©)Frss Spe ()
j=1 i=1 j=1 i=1

of Weil-Deligne representations. By proposition 1.1.14ofeach 1 i M? there exists an
unrami ed character 0:Wg ! K and an irreducible Frobenius-semisimple representation
9: Wk ! GLg4 (Q) with nite image such that

0. 0 o0

rl i i=K

as Wy -representations oveK. So to establish equations| (1.5/1)[ (1.5.2), it remains tdsw
that the r; and ? have image inOK. Since ther; and ? are unrami ed, it su ces to show

that the ri( ) and ( ) are elements ofO,.

The characteristic roots of on WD(V)™sS are elements o0 since the characteristic
polynomial of on WD(V)Fs and WD(V) are the same and WDY) is de ned overR. So
the characteristic roots of on the Spj (ri)s and Spjo(rio)zK are elements ODK.

If r; comes from an indecomposable summand of odd dimensioe.( there exists 1
j  muwith t; +1 odd and nj 6 0), then ri( ) 2 O,.. On the other hand, if it comes from

a block of even size, them;( )™ 2 O . Sinceq'™ is a unit in O, we getri( ) 2 O.
Similarly if the °comes from an indecomposable summand of odd dimensioa.( there
exists 1 j m°with t?+1 odd and n? 6 0), then { ) times a root of unity belongs to
O, which shows X ) 2 O,. On the other hand if it comes from a block of even size, then
2 )g'™ times a root of unity belongs toO,, which shows ( )q'? 2 O. Sinceq'™ is a

unit in Oy, we get X ) 2 O.. So the equations[(1.5]1),[(1.5]2) follow.
Recall that there is a decomposition
WD(V) = WD( V)'x  WD(V)'«*®
as an internal direct sum of Weil-Deligne subrepresentatis by lemma[1.1.p. This shows
WD(V)™* = (WD( V)'* )™ (WD(V)'* €)7s:

So equation [(1.5.8) holds. Since the? are de ned overQ and Q has an embedding into
Og[1=p, the ? ?can be considered as a representation frow to GL4 (Ox[1=p). Thus

|
the indecomposable summands of W[ are de ned overOg[1=p].

By equation (1.5.1), the characteristic polynomial of on (WD(V)'« )™ss is
Y Y
(X Iq( tj +2k)=2)nij
j=1 i=1 k=0
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Since the multiset of characteristic roots of on WD(V)'«x and on (WD(V)'« )Fss are the
same, the above polynomial is the characteristic polynontiaf on WD(V)'« .

Recall that for any prime idealp of R[1=p|, WD(T [1:;21),'[,K is free overR[1=p|, by propo-

sition [1.1.29. So any two consecutive entries of the list

(1) the characteristic polynomial of on WD(T [1:p]),'oK ,

(2) the characteristic polynomial of on WD(T [1:p])|'oK R[1=p, Frac(R[1=plp),

(3) the characteristic polynomial of on WD(T g K)'«,

(4) the characteristic polynomial of on WD(T g K)'«x = WD( V)'«
are equal where the equality of the last two entries followsdm |[Fon04, proof of Proposition
0.0]. So the characteristic polynomial of on WD(T [1:pﬂ)'pK 5

Y ¥V
(X i BTN 2 R [1=pp[X]:

j=1 i=1 k=0

The last assertion follows sinc® [1=p] is equal to the intersection of its localizations at
prime ideals (taken insideK).

1.5.2. Interpolating summands of ~ WD(V )Fss,

Proposition 1.5.3.  Suppose that the conditiongmono- I-dim) , (mono-non-deg)hold. Then

. NP N S 0 . o
WD(V )™ Sp (0 i)y S (7 D
1 im Qp i Qp

= 1= = 1=

as Weil-Deligne representations.
Proof. Let q d_enote a prime ofOy[1=p lying above the primep of R. Denote a lift of
: Ogl[1=g ! Qp to Ok[1=pl by

Since the conditions [(mono-non-deg)[ (mono- I-difn) holdby theorem[1.2.2 theR, -
module (GikM ), is free and the map induces isomorphism oW -representations

(GrkM )p Rp ; Gpl GrkM;

forallk 2 Z.

So the Wi -module GiM r Oxll=p, is free overOy[l=py and hence it is aW -
representation. By proposition[ I.5]1, the trace of thid\V -representation is same as the
trace of the W -representation

1
0 1 0
NY! M i M° M "
i i k=2 . o k=2 i
% I’iJAI’tKle o ( i0 ?)JArtKle v
i=1 1] m =Og{1=plq =L 1] mo =0 [1=plq
tj kmod2 t® k mod 2
tj Kkt tjo ‘ tj°
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So the trace of theWy -representation GkM . is same as the trace of th&V -representation

0 1
0 1
'\W M Nijj MO M n.Q
. 1: k=2 'V 0 . 1. k=2 i
% HJArt Gl (7 DiArt i
i=1 1] m =Qp i=L 1 j mO =Q
tj kmod?2 t% k mod 2
ok tho k t0

Since GKM . is a semisimple representation d#Vy, it is isomorphic to the above repre-
sentation (by [Ser98|, Chapter 1, x2] for instance). The proposition follows from lemma
[1.1.45.

1.6. (Proof of) Purity for big Galois representations
Before proving theorenj 1.2]4, we discuss some propertiesTof .

1.6.1. Compatibility. Recall that p denotes the kernel of : R ! Gp. Denote the
image of this map byL and note that it is a sub eld of Qp as it is isomorphic toR, =p R, .

Denote the G -representationT gL =T o L by V2 Let (r ;N ) denote the
Weil-Deligne parametrization ofV% Denote by ¢, ; N, ) the localization WD(T [1=f]), of
the Weil-Deligne parametrization WD(T [1=p]) = (r; N ) at p . Denote the image of

1 X

~ #m(r(ix) J

92Im(r(lk ))

in M,(R[1=pl, ) by , , which is an idempotent as is so. Since
Vo= T[l=pp  rps=py : L

we have

(1.6.1) r = ro, andN = (Np):

De ne the element
1 X

QD) g2im(( 1)1k )

Then by lemma[1.1.9, is an idempotent and WD 9 decomposes into an internal
direct sum of Weil-Deligne subrepresentations as

(1.6.2) WD(VY =wD( V%'« wD(V9'«e:
Proposition 1.6.1 (Compatibility) . We have

g 2 ML ):

(r N )jwocvoyx = (rp i Np )J'WD(T[1=p])'pK

(r ;N )jWD(VO)'K?c = (rp ;Np )jWD(T[]_:p]):)K °
as Weil-Deligne representations.
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Proof. Recall that by proposition|1.1.29, WD{ [1=f]), decomposes into an internal direct
sum of Weil-Deligne representations as

(1.6.3) WD(T [1=d)), =WD( T[1=p));< WD(T [1=p]),<*°
with
WD(T[1:|:ﬂ)'pK = p WD(T[1=p])p ; WD(T[l:;j)'pK C=(1 p JWD(T[1=p))p :
By equation (1.6.1), we have
(p)=

Since , ,1 , are idempotents, it follows that

(p)=
@ ) @ 5)=0
@ ) (p)=0
@ ) @ p)=1
So
(1.6.4) WD(VI'* = (WD(T[1=p)),*); WD(V9'*= (WD(T[1=)," ):

Now the rst part of the proposition follows from equation [16.1).

Corollary 1.6.2. We have
s gl I P

dimg V'« dIme AR
Proof. Put
(165) Nl = NjWD(T[1=p])|pK ;N 1= N jWD(VO)lK :
Then proposition[1.6.1 gives

N 1= (Ny):

By proposition|1.1.34 andlfon04], proof of Proposition 0.0], we obtain the desired inequayit

Remark 1.6.3. WhenV is semistable, this corollary can be deduced from equatid.8.3)
using proposition 1.1.34.
Remark 1.6.4. This corollary is also obtained in[BC09/, x7.8.1].
1.6.2. Generating inertia invariants. Recall that we have decompositions
WD(VY =wD(V9'x  WD(V9'kic,
WD(T [1=p)), =WD( T[1=g) WD(T [1=p]) *:

as in equation [(1.6.2) and[(1.6]3). From equatior} (1.6.4),erhave
(1.6.6) WD(VI'* = (WD(T[1=p)),*); WD(V9'*= (WD(T[1=)," ):
By de nition of semistable and totally non-semistable pars (as given in corollany 1.1.30

and[1.1.33), we get
((T[1=plss)p ) = (V%ss; ((T[1=Plnss )p ) = (V()tnss
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From equation (1.6.5), we have
N1 = NjWD(T[lzp])lpK; N 1= N jwp(vox :
So this can be rewritten as
N1 = Njrp=ps), - N 2= N jrog

and we have
N 1= (N

by proposition[1.6.1. Now put
N2 = Njrpzpins)p 0 N 25 N jvo
and note that proposition[1.6.1 gives
N 2= (N2):

Notice that
N = Nl Nz, N =N 1 N 2.

In the following we will also use the notationN; (resp.N;) to denote the restriction of
N tO T [1:Fiss (resp.T [1:qn']ss).

Recall from corollary[1.1.3D that we have a decomposition
T[l=p = T[1=Plss T [1=Plnss:
We will denote the projection maps
T=A!'T [1=pss; T[I=P!'T [1=Plinss
by s and s respectively. Similarly the projection maps
VI (V)ss;V ! (V)inss

are denoted by ss; mss respectively. From lemmd 1.1.31 and propositign 1.6.1, wave
isomorphisms

T [1=fss R [1=p]; Gp =(T [];dss)p R[1=p]p ; Gp "V )ss

T [];dtnss R [1=p]; Gp = (T [1:Fﬂtnss)p R[1=plp ; Gp I (V )tnss
induced by the map and consequently

(1-6-7) ss  R[1=p]; Gp = SS 1 tnss  R[1=p]; Gp = tnss -
Lemma 1.6.5. We have
(1.6.8) T[1=p'* =ker(Ny: T[1=plss ! T [1=Plss)

and consequently
O!'T [1=g'* I'T [1=|o]ss!Nl N:T[1=pss! O

is exact. Moreover when the conditionfmono-non-deg-L)holds, the localizations of all the
terms of this exact sequence gt are free overR[1=p), .
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Proof. A little modi cation of the proof of proposition gives the proof of equation
(1.6.8).

First note that equation (1.1.10) gives
(T[2=@ rp=p K)'* =ker Ny :WD(T[1=p rp=gK)'*! WD(T[l=p rp=gK)'*
Since
WD(T[1=p rp=p K)'« = WD( T [1=g)'* Riz=p K

by lemma[1.1.3P and
T [1=plss = WD( T [1=p})'¥

by de nition (as given in corollary [1.1.30), we get
(T[1=p Rrp=p K)'* =ker Nip:T[1=plss ra=p) K!' T [1=plss rp=p K
Note that T [1=p| can be considered insidd.€., can be thought of as arR[1=p-submodule
of) T[1=p rp=p K as it is torsion free (being free over a domain). So
T[1=p' = T[L=p\ (T[=p rp-p K)'X

= (T [l:dss T [1:Fﬂtnss) \ ker N.:T [1:dss R [1=p] KIT [l:qss R [1=p] K

= T[1=ss\ ker Ni:T[1=plss Rrpu=p K!'T [1=pss rp=p K

=ker(N; : T[1=pss ' T [1=plss):

This proves equation |(1.6.8) which in turn shows that the segnce stated in the lemma is
exact.

Now it remains to prove the last part of the lemma. Note that by poposition[1.1.29,
(T[1=plss)p Is free overR[1=p, . So by Nakayama's lemma, it suces to prove that
(N1T [1=plss)p Is free overR[1=pl, . Again by Nakayama's lemma and the exact sequence

0! (NiT[1=plss)p ! (T[1=[ss)p ! (T[1=Plss=N1T [1=pss)p ! O;

it is enough to prove that (T [1=plss=N1T [1=pss)p is free overR[1=p|, . This would follow
from Nakayama's lemma, once we prove that

is same as
dimL (T [];Fiss:NlT [];dss)p R[1=plp ; L = dimL (V()ss dimL N 1(V()ss:

This follows as
N=N; Nz N =N; Ny
N = (N); Ni1= (Ni); N2= (N2)
and the condition (mono-non-deg41) holds.

We record an immediate corollary of the above proof.

Corollary 1.6.6. Suppose that the conditionfmono-non-deg-[l)holds. Then the map
induces an isomorphism

N:T[1=dss Rp=p; ép' N 1(V )ss:
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Proof. In the above proof we have seen thafl([1=pss=N:T [1=pss), is free overR[1=p|, .
So the exact sequence

0! (N1T[1=plss)p ! (T[1=Pss)p ! (T[1=Plss=N1T[1=[ss)p ! O
gives
(N1T[1=pss)p  Rp=plp ; Q' IM (N1T[1=Plss)p ru=p, ; Qp! (T[17Mss)p Rrp=p, : Qp

Since B
(T [1:dss)p R[1=plp ; Qp ' (V )ss
from lemma[1.1.3]l and propositioh 1.6.1, we get the corolar

Lemma 1.6.7. We have an exact sequence
0! T (=g« ' T [=g!™ = ™ NyT[1=gss T [1=fhnss ! O

of representations oWy over R[1=p. Moreover when the conditionjmono-non-deg-[Lholds,
the localizations of all the terms of this sequence pt are free overR[1=p], .

Proof. Exactness of the above sequence follows since
T[l=pg = T[1=plss T [1=plnss
and
O!'T [1=g ! T [1=Plss!"* NiT[1=pls! O
is exact by the above lemma.

By proposition|1.1.29, the localization off [1=plnss at p is free overR[1=p, . So we are
done by the above lemma.

Proposition 1.6.8. The R, -modulesT,*, T, =T,* are free and the map induces an
isomorphism B

T Ry Qpt VI
Proof. From lemma[1.6.7, it follows that

(TI=A")p ; TI=pp ST [1=A")p

are free overR[1=p, . Note that p2Zp asp =ker( :R! Gp). SoR[1=p, = R, and
the modules

To« =(TO=')p s Tp =Ty« = T[I=p, AT =P,
are free overR, .

Now it remains to prove B
T' g, Q' V'*:
Note that applying  rp=p; Qp to the exact sequence in lemnfa 1.6.7 yields the short exact

sequence
M

orT [1=qlK R [1=p]; ép LV NGT [1:Fjss R[1=p]; Gp T []thnss R[1=p]; ép 1o
where the third arrow is
((Nl ss) tnss) R [1=p]; Gp:
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In other words "
OIT '* g Qy! V! Ni(V)s (V)nss! O
is exact by corollary[1.6., lemma 1.1.31, propositign 1Iband equation [1.6.]7). So
T Ry Qp' Ker(N 1:(V)ss! ' (V)ss)
=ker(N 1 : WD(V )"« 1N * WD(V )'*):

(N 1 ) tinss

By equation (1.1.10), we get
T IK R . Gp 1 VIK .
o ;

p
1.6.3. Proof of theorem 12.4 ahd proposition 1.2.5. ]
Proof of theorem 1[2.4. 1 Suppose thatV is pure of weightw. Part (1), (2), (3) of this
theorem follow from theorenj 1.211], 1.2/2, 1.2.3 respeclive
SinceV s pure, part (4) of theorem] 1.2 4 holds.
The rst part of theorem [L.2.4(5) follows from proposition[ 16.§. The rest follows from
[Stal4) Tag 064K], Stal4) Tag 06Y6].

Note that Eul(V) ! has coe cients in R, by part (5). SinceV is de ned over R,
the polynomial Eul(V) ! has coe cients in Ox \R , . Its -specialization is Euly/ ) * by

proposition[1.1.34 and theorer 1.2.4(3). So we have part (6) theorem[1.2.4.

Proof of proposition 1.2.5. | SinceV is de ned over R, the polynomial Eul(V) ! has co-
e cients in Ok. The inequality of this proposition is from corollary 1.6.R
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CHAPTER 2

Determinants and Selmer complexes

In this chapter we recall the notion of determinant functor ad Selmer complexes referring
to [KM76,/Nek06 | for further details. These are used in the next two chaptet® construct
algebraicp-adic L -functions for Hida families.

2.1. Determinants

2.1.1. Triangulated categories. In this subsection, we review the notion of derived
category from [Stal4]. Notice that the sign convention of [ftal4] agrees with the sign
convention of BBM82 | x0.3.1, p. 2] (by [Btal4), Tag 014L]), which is followed byINek06
x1.1.3]. So the following is consistent withNek06 |.

2.1.1.1. Cochain complexesWe rst recall some notions and describe some of their prop-
erties. Fix an abelian categoryA and denote the category of cochain complexes & by
C(A). There are shift functors p] on C(A) de ned as follows:
(1) for a cochain complexX,
X i = Xn+i
xi= " .
dy o =( 1)"dy

(2) for a morphism of cochain complexes: X ! Y,
f[n] = f"*:

The cone of a morphisnf : X | Y of cochain complexes irA is the object of C(A)
de ned by

8
2Y X[1] _ o
S di dIY f i+1

~ Ocone(f) ~ 0 dix "

Conet) = YEOX[J Y X[t

The cone ts into an exact sequence of complexes
(2.1.1) 0! v1!' Conef)” X[1]! O

wherej and p are the canonical inclusion and projection respectively. he corresponding
boundary map
@ H'(X[1]) = H"™ (X[ ! H™(Y)
is induced byf '* . Note that the above exact sequence gives the trianglg;(Y; Conef );f;j;p )
in C(A) (cf.[Stal4] Tag 014E]).
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2.1.1.2. Homotopy category.The homotopy categoryK (A) of the abelian categoryA
has the same objects a8(A) and its morphisms are homotopy classes of maps of complexes
(cf.[Stal4) Tag 013H]). Note that the shift functors h] on the category of cochain complexes
give rise to functors il : K(A) ! K (A) such that [n] [m]=[n+ m] and [0] =id (equality
as functors). The categornK (A) is a triangulated category with these translation functos
and distinguished triangles as the triangles in it isomorphb to the image of the triangle

xt" v1? Conef)! P X[1] f 2 Homeny(X;Y)
in C(A) under the functor C(A) ! K (A) (cf.[Stald], Tag 014S, Tag 0141, Tag 014L]).

2.1.1.3. Derived category.Recall that A denotes an abelian category. The derived cat-
egory D(A) of A is the triangulated category de ned as the quotient of the tiangulated
category K (A) by its full triangulated subcategory of acyclic complexeswhich is the lo-
calization of K (A) at the quasi-isomorphisms ¢f.[Stal4] Tag O5RU, Tag 05RI, Tag 05R6,
Tag 05R6]). The additive functorsf[n]g,.z on D(A) are induced by those oK (A) and
the distinguished triangles ofD (A) are the triangles inD (A) whice are isomorphic to the
image of a distinguished triangle under the localization npa(cf.[Stal4) proof of Tag 05R6]).

2.1.1.4. Complexes of moduleskor a ring R, let rMod denote the category oR-modules,
which is an abelian category. Its derived categor (rMod) is a triangulated category. Its
full subcategory of cohomologically bounded complexes isnbted byD °(xMod) and the full
subcategory ofD°(xMod) of complexes having cohomology of nite type oveR is denoted
by D2 (xMod). Notice that D"(xMod), D (xMod)) are preserved under the translations
[1;[ 1] and any arrowf : X ! Y in DP(rMod) (resp.D® (rMod)) can be completed to
a distinguished triangle &;Y;Z;f;g;h) in D(rMod) with Z in the objects of D°(xMod)
(resp.Df, (rRMod)). So they are triangulated subcategories @ (rMod) with the restrictions
of f [n]gn2z as the translations and distinguished triangles as the trgles in it which are dis-
tinguished triangles inD (rMod) (cf.[Stal4) Tag 05QX, Tag 066R, footnote in Tag 05QM]).

2.1.1.5. Exact sequencesRecall that A denotes an abelian category. The functaC(A)
to D(A) becomes a -functor with the following rule (cf.[Stal4) Tag 0152]). For every exact
sequence of complexes

ol xt"vn%zri o
in C(A), de ne the arrow
= xivirz:Z! X[1]
in D(A) by
Z 9 conef)! " X[1]
whereq: Conef)! Z denotes the arrow inC(A) which is zero onX[1] andgonY.

Remark 2.1.1. Note that the map associated with the exact sequence of equatign (2]1.1)
satis es

v cone®) ® X1 f[1] in Hompa)(Z; X [1])
(cf.[Stal4] Tag 014]]).
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2.1.2. Perfect complexes. A complex M of R-modules is said to beperfect if a
bounded complexP of projective R-modules of nite type is quasi-isomorphic to it (see
[SGA71], p.42{]). An R-module M is said to beperfect if it becomes perfect when con-
sidered as complex concentrated in degree zero. The deritedsor product of a perfect
complex overR with an R-algebraR?is perfect overR° (by [Stal4], Tag 066W] for example).

Denote by Parfz the full subcategory of the derived category oR-modulesD (rMod)
consisting of perfect complexes. The category Parfs equivalent to the category Parfpecr)
(as in [KM76_}, p.39] for example) by KM76 |, Proposition 4].

Note that Parfr is preserved under the translations [1] 1], it is a full subcategory of
the triangulated categoryD (rMod) and any arrowf : X I Y in Parfgr can be completed to
a distinguished triangle ¥;Y;Z;f;g;h) in D(rMod) with Z an object of Park (cf.[Stal4,
Tag 066R]). So it is a triangulated subcategory dD (r Mod) with the restrictions of f [n]gn2z
as the translations and its set of distinguished trianglesoasists of the distinguished trian-
gles inD (rMod) which are also a triangle in Park (cf.[Stal4] Tag 05QX, footnote in Tag
05QM]; or alternatively [Stal4l, Tag 09QH, Tag 07LT]). Similarly, it is also a full triangu-
lated subcategory of the triangulated category °(r Mod).

A theorem of Auslander-Buchsbaum and Serre (seéBH93 |, Theorem 2.2.7] or'$tald),
Tag 066Z]) says that wherR is a regular noetherian ring, Par§ is equal toDf, (rMod).

Denote by Parf-is; the subcategory of Parg consisting of all its objects and morphisms
as isomorphisms. Evidently, the set of morphisms between dwobjects in this category is
empty if they are not isomorphic in Park.

2.1.3. Graded invertible modules. We recall the notion of graded invertible modules
from [KM76_].

The category of graded invertibleR-modules is denoted byPgr. Its objects are pairs
(L; ) wherelL is an invertible R-module and is a continuous function

: SpecR) ! Z;
and a morphismh : (L; )! (M; )is ahomomorphism oR-modulesh:L ! M such that
for eachp 2 SpecR) we have
(M6 (p)) hp=0:

The composition of two morphisms is obtained by taking the eoposition of the maps
between the invertible modules. Note that the composition V& indeed gives a map irPg.
Thus a morphismh : (L; )! (M; ) of graded invertible modules is an isomorphism if and
onlyif h:L! M is anisomorphism and =

The subcategory ofPr whose morphisms are isomorphisms is denoted Byisg. The
tensor product of two objects inPg is given by

(L; ) (M; ):=(L M; + )
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For each pair of objects I(; );(M; ) in Pr we have an isomorphism

w oy S(L ) (M (M) (L)
de ned by
0 my=( 1) ®m | forl2L,;m2 My

The object (R; 0) of Pr will be denoted by 1. A right inverse of an objectl{; ) in Pr will
be an object (% 9 together with an isomorphism

o (D T (R R &

A right inverse will be considered as a left inverse via

(2.1.2) L9 (L )yt w )y @t 9o

2.1.4. Determinant functor.

2.1.4.1.0On Gsg. For a commutative ring R, let Gz denote the category of projective
R-modules of nite type. Its full subcategory whose maps ars@morphisms will be denoted
by Csg.

For a projective R-module M of nite type, we put
det (M) = (~™*M; rkF)

where

(/\maXM )p — /\rkMpMp

for any prime idealp of R. This de nes a functor
det :Cisg ' P isr:

Moreover for every short exact sequence

0! F{ F F! 0
in Gr, we have an isomorphism

i(; ):detF; detFJ detF
such that locally
PG (e Me) (Fh N )= e d N eMah N A

for e (resp.f;) in the localization of F° (resp.F) at a multiplicative subset of R.
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2.1.4.2.0n Cis. For a commutative ringR, let G; denote the category of bounded com-
plexes of objects inG, morphisms being all maps of complexes. The full subcategamf G,
whose maps are quasi-isomorphisms will be denoted Gyisg.

A determinant functor from C is to Pis, denoted ;i ), is a collection of data as de ned
in [KM76 |, De nition 1]. We describe some of its properties.

For each commutative ringR, this data provides a functorfr from Cisg to Pisg. For
each short exact sequence

o' Fy F!' F,! O
in G, this data provides an isomorphism

ir(; ):f(Fy) f(R)  f(F):

When Gsg is considered as a full subcategory & isg by viewing its objects ofCsg as
complexes concentrated in degree zero, we have

f(F)=det F
for any objectF in Gisg and
ir(; )=1(; )
for any short exact sequence
o' F{ B F! O
in CiSR.
By [KM76 | Theorem 1], a determinant functor (as inlkKM76 |, De nition 1]) exists and
iS unique up to canonical isomorphism. We will denote it by (t;i).

2.1.4.3. On Parf-is. The extended determinant functor is a collection of data asethed
in [KM76 |, De nition 4] and by [KM76 |, Theorem 2] it exists and is unique up to canonical
isomorphism. We describe some of its properties. We have

detr(0) = 1:

For each commutative ringR, this data gives a functor deg from Parf-isg to the category
Pisr. When an objectM of Parf-isg is represented by a bounded compleéX of projective
R-modules of nite type,i.e., P is quasi-isomorphic taVl , we have a canonical isomorphism

detg(M ) = noz(detg(P")C V"

([KM76 |, Rem a), p.43]). When the cohomology modulgd"(M ) are perfect (considered
as a complex concentrated in degree zero), there is a canahisomorphism

(2.1.3) dek(M ) = naz(detg(H"(M )¢ V'

([KM76_, Rem b), p.43]). If the ringR is reduced, then for a distinguished triangle
Mg MY MY M [

in Parfr, we have an isomorphism

(2.1.4) ir(U;v; W) : detgM, detgM;!  detrM,
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which is functorial with respect to isomorphism of such triagles (KM76 |, Proposition 7]).
On bounded complexes of projectivR-modules of nite type, the extended determinant
functor coincides with the determinant functor given in¥2.1.4.2. Moreover the extended
determinant functor satis es the following base change pperty.

Proposition 2.1.2. Let :R! RO%be a ring homomorphism. Then for an objed! 2
Parf-isg, we have a canonical isomorphism

L
(detgM ) . R°= detgd(M g R9:
Proof. SeelKM76 |, De nition 4 1) iii), p.42].

2.1.4.4. Choosing an inverse.Suppose thatR is reduced. For an objecX of Parfg, we
choose degi(X [1]) as a right inverse of def(X) via the map

ir(0;0; idx[1]) :detgX detgX[1] detg0=(R;0)
obtained by applying KM76 |, Proposition 7] on the exact triangle

xt 00 xpp ™M x[1] in Parfg:

This makes dek (X [1]) into a left inverse of dek(X) via the map in equation {2.1.2). From
now on, we will consider de{(X [1]) as both a right and a left inverse of det X and we will
denote it by (detg X) 1.

2.1.4.5. Determinants of perfect complexes of torsion moduleket R be a domain and
M be a torsionR-module. Suppose thatM is perfect overR. Then

(detgM) R Frac(R) = detgacr)(M g Frac(R)) (by proposition 2.1.2)
= detpac(r)(0)
= (Frac(R); 0):
Considering the image of detM inside FracR) under the composite map
detsM  (detrM) g Frac(R) " (Frac(R);0)

and forgetting the second factor of the determinant functorwe obtain anR-submodule of
Frac(R), denoted [degkM ! Frac(R)]. Suppose thatR is a regular ring. Then

[detsM ! Frac(R)] = (chargM)

where v
charRM — pIengtthMp
ht p=1

This gives an isomorphism

detgM = ((chargM) *;0):
Since (chaM; 0) is an inverse of ((cha) *;0), the above isomorphism induces an isomor-
phism
(2.1.5) (detgM) ! = (chargM; 0):
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2.2. Selmer complexes

2.2.1. Complex of continuous cochains. Throughout this section, T denotes a nitely
generated module over a complete local noetherian rilgwith residue eld k and G denotes
a pro nite group acting continuously onT. Let C_,.(G; ) denote the functor of continuous
cochain complex from the category dR[G]-modules to the category of bounded below com-
plexes ofR-modules. It preserves homotopy, exact sequences and gussmorphisms (see
for instance Nek06 |, Corollary 3.5.6]), and thus de nes an exact functoR .o (G; ) from
the derived category ofR[G]-modules to the derived category of bounded below complexe
of R-modules.

Proposition 2.2.1. Assume thatchar(k) = p > 0. Then the functor R (G; ) takes
perfect complexes to perfect complexes. LE&tbe an R[G]-module which is free as arR-
module and : R ! R%be a ring homomorphism wher®® is a complete local noetherian
ring and both the ringsR and R® have nite residue elds. Then we have an isomorphism
between the objects in the derived category of complexe®®Mmodules:

L
R cont(G;T) R; R? R cont(G;T R; Rc):

Proof. See for instanceNek06 |, proof of proposition 4.2.9] orlKat93 | Theorem 3.1.3] for
the perfectness of the derived functoR .ot(G; ) and for its base change property we refer
to [SGA72], Expoe XVII Treoeme 4.3.1].

2.2.2. Local conditions. Fix a rational prime p 3 (in chapter[3 (resp.[4), we have

p 3byx3.2.2 (resp.¥4.1.1,¥4.1.2)). LetF be a number eld andS denote a nite set of its

places containing the places abovgl . Denote by S; the set of non-archimedean primes in
S. Fix an algebraic closureF of F. Let Fs be the maximal subextension of =F unrami ed
outside S; denoteGe.s = Gal(Fs=F). Let X denote an admissible (as irNek06, De nition
3.2.1]) R[Gg.s]-module (we will consider freeR-modules with a continuous action ofGe.s,
which are always admissible). Now for each prime2 S x an algebraic closureF, of F,
and an embeddingF | F, extending the embedding= ! F,. This de nes a continuous
homomorphism

which gives a ‘restriction' map
res, : Coont(Gris; X) ! Coni (Gy; X):

For future use, we recall that cgGg.s = 2 (as p 6 2), cd,G, = 2, cd,G,=I, = 1 for all
nite place v of F where cgG denotes the cohomologicgl-dimension of a topological group
G (see for instancel$er02, Corollary to proposition 12, x4.3], NSWO08 | Theorem 7.1.8,
proposition 8.3.18]).

Local conditionsfor X are given by a collection (X)=( (X))vz2s, , where each (X)
is a local condition atv 2 S, consisting of a morphism of complexes &-modules

i5(X) U (X) ! Coon(Gyi X):
The Selmer complexassociated with the local conditions (X ) is denoted byR (Grs; X; ( X))
(abbreviated asR ¢ (X)) and de ned to be the object in the derived category oR-modules
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corresponding to th8 complex

1
M ress, ie(X) M
Cy (X) := Cone @C . (Gr:s; X) ORI Coon(Gui X)A [ 1],
VZSf VZSf
where res, = (resy)vzs,, ig(X) = (iy (X))vzs,- By equation (2.1.1), we have an exact
sequence of complexes 0 1
M j b Mo
0! Conm(GuiX) ' C(X)1] " @Ceopy(GrisiX) Uy (X)A[1]! 0
v2S; V2 St

where| and p are the canonical inclusion and projection. The-th cohomology group of
R (X) is denoted byl4] (X). When X, U] (X) are perfect complexes dR-modules for all
v 2 S, then by ¥2.1.1.5, [Nek06, Proposition 4.2.9] and$tal4] Tag 066R],R (X) is also
perfect.

We will also c%nsider the complexes d&®-modules

sz

re
Cecont(X) = Cone @C (Gr.s; X)! Coont(Gu; X)A [ 15

VZSf
0 1
Mo ress,  (iv (X)vas, wjp M §
Cqr(X) = Cone BC.oni(GEs; X) U, (X)! Coont (Gv; X)x [ 1
VZSf VZSf
vjp

The objects in the derived category oR-modules corresponding to them are denoted by
R ceont(Grs; X), R ar(Grs; X) (0or R ceont(X), R &r(X), for short) respectively. Their
i-th cohomology groups are denoted bid...,.(X); Hg, (X)) respectively.

We are interested in the following local condition as de neth [Nek06/, x7.1].

De nition 2.2.2 (Greenberg's local condition) Let X be as above. Then fov 2 S, the
Greenberg's local conditiorfor X is given by

Ceont (Gy=ly; XY if v-p

Ur(x)=
LX) Ceont(Gvi X)) if vjp;

with (
iy (X) =

U (X)1"™ Co (G X)  ifv-p

Us (X) ! Coon(Gy; X) ifvijp;

where X, denotes a choice of &,-stableR-submodule ofX for v j p.

Proposition 2.2.3. Let X be as above. Then for a nite places of F not dividing p, the

complexU; (X) is quasi-isomorphic to[X ' A X 'v] where Fr, denotes the geometric
Frobenius element at.

Proof. SeelNek06], x7.2.2].
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CHAPTER 3
Algebraic p-adic L-functions for the Hida family for GL,(Q)

In this chapter, we construct algebraig-adic L-functions L3%. ( );L3g ( )L ( )
along branches of the Hida family for GL(Q) and prove that they satisfy a perfect control
theorem at arithmetic specializations (theorenj 3.3,7). Té crucial step of their proof is
the recognition of the role of purity in understanding the vaation of inertia invariants in
families. Since the modular Galois representations are kmo to be pure, this variation is
well-understood by theorenj 1.2]4. In this chapter, from{3.3, we assume throughout that
the condition[3.2.4 holds.

The local conditions used inL3 ( );Li% () at places” & pis a modi cation UY )
of the unrami ed condition U ( ) of Greenberg (as de ned in[[lek06] x0.8.1] following
[Gre89, Gre91 ]). We use the local conditionUY ) in stead of U* ( ) as it is pointed out
in [FO12] Remark 2.17] that the inertia invariants of a big Galois regesentation may not
specialize perfectly to the inertia invariants of a speciahtion of . The local condition at
p used in Ll ( ) is the Greenberg's local conditionJ; ( ) and the control theorem for

p;Gr
L;';%r( ) is obtained under the p-distinguishedness assumptio.l. This assumption is

relaxed while proving the control theorem foLgL?’Gr( ), whose construction uses a modi ca-

tion UY( ) of the condition U; () as its local condition atp. The construction ofLS';iato( )
uses no condition atp and uses the conditionUY ) at places” 6 p.

For any arithmetic specialization of R(a) whose image is a DVR and associated ordi-
nary form is of good ordinary reduction, we show in theorefn 85 that there is a canonical
isomorphism (depending only on the isomorphism in equatio.4.3)) betweenLg'%r(T; w)
and the characteristic ideal of the Pontrjagin dual of the Geenberg's Selmer group $\§IIW

(together with a grade). This theorem is a consequence ®dt04 |, Theorem 17.4].

Using theoren{ 3.4.5, we prove in propositign 3.5.6 that all thcohomologies d® (T (a)w)
are zero except possibly the second cohomology, which ission overR(a),,. This yields a

purely algebraic construction of an elemerit pa'g(a), called the two-variable algebraig-adic
L -function, using the \factors" of L‘;"%r(T (a)w) coming fromR (T (a)w) and the local
Euler factors. As a consequence of propositipn 3/5.6, we pran theorem[3.5.11 that the
mod p reduction of L pa'g(a) generates the characteristic ideal af?(T .:w) for p varying in
a dense subset o_f Sp#t (R(z_zl)). In conjecture_ , we predict thatL pa'g(z_;l) is an inte-
gral element and is an associate of the analytggadic L-function constructed in EPWOQG6 ].
When Greenberg's conjecture on vanishing ofinvariants of modular forms (with absolutely
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irreducible and p-distinguished residual Galois representation) holds, warove this conjec-
ture in theorem[3.5.22.

The organization of this chapter is as follows. In the rst setion, we review cusp forms
and associated Galois representations. The second seci®m@bout Hida family of ordinary
cusp forms. In the third section, we construct algebraig-adic L -functions and show that they
satisfy perfect control theorems. In the fourth section, weelate our construction with the
Greenberg's Selmer group. In the nal section, we formulate conjecture relating the two-
variable algebraicp-adic L-function L pa'g(a) with the analytic p-adic L-function constructed
in [EPWO06 ]. Under Greenberg's conjecture and assumptign 3.5/15, weope it in theorem
3.5.22.

3.1. Cusp forms and associated representations

In this section, we brie y recall how from a cusp formf, de ned as a complex valued
function on the upper half plane, one obtains an automorphiepresentation (f) of GL, of
the adeles and we describe how the restriction of the Deligag@epresentation ; to decom-
position groups at nite places” 6 p can be understood from the local factors of(f). In
the end, we describe the action of the Frobenius elements @wfrom p) under ;.

3.1.1. Automorphic representation attached to a cusp form. Let f be a non-
zero cusp form of leveN and weightk 1 with nebentype character . Suppose that it
is an eigenform for everyl, with primes p-N. Let denote the grossencharacter de ned
on QQnAQ by restricting  to the appropriate factors of the decompositionﬁt9 = Q
R* o<1 Zp- Using the analogous decomposition G[Aq) = GL 2(Q) GL2(R) Kg‘,
de ne the complex valued function' ;1 on GL,(Ag) by

(9= (o ())i(a i) ¢ (ko)

p<1l

Y
forg= g; kowith 2 GL2(Q); % 2 GL2(R); ko2 KD
p<1
where K = f(25) 2 GLy(Zy): ¢ 0(modN)g, on Qp<l Ky is dened by (25) 7!

(@ andj(g: ;z) =(cz+ d)(detg; ) 2 if o = (28). This function ' ; is well-de ned and
belongs to the space of functionk3(GL2(Q)NGL2(Ag); ) ([Gel75], x3.A]). Its translates
under the right regular action of GL,(Ag) generates an irreducible unitary representation

(f)= 9 (f) of GLy(Ag) ([Gel75], Theorem 5.19]). For each prime number, the local

representation - = (f)- of GL(Q-) is one of the following types (Gel75, Remark 5.8,
Theorem 4.21]) :
(1) Principal series. It is the irreducible representation - = (; 9, in which GL,(Q")

acts by right translation on the spaceB(; 9 of locally constant functions f
GL,(Q')! C satisfying

209 = (@ (D= (o)
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where ; °: Q. ! C denote characters satisfying= °6 j j *andj | =

j j-:Q- ! R, isthe normalized valuation (.e., j$:j- = * 1 for any uniformizer
$.22).
(2) Twisted Steinberg representatioif= special representation
St( ) =St B(j i*%ii™

where :Q. ! C is a character.

(3) Supercuspidal representation
We call them the automorphic type of -.

3.1.2. Galois representation attached to a cusp form. Let f be as above with
weightk 2 andK; denote a nite extension ofQ,, containing the Fourier coe cients a- of f
for primes™ -N (viai; andip). Then by [Eic54]) Shi58 | (for k = 2), [[Del69]) Car86 ], Ohta
et.al. (for k > 2), there exists a continuous two-dimensiongb-adic Galois representation
(with respect toi; andi,) V(f) = V,(f) of Go = Gal(Q=Q) over K; which is unrami ed
outside Np and satis es
(3.1.1) det(l Fr-XjV(f)=1 a()X+ ()* X2

for each prime” - Np. Moreover, this representation is absolutely irreducibleby [Rib77 ),
Theorem 2.3].

Proposition 3.1.1. Letf be a cusp form as above. For a rational prime 6 p, the re-
striction V (f)- of V(f) to the decomposition groufs- can be described in terms of the local
factor - of (f) using the local Langlands correspondence as follows.

WIf -~ = (; 9, thenl- acts onV(f)- through a nite quotient and the semi-
simpli cation V(f)- is isomorphic to
V)™ Ky jER? K g e
thus |- acts onV(f)- by j, 9, .
(2) If - =St( ), then the representatiorV (f )- is reducible and - acts onV (f )- through
an in nite quotient. There is an exact sequence d; [G-]-modules
0! Ky j jr*r v@E)! Ky jj€ro

In particular, if is unramied, then |- acts onV(f)- through its tame quotient
It = 1-=I", and any topological generator of! acts onV (f ). by an endomorphism
A satisfying(A  1)’=06 A L [j

(3) If - is supercuspidal, therG- acts onV (f )- irreducibly and |- acts through a nite
guotient.

In addition, the eigenvalues of any lifg 2 G- of the FrobeniusFr- 2 G-=I- acting of V (f)
are Weil numbers of weight
k Lk 1 if (f) 6St( );
k 2k if (f) =St( ):
1In (1) and (2) above, K; is assumed to contain the values of; O If this is not the case, then the

coe cient ring of V(f) can be extended to contain these values and then the above descriph of V (f )-
holds.
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Proof. For the proof seelCar86].

3.2. Hida Theory

In the late 1980's, Hida (Hid86a,/ Hid86b ) introduced the notion of universal ordinary
Hecke algebra to study ordinary cusp forms and their assocgst Galois representations in
p-adic families. In this section we review the necessary rétsuof Hida theory following the
presentation of [Hid87 ] and [Nek06/, x12.7].

3.2.1. Ordinary Hecke algebras. Let p be a rational prime andO be a discrete val-
uation ring nite and at over Z,. In other words, O is the p-adic integer ring of a nite
extensionK of Q, in Q,.

For positive integersN and k, let S¢( 1(N)) denote the space of cusp forms of weight
and levelN. An elementf 2 Sy( 1(N)) has the following type of Fourier expansion:

b3 .
f= af) (q=¢€'; 2H)
n=1
which allows to embedSy( :(N)) into the power series ringC[[g]]. De ne S( 1(N);Z) as
the intersection of Sy ( 1(N)) with Z[[q]] inside C[[q]]. For each integerd prime to N, we can
let d act on S¢( 1(N)) by

(3.2.1) hdif = d¢ 2fj[ [« forany = "(’:‘ by (Nywith  d(modN):

The Hecke operatorsT,, for n 1 are endomorphisms o08¢( 1(N)) and their e ect on the
Fourier coe cients can be expressed as
X

(3.2.2) an(Tef) = damn=q2(hdif):

dj(m;n)

(d;N)=1
The Hecke algebrehy( 1(N); Z) is the subalgebra of End(Sk( 1(N))) generated overZ by
T, for all n. De ne a pairing

hii the(1(N);Z) S k( a(N);Z) 1 Z by thifi = & (f jh)

The following facts are known €g Section 1, [Hid86a )

(1) Sk( 1(N); 2) is stable under the action ofhe( 1(N); Z),

(2) he( 1(N); Z2) is a commutative algebra andTl; gives the identity,
(3) the diamond operatorini belongs toh,( 1(N); Z2),

(4) the pairing h; i is perfect overZ,

(5) Sk( 1(N);Z) zC= Sc( 1(N)) naturally.

We put hi( 1(N); O) = he( 1(N);Z) zO. By (@), (B) above, the algebrah,( 1(N); O)
is free of nite rank over O and its rank is equal to the dimension ofS.( 1(N)). Since
he( 1(N); O) is of nite rank over O, it is a product of nitely many complete local ringsR
(for instance from Eis95,, Corollary 7.6, p.188]) in a unique way. For such a local ring,
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let 1z denote the idempotent ofR and de ne an idempotentey 2 he( 1(N); O) by the sum
of 1z over the local ringsR on which the image ofT, is invertible. Then

he@( 1(N);0) == exhi( 1(N); O)

is the product of all the local rings ofhy( 1(N); O) on which the image ofT, is a unit. Thus
hed( 1(N); O) is the maximal algebra direct summand oh( 1(N); O) on which the image
of T, is a unit.

Now the pairing h; i induces bijections :

(3.2.3) Homo -aig (hi( 1(N);O);6p) $f normalized eigenforms ir5c( 1(N))g;

(3.2.4)
Homo_a|g(h‘|3’d( 1(N); O);Gp) $f normalized eigenforms ir5( 1(N)) with ip(ill(ap)) 2 Zp (o)
3.2.1.1. Ordinary forms. From now on we call a normalized eigenforrth = =, a,q"
in S¢( 1(N); ) to be p-ordinary (depending oni; andip) if its p-th Fourier coe cient a,
is a p-adic unit (i.e., ip(i; *(ap)) 2 Zp). According to [Wil88 | Theorem 2.2.2, p.562], for an
ordinary form f with k 2, there is an exact sequence & [G,]-modules
o! v(f) ! v(@#)! v(f) ' o0

where dimg, V(f) =1, V(f)" is unramied and Fr- acts on it via the unique p-adic unit
rootof X2 a,X + (p)p* 1, whichisa, if pj N.

We remark that the notion of ordinariness depends on the emidéingsi; andi,. For
example, consider the newform

f=a+q® a°+(* 2d+( *+1g *+

in Sy( 0(389)) where isarootofX® 4X 2 (seelRS11] x26.1.1]). The coe cient of ¢,
( 2+1)satises y3+5y2+3y 5. By Hensel's lemma, we see that it has a non-unit root
in Zs and two conjugate roots in a quadratic extensioiK of Qs which are units in O .

Note that the notion of ordinariness for a form inSy( 1(Np")) with r 1 is independent
of r by the commutative diagram 3.2.5) below.

3.2.2. The universal ordinary Hecke algebra. From now on we suppose thap -
N;p62and Np 4. Forintegersr s 1, we have the following commutative diagram

foralln 1 (by (3.2.2)):
(3.2.5) Sk( 1(Np%); O) —5( 1(Np"); O)
Th Th
Sk( 1(Np°); 0) —/8( 1(Np'); O)

where the horizontal arrows are the natural inclusion and #left (resp., right) vertical arrow
is the Hecke operatofT,, of levelNp® (resp., Np"). Then the restriction of each operator in
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he( 1(Np"); O) to the subspaceSc( 1(Np3); O) is again contained inhi( 1(Np®); O); thus,
we have a surjectiveD-algebra homomorphism:
(3.2.6) he( 1(Np"); O) ! h¢( 1(Np®);O) for each pairr s 1
SinceT, goes toT, under the above map, the image ofy,r under this map coincides with
enps, and thus the above map induces a map

he( 1(Np");0) ! hg( 1(Np®); O):
Taking projective limits we obtain the universal p-ordinary Hecke algebra of tame levé\,

hod(Np! ;0) = lim hX( (Np"); 0):

r

Now the diamond operators arg-algebra homomorphisms
h i, :O[(Z=NP'Z) 1! he( 1(Np");0)! hd¥( y(Np');0) forr 1,
which upon taking limit gives the O-algebra homomorphism
h i - OflZn]It h(Np* ;0)
whereZy =1lim (Z=Np'Z) =(1+ pZy) (Z=NpzZ) andO[[Zy]] =lim O[(Z=Np'Z) 1.
r

r
Put =1+ pZ,forr 1, = janddene = o = O[[]]=Im rO[ = ]. Let
o) denote the canonical inclusion. The above implies thdt®®(Np! ;O) has a
canonical -algebra structure.

Fix a topological generator of . For an integer k° 2 and a nite order charac-
ter "0: I Q, with values in the ring of integersO° of a nite extension K ° of K, put
Peo= () "Y ) K 22 09:= O9[]]. Note that Pye-o °is a prime ideal of °and thus
induces a prime ideaPyo0 °\  of .

An arithmetic prime of a nite -algebra A is a prime} 2 Spec@) whose contraction
to is of the form Py-o °\ and an arithmetic specializationof A is an O-algebra homo-
morphismA ! Gp whose kernel is an arithmetic prime. The set of arithmetic jpmes ofA
is denoted by Spet™ (A).

Let R be a quotient ofh2(Np?! ; O) by a minimal prime ideal. Then Spelth (R) is an
in nite set since R is of nite type over . Moreover, any in nite subset of Spec®™ (R) is
dense in SpedR) since each bre of Sped®) ! Spec() is nite due to the integrality of R
over .

Theorem 3.2.1.

(1) ([Hid86a |, Theorem 1.1, p.55)]For eachk 2, we have canonicaD[[Z\ ]]-algebra
isomorphism
he*(Np* ;0) = hg"(Np* ; 0);
which takesT,, of weightk to T,, of weight 2 for allm. We use the above isomor-
phisms to identify allh®®(Np! ;0) (k  2) with h%@ := hgd(Np! ;O).
(2) ([Hid86b, Theorem 3.1] h9" is free of nite rank over
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(3) ([Hid86a |, Theorem 1.2] For eachk 2 andr 1, the surjective -algebra ho-
momorphismsh?™ hed(Npt ;0) ! hed( 1(Np'); O) induce -algebra isomor-
phisms

hd=( ()P
which sendsT,, to T,, for all m.

pr 1(k 2)) — h(lzrd( l(Npr);o)

We have the following corollary of the above theorem.

Corollary 3.2.2 ([Hid88al, Corollary 3.5]). Through equation (8.2.4) and theorem[3.2.11
(3), the arithmetic primes of h{® of weightk 2 are in one-to-one correspondence with
the G -conjugacy classes gp-ordinary forms (de ned overﬁp) in Sg( 1(Np")) for weight
k 2andr 1 and the arithmetic specializations ohd" of weightk 2 are in one-to-one
correspondence with thg@-ordinary forms in S¢( ;(Np")) for weightk 2 andr 1.

For such an eigenformf, we denote the corresponding arithmetic specialization by
and for such a specialization we denote the corresponding ordinary form by .

3.2.3. Galois representations. Letf 2 Si(Np"; ) be an ordinary normalized Hecke
eigenform of weightk 2 such thatK = Frac(O) contains all Hecke eigenvalues df and
all values of . Assume, in addition, thatf is a p-stabilized newformn the sense of\lVil88 |,
p.538]. This means thatr 1 and that the (necessarily ordinary) normalized newforri®
associated withf has level divisible byN. Let } denote the arithmetic prime associated with
the G -conjugacy class of (which is the setff g). Then} strictly contains a prime ideala
of h¢'d, necessarily minimal. PutR(a) = h{“=a. Then R(a) is a domain and nite over .
Note that R(a) is local and denote its maximal ideal byn. Let denote the composite map

hod  h%=a= R(a) ! K ; K :=Frac(R(a))

which is minimal in the sense of{id88a |, p.317], sincef = f; is a p-stabilized new-

form. This implies, by Hid88a | Corollary 3.5, theorem 3.6] that the form associated
with an arithmetic specialization whose kernel containdyo-o is a p-stabilized newform

fy02 Sio(Np™; "0 ! & 2) where r denotes the smallest positive integer for which® fac-

tors through = o, ! denotes the Teichmuller characteZ, ! (Z, )tors ! Qand , denotes

the restriction of to (Z=NpZ) .

Let Sy denote the set of all prime ofQ dividing Npl . Then according to [Vil88 |,
Theorem 2.2.1], there is a unique (up to equivalence) contious Galois representation

1 Gas, ! GL2(K)
satisfying
detd (Fr)X)=1 (THX + (hi)'X?
for all prime ™ - Np whereh'i denotes the image of under the composite map

Zy 'O [IZell " ho¢(Np! ;0) = ho

(more precisely, is the dual of the representation constructed inWil88 ||, as we use the
geometric Frobenius instead of the arithmetic Frobenius)This representation is continuous
in the sense that its representation spac¥( ) is an admissibleR(a)[Gq.s,]-module (as in
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[Nek06, De nition 3.2.1]). According to [Wil88 |, Theorem 2.2.2], there is an exact sequence
of K[Gp]-modules

o V()" ! V()!'" V() ! o
such that eachV( ) is one dimensional oveK, I, acts trivially on V( )* and Fr, acts on
V()" by (Tp).

For an arithmetic specialization of R(a), the -specialization of the representation
exists and is equivalent to the Deligne's representation taiched to the ordinary form f
corresponding to (see for instanceHlid87 |, p. 440]).

Proposition 3.2.3. There is a semi-simple representation : Go ! GL»(R(a)=m), uniquely
determined by the properties:

(1) ~ is unrami ed away from Np.
(2) If " is a prime not dividing Np then
det(l ~(Fr-)X)=1 (THYX + (Ni)’X2modm2 (R(a)=m)[X]:

Proof. To construct the representation, we choose an integral model for over the normal-
ization of [?(a), then reduce modulo its maximal idealm of m, take semi-simpli cation and

descend (if necessary) fror{?(a) to R(a). It has the required properties since it is obtained
from

Henceforth we make the following assumption on the above résal representation.
Assumption 3.2.4. The residual representation” is absolutely irreducible.

Then by [Nys96 ]|, we obtain a uniquely determined representation (denotday the same
symbol )

(3.2.7) :Gos, ! GL2(R(a)

characterized by the following property: if is a prime not dividing Np, then (Fr-) has
trace equal toT- 2 R(a).

3.3. Algebraic p-adic L-function along branches

In this section, we construct algebraig-adic L-functions L%, L, La%., along ir-
reducible components of the Hida family and show that it satiss a control theorem at

arithmetic primes.

Recall that under the assumptiorf 3.2]4, we obtained a uniglyedetermined representation

: Ggis, ! GL2(R(@)) in equation (3.2.7). From theorem| 3.2]1, it follows thatR(a) is a

complete local domain and a nite type -module (using Eis95, Corollary 7.6, p.188] for

instance). Letm denote its maximal ideal andk denote the residue eld. Now we de ne

T(a) := R(a)? with a Gqgs,-action on it via . Let (V; v) = T(a) r( K denote the

associatedGq.s,-representation over the fraction eldK of R(a). Henceforth we make the
following assumption on .

Assumption 3.3.1 (p-distinguished) The representation is p-distinguished, i.e., the resid-
ual representation of jg, is non-scalar.
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For a ring homomorphism :R(a)! RO the -specializationof T (a) is denoted by T
and is de ned to be the Gg.s,-representationT (a) r(y: R°with coe cients in R®% From
now on we denote the image of an arithmetic specialization : R(a) ! Gp by O and
consider such maps as ring homomorphisms onto their images,, as :R(a) O . Thus
for an arithmetic specialization of R(a), the -specializationT of T (a) will denote the
Gaq:s,-representationT (8) ra: O . For such a specialization, we denote by (resp. V9

the Gqg.s,-representationT o Gp (resp. T o Frac(O)).
3.3.1. Comparing the inertia invariants.

Proposition 3.3.2. Let ~ 6 p be a rational prime. For any arithmetic specialization of
R(a), we have

rkraT (@) =rko T':
Suppose that the rank of th&®(a)-module T (a)'" is one. Then for any two arithmetic spe-
cializations ; © of R(a), the representations ( )-; ( 9. are both either singly rami ed
principal series or unrami ed Steinberg. Moreover, the ringR(a) contains the eigenvalue

of Fr- acting onV'"" and Fr- acts onT' by the scalar ( ) for any arithmetic specialization
of R(a).

Proof. The restriction of the Gq.g,-representationT (a) to the decomposition groupG- is
continuous and its coe cient ring R(a) has nite residue eld of characteristicp 6 . So
by theorem[1.1.2b, theG:-representationT (a) is monodromic. So theorem 1.214 applies to
T (a). By part (5) of this theorem, we have

rkr@aT(@)" =rko T"
for any arithmetic specialization of R(a).

Now suppose that rig»T ()" =1. So
(3.3.1) ko T" =1

for any arithmetic specialization of R(a). SinceV' is stable underG:, the G--representation
V is reducible. So ( )- is not supercuspidal by propositiofi 3.1]1 (3). If the monodmy of
the G--representationT is zero, then theG--representationT has no monodromy and hence
( )- is principal series. By equation[(3.3]1) and proposition B.J(1), it is singly rami ed

principal series. Similarly, ( 9- is also singly rami ed principal series. On the other hand,
if the monodromy of theG:-representationT is nonzero, then theG--representationT has
nonzero monodromy by theorerh 1.2.4(1) and hencg )- is Steinberg. By equation[(3.3]1)
and proposition[3.1.1(2), it is unrami ed Steinberg. Simérly, ( 9- is also unrami ed Stein-
berg.

Note that 2 K is integral overR(a). Let R(a)[ ] denote the subring ofK generated
by overR(a). We extend each arithmetic specialization : R(a) ! ﬁp to R(a)[ ] which
we denote by by abuse of language. Notice that Fracts onV' by ( ) by theorem
[1.2.4(6). First suppose that (f )- is Steinberg for any arithmetic specialization of R(a).
By proposition[3.1.1, this eigenvalue is (*)***? %, and sincef is new at™ (seex3.2.3), this
is equal toa (f ) by [Nek06) 12.3.7, 12.3.8.2]. Sinca(f )= (T-),weget ( )= (T)for
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any arithmetic specialization of R(a). So = T-in R(a)[ ],i.e., 2 R(a). Now suppose
that () is principal series for any arithmetic specialization of R(a). Then by a similar
argument as above it follows that 2 R(a).

3.3.2. Control theorems. Let S denote a nite set of rational primes including the
primes dividing Np and the archimedean prime o) and S; denote its subset of nite places.

Recall that V is reducible as aG,-representation. De neT (a)* to be the largestR(a)-
submodule ofT (a) on which G, acts via the unrami ed character" which takes Ff, to T,
and put T(a) := T(a)=T (a)*. For an arithmetic specialization of R(a) we dene T to
be the largestO -submodule ofT on which G, acts via the unrami ed character taking Fr,
to ay(f ).

Let Q1 denote the cyclotomicZ,-extension ofQ which can be regarded as a union of
sequence of elds

Q=Q Q1 Q1 = [nQn with ,:=Gal(Q,=Q)' Z=p'Z:

We denote the Galois group Galp; =Q) by and let o denote a topological generator
of . Denote the Iwasawa algebraOJ[[]] by ., which is a Gq.tpg-module via the map

Ga:tpg !, SinceQ; isunramied at primes " 6 p. For any nite type O-subalgebra
A of Z,, we will write A to denote A o 1 = A[[]]. We will consider A as aGgq:pg-
module via the mapGq:f pg I 5. The image of an elemeng 2 Gq;tpg under this map

will be denoted by fj]. The completed tensor producR(a)by , will be denoted byR (&) .

De ne the cyclotomic deformationT (a),,, of T (a) as the Go.s-representationT (a)Bo
over R(a),, obtained by tensoring theGq.s-representationsT (a) and ,. De ne the G,-
representation

T(@y =T(@ bo w:

For an arithmetic specialization of R(a), de ne the cyclotomic deformationT ., of T

as the Ggs-representationT o |, overO o w = o . Dene the G,-representation

TTIW =T o Iw-
Notice that each arithmetic specialization : R(a) ! O of R(a) extends to a -

algebra homomorphism bgid w -R@w !0 o w= o ,which will be denoted by
by abuse of language.

De nition 3.3.3.  For a complete local noetherian domaiR of residue characteristicp > 0,
let Go:s act continuously onT = R? via a representationGq.s ! GL(R). Suppose that
G=I- acts onT"" g Frac(R) by an R-valued character - wheneverrkg T'" = 1 for some
6 p. For any prime * 6 p, let UYT) denote the object in the derived category BFmodules
corresponding to

Ceont(G=15T") if kT 61;
[R!" ' R] concentrated in degree 0,1  ifkgT" =1
whereFr- acts onR via the character -
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De nition 3.3.4. Let denote an arithmetic specialization oR(a). Put
UF?(T (a)lw) =R cont(Gp; R(a)lw)
US(T; w) = R cont(Gp; o)

whereGg,, acts onR(a)w (resp. o ) by the character through which it acts o (a);, (resp.
T!w). For T = T(a)w;T;w. dene the algebraicp-adic L-functions L%, (T), L%, (T),

Lg'%r(T) as the object ofParf-iss (R = R(a)w; o respectively) given by
0 1
alg M
L pikato (T) := detr(R cicont(Gais; T)[1])  detr UYT)[ ;
25
o °° 1
al M
Lios (T) = detr(R ceont(Gois; T)A]) dete @ UYT)[1IA ;
"2S
0 1

M

L3S (T) :=detr(R &r(Gos; T)[1]) detre% U‘O(T)[1]§
T2
A

respectively. In the de nition of Lg;%r(T), we assume thaR ¢ (Gp; T) is a perfect com-

plex.
Before showing that the above objects are well-de ned, we qgre the lemma below.

Lemma 3.3.5. For an arithmetic specialization of R(a), the inclusionT(a)* ! T (a)
induces an isomorphism between

(T@") =T@" 00O
and T* under the assumption 3.3]1.
Proof. Note that G, acts onT(a)* by " and onT(a) by ( ) 0 cya" 1. Since”
is p-distinguished, we have dimT(a) =m = 1. Also dimxT(a)  r K = 1. Hence by
Nakayama's lemma,T (a) is free of rank 1, which impliesT (a)* is also free of rank 1.
Similarly it follows that T is free of rank 1. Now consider the commutative diagram below

with exact rows (the exactness of the rst row follows from tk freeness of (a) and the
existence of the rst vertical arrow follows since,(f ) is equal to the image ofT, under the

composite maph{® ! R(a) Q).
0o—AT(@*) —I/T(@ —AT(d ) —0
0 I+ It It Z0]

Since the last vertical arrow is a surjection (by snake lemmetween free modules of rank
1 over the domainO , it is an isomorphism. SoT(a)*)! T.
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Lemma 3.3.6. Let denote an arithmetic specialization oR(a). ThenforT = T(a)w; T w,
the modules. 3%, (T) and L35, (T) are well-de ned. Moreover, wherT satis es assumption
E L3% (T) is well-de ned for T = T (@)u; T w-

Proof. Note that the rings R(a) and O are complete local rings (byEis95), Corollary 7.6,
p.188] for instance). SdR(a)w and o are complete local rings. By propositioh 3.3.2, the
group G-=I- acts on T (a),, (resp.T';‘lw) by an R(a),,-valued (resp. o -valued) character
if kT(a)" =rkT(a)y, =1 (resp.rkT" =rkT!, =1). So UYT) is well-de ned and by
proposition [2.2.3, it is a perfect complex for 2 S;;" 6 p. Then by proposition[2.2.1,
L p:kato (T) is well-de ned.

The action of G, on T (a)* and T* are unrami ed and Fr, acts on them byT, 2 R(a)
anday(f )= (T,) 20 respectively. So the grougs, acts onT (a);, (resp. T7,,) by an
R(a)w-valued (resp. o -valued) character. SAJY(T) is well-de ned and henceLSL?Gr(T) is
well-de ned.

Under assumptior] 3.3[LR cont(Gp; T*) is perfect by proposition[2.2.[l ag* is free (by
Iemma). Sd_g!?;r(T) is well-de ned under this assumption.

Now we prove thatL3% (T (@), Lige (T (@w); L ka0 (T (3)1) satisfy perfect control

theorems at arithmetic specializations.

Theorem 3.3.7. Let be an arithmetic specialization oR(a). Then the isomorphisms in

propositions[2.1.2[2.2.1] 2.2.8 induce an isomorphism

(3:3.2) Lot (T@w) r@w: o = Lpg(Tim)

under the assumption$ 3.214 and 3.3.1. They also induce isomorphisms
(3.3.3) Lofer(T@w) Rr@w: o = Lpde(Tim);

(3.3.4) Lgl;?(ato (T (@w) R(&)w ; o = Lgl;?(ato (T w)

under the assumption 3.2/4.

Proof. By proposition[2.1.2 and propositioj 2.2]1, it remains to mve the control theorem
for the factors coming from \local conditions". Notice that emma[3.3.5 gives the control of
Uy (T (@)w) and UXT (@) ).
So it remains to prove the control theorem at 6 p, i.e., the -specialization of deUYT (a))

is detUYT, ). By proposition[2.1.2, it su ces to prove the control theorem for UYT (a)w).
We need to do so only when kg, T(a)), = rkr@T(a)" = 1 by proposition and
proposition . So assume thaf (a)"" is of rank one and let Fr act on it by 2 R(a)
(by proposition [3.3.2). SinceUYT (a)w) is K - at by [[Stal4], Tag 064K], its derived tensor
product over R(a),y with o (through ) is equal to the tensor product by /$tald, Tag

06Y€]ie., [ o !¢

Remark 3.3.8. In the rst part of theorem B.3.7, the assumption[3.3]L is ugkonly to
deduce thatT (a)* is free which is not true in general byKil02 |. When T (a)* is not free,
the algebraic p-adic L-function L";‘L?Gr de ned using the local conditionUy at p satis es a
control theorem as proved in theorerh 3.3.7.
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3.4. Relation with Greenberg's Selmer group

Let be an arithmetic specialization oR(a) such that O is a DVR. Denote its associated
ordinary form by f .

Lemma 3.4.1. The inclusion mapT' | T tensored withid ,, over O induces an isomor-
phism
T o W TV

; |W:
Thus T!,,

p
module T,

is free over o and R Cc,m(G\:I\;T';‘hN) is a perfect complex over o . The
is also free over o and R ¢ont(Gp; Tf,w) is a perfect complex over ¢ .

Proof. SinceO is a DVR, T has a free set of generators ové and for any such set
fep; e, of free generatorsfe;, 1 ;e 1, gis afree set of generators for ., over .

Since , is unramied at ~ 6 p, the matrices of thel- action onT and onT.,, are the
same. Thus the rst isomorphism follows. S@', is free over , andR con(G-=I+; T )

is a perfect complex by propositiof 2.2]3.

Iw

SinceO isaDVR, T" is a freeO-module and hencéflw is free over ,. The perfectness
of R cont(Gp; T, follows by proposition.

Let I denote an injective hull of the residue eldF of o and Dy, denote the Matlis
duality functor Dy ( ) = Hom _ ( ;1). SinceF is nite, by [[NekO6], x2.9] we have the
lemma below.

Lemma 3.4.2. The Pontrjagin duality functor Dp( ) = Homcone( ; Qp=Zp) and the Matlis
duality functor Dy, coincide on the category of o -modules.
We put
A; w = DM (T; Iw)(l); AJ? Iw = DM (T; Iw)(l); A; Iw = A: |W:A+; |W:

GreenberglGre89, Gre91 | de ned the strict Selmer group S(,%[r ., by the exact sequence

M
0! Seﬁ«tr; W ! Hclont(GQ;S;A; IW) ! Hclont(Gp;A; Iw) Holont(l‘;A; IW)
2S¢,°6p

By [Nek06/, 8.9.6.1], we have the lemma below.

Lemma 3.4.3. Matlis duality induces an isomorphism of complexes
R +(T;w) Dm(R (A w)l 3]

which induces isomorphisms in cohomology
(3.4.1) B (T, w) Dwm 187 (A, W)

The next lemma follows from[Nek06, Lemma 9.6.3].
Lemma 3.4.4. The following sequence is exact.

0! BPA w)! H&u(GasiAim)! HEu(GpiA,,) ! BHA W) Sef’ 1 0
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Note that lemma|[3.4.1 combined with propositior 2.2|1 and théact that T, is free
of rank one over o shows that the algebraicp-adic L-function Lg'%r(T; w) for the Gg.s-
representationT . ,, is well-de ned. The following theorem describes the deteiimant of the
Selmer complex off ., and its relation with the algebraicp-adic L-function Lg';%r(T; w)-

Theorem 3.4.5. The Selmer complexR ;(T.,,) dened with respect to Greenberg's lo-

cal condi is a perfect complex of o -modules and the map . ( ; ; ) (asin
(2.1.4

equation (2.1.4)) induces an isomorphism

1
Lgl;%r(T;lw): det , R ¢(T;w)

Suppose that the assumptign 3.2.4 holds. Théh(T. ) is a free o -module and

|qfi (T:w)=0

for any integeri < 1andi> 2. Suppose thap does not divide the level df. Then B2(T . )
is a torsion o -module andi®}(T. ) is zero. The surjective map

B (A w) SeR’,,
as in Lemma[3.4.4 induces an injective map
(3.4.2) Dep SeR’, ! BAT.w)
with nite cokernel. Consequently we get a canonical isomorphism
L& (T;w) = (char , De(SeR’,);0)

using equations(2.1.3), (2.1.5) and (8.4.9).

Proof. By lemma[3.4.1, propositio} 2.2]1 andStal4], Tag 066R], it follows thatR (T )
is a perfect complex of o -modules.
Since o is reduced, by equation|(2.1|4) we have an isomorphism

1
i o (P (ress, I5(Tw))D) Lo (T,w)t  det, (R (T, w)[)= det , R ((T,wm)
(this isomorphism depends on the choice of an isomorphism
(3.4.3) T o

ifrk , T\, =1 for some" & p).
As assumption 3.2.14 holds, byHO12], Proposition 2.25],
(3.4.4) i (T.w)=0

fori< 0Oandi> 2.
Let x denote the elementy 12 o andy denote an uniformizer ofO . We now prove

that 19}(T. ) is free by rst showing that it does not have anyx-torsion and then showing
that 141(T. ,)=x does not have anyy-torsion.
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SinceT'; T* are free overO , they are at over O. So by NekO6), Proposition 3.4.2],
[Wei94 | Ex 1.2.4], we have an exact sequence

(3.4.5) 0! C(Tiw)* C(Tiw)! G(T)! O

X

obtained from the exact sequence D ! w O 0. Hencel?(T ) surjects to
181(T. w)[X]. On the other hand, sinceT is irreducible as aGq.s-representation, we nd
192(T ) = 0. So B}(T. ) does not have anyx-torsion.

Now we will show thati®}(T ) does not have any-torsion wherey denotes an uniformizer
of O . By [Nek06/ 6.1.3.2], we obtain an exact sequence Of -modules

0! cont(Gp’T ) ! qul(T ) ! cont(GQ s; T )
which gives the exact sequence
0! cont(Gp’T )[y] ! qul(T )[y] ! cont(GQS!T )[y]
As HY (G T Iyl is zero, the map

qul(T )[y] ! cont(GQS:T )[y]

is injective. Since the assumptiof 3.2.4 holds, we hatd,(Gq:s; T =y) = f0g. Then the
long exact sequence of cohomologies associated to the esacjuence

o TIV T 1 T=yl 0
gives
cont(GQS T )[y] = ng
Sol8X(T )[y] = fOg.

From the exact sequence 3.4.5 above, we nd thd®!(T.,)=x injects into B}(T ). So
191(T. w)=xis y-torsion free. We have also seel}(T . ) does not have any-torsion. Thus
X;y is a regular sequence for the o -module 8}(T. ,). So depth o 9X(T.w) = 2. Thus

d , 8T, w) =0 (by [Mat89 ] Theorem 19.1] and henc&{ (T, ) is projective. So it is
free over o (by [Mat80 |, Proposition 3.G]).

SinceDy ( ) is an exact functor (by Nek06], x2.3.1]), lemma[3.4/4 gives the exact
sequence of o -modules below.

0! Dwu (Sef;‘\”‘ w ) ' Dwm (ﬁl(A |W)) ' Dw (Hcont(Gp;A; |W)):
Using lemma3.4.R andl 3.413, we obtain the exact sequence
0! Dp(Se,R“; Iw) ! quz(T;|W) ! P(Hcont(GP;A;IW))

of o -modules. Now sincef is p-ordinary, ay(f) is a p-adic unit. Also the level off
is not divisible by p. Sof is of good ordinary reduction. Hence byKat04 | Theorem
17.4], the Pontrjagin dual of Sé[r ., Isatorsion o -module. Sincep does not divide the

level of f, (f), is principal series byNekO6), Lemma 12.5.4]. So the Pontrjagin dual of
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Hgom(Gp;A; w) is nite. Thus by the above exact sequenceld?(T. ) is a torsion o -
module and the injective map

DP(Se[Ztr; e BT w)

has nite cokernel.
Sinceld(T. ) is a torsion o -module, by Nek06], Theorem 7.8.6x4.6.5.6], the o -

module B}(T. ) has rank zero and hence zero (as it is free). So we have

Lo% (T w) = (det ; R (T w)) * (using theorem[3.4.55)
= nez(det , (B7(T, )¢ " (by equation (2.1.3))
= (det , (BA(T.w)) * (using theorem 3.4.5)
= (char , BA(T.w);0) (from equation (2.1.5))
= (char Dp(Se,E\”; ) 0) (using equation [3.4.2))

In the above, the last equality follows as the map in equatio8.4.2) has nite cokernel
and

length, [ ) Mp=0
for any height one primep of o and a o -module M of nite cardinality. The rst

isomorphism above depends only on the choice of the isomagphs in equation (3.4.B), the
rest of the above isomorphisms are canonical.

3.5. Cohomologies of R ( ), R ¢( ) and Lpa'g(a)

In this section we assume throughout that the assumptioris 24, [3.3.1 hold. For a
domain R, its integral closure in its fraction eld is denoted byR™. Until the end of this
chapter, the symbol (resp. ) will be used to denote arithmetic specializations (respZ-
specializations,.e., O-algebra maps fromR(a) to Z,) of R(a). We de ne O ;T in the same
way O ;T was de ned. Put

T =T@" 00; T =T@ o00;
(cf. Iemma). We de neT ;; T, in the same wayT; ,;T*, was de ned. Put
Tw=T o O™
T =T" o O™;
Titgw = T i bo i
T-ﬁnt ‘lw = T-'}nt bo |W:

Note that extends to anO -algebra homomorphisrrR(a)int I Z,, which we denote
by again by abuse of notation. Denote a uniformizer @™ by $; and letk denote the
residue eld OM=$ .
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3.5.1. Some preliminary results.  We begin with a general fact about group repre-
sentations.

Proposition 3.5.1. Let A be a ring,m be a maximal ideal oA, G be a group andM be an
A[G]-module such thatM=mM is a semi-simpleA[G]-module. ThenM® 6 0 only if M ® is
contained inm"M for all n 0 or the trivial representation is a sub-object oM=mM .

Proof. Denote byk the residue eld A=m. If M € is contained inm"M for all n 0, then

there is nothing to prove. Suppose that this not true. So theris an elementx 2 M©®

and an integern 0 such that x belongs tom"M, but not to m"**M. The k-vector

spacem’=m®*t o M s, ask[G]-module, a direct sum of copies of th&[G]-module M=m

and thus semi-simple. Hencem*M=m**'1M is the quotient of a semi-simplek[G]-module
and so semisimple as well. Let be the (nonzero) image ok in mM=m***M . The Kk[G]-

module mM=m***M admits the nonzero submodul&k X as a subk[G]-module and so
admits the trivial representation as a submodule. The trial module occurs in a quotient
of a semi-simplek[G]-module N only if it occurs in N. So the trivial k[G]-module occurs in
ms=m*** A M and thus in M=m.

Lemma 3.5.2. Let " 6 p be a rational prime. Then for almost all ,
rkT(a)" =rkT':

Suppose thatrkT (a)'" is one. ThenFr- acts onT(a)'" by an element - of R(a). If the
above equality holds for an, then Fr- acts onT'" by ( ).

Proof. By proposition[1.2.5, for any ,
rkT(a)" rkT":

By theorem[1.2.3, this is an equality for aimost all . Now suppose that rk (a)" is one.
Then - is an element ofR(a) by proposition|[3.3.2. The rest follows from theorern 1.2.3.

For each arithmetic primep of R(a), we x an arithmetic specialization , of R(a) with
p as its kernel.

Lemma 3.5.3. ReplacingK (as in the beginning 0f¥3.2.1) by a nite extension (if neces-
sary), we may assume that the set of arithmetic primgsof R(a) satisfying the conditions
below is dense irBpecR(a)).

(1) the ordinary form associated with , has level not divisible by,

(2) O ,isa DVR.

Proof. Let Spe(grith (R(a)) denote the set of arithmetic primes ofR(a) which contain (
(1+ p*) for somek 3 andk 2modp 1. Note that Spe¢™ (R(a)) is dense in
SpecR(a)) and the ordinary forms associated with the elements of S@‘h (R(a)) are of

level N by %3.2.3.

Recall that O denotes the ring of integers oK . Then extendingK if necessary, it follows
that the elements of Spel™ (R(a)) that are kernels of O-valued arithmetic specializations
of R(a) form a dense subset

D = fkerg\ R(a)jg2 Homo.a4(R(a)™;0)g\ Spe¢™ (R(a))
of SpecR(a)) (the proof is same as the proof oHid88b |, (3.1b) p. 26]).
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Henceforth we assume thaK is so chosen that the arithmetic primeg of R(a) satisfying
the conditions of the above lemma form a dense subset of Sp&E)).

Let O%denote a nite type Z,-subalgebra ofZ,. Let T be a freeO%module of rank two
with a continuous action ofGq.s. Put

Tw = Tbo Iw -

Let T* be anO%submodule ofT of rank one which is a direct summand of and is stable
under the action ofG, and this action is unrami ed.

Lemma 3.5.4. Suppose thatO°is a DVR and the residual representation attached to the
Go:s-representationT is irreducible. Then81(T),) is a free oo-module.

Proof. SinceT is residually irreducible, T®es is zero by propositiorf 3.5/1. So the proof of
the freeness offffl(T; w) over o (as in theorem 3.4.6) withO , T., replaced byQ? T,
respectively proves this lemma.

Lemma 3.5.5. Suppose thatO%is a DVR and B}(T,) is zero. Then Tlffv\ is zero for any
"6 pand

Y
char _,HE& (Tw) = Det (Fr- id)jTII~ char _ 187 (Tw)
25 76p; N
kT 1

whereDet( ) denotes the determinant of a linear operator on a free module.

Proof. Since for any’ 6 p, the image of in 1+ pZ, under the projection mapZ, ! 1+pZ,
is non-trivial, the group Tlfv‘ vanishes for any 6 p. The exact sequence

M
0! CGr(le)! C (Tyw) ! U\+(T|W)! 0
"2S51;,76p

of complexes of ge-modules gives the short exact sequence
M
0! To=(Fre id) ! HZ.(Tw)! BATw)! O

286 p;rkT,, 1

(by proposition[2.2.3). So the sequence

M
0! To=(Fre id) ! HZ.(Tw)! BATw)! O

2S¢ ;6 prkT! 1

is exact. SinceTS =0 for ~ 6 p, the second term in the above sequence is torsion. Since

191(Tw) is zero, by Nek06], Theorem 7.8.6,x4.6.5.6],8?(T\y) is torsion. SoH& (Tw) is
torsion. Hence the lemma follows.
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3.5.2. R (T(a)w) and Lpa'g(a). For each arithmetic specialization of R(a), its
kernel will be denoted byp . Pick x 2 R(a) such that it generates the maximal ideal of
R(a), . The kernel of the map = Dbgid | :R(@w ! o will be denoted byq . We put

V=T o Frac(O);
(VOY* = T* o Frac(O ):
Proposition 3.5.6. The R(a);y-modules@}(T (a) ), B2(T (2)w), HZ, (T (a)\) are torsion,
B (T (@w) =0
for any integeri< 1 andi> 2 and
Her (T (@w) =0
for any integeri 6 2.
Proof. By [FO12] Proposition 2.25],
B (T (@)w) =0
for any integeri< 1 andi> 2.
Let be such that the conditions of lemma 3.5 3 are satis ed. By #orem[1.2.4(5)
0T (a, I'T (@, (V9" ! o
is an exact sequence. The sequence
O!T (a); !'T (a;! (V9" !t 0
is also exact by lemma 3.3]5.
Since
b
0! CT@m)e ) CUT@w)a) C((VIW)! O
is an exact sequence of complexes, we get an injection
BT (@w)q )=x b1 BH(VIW):
So by theoren| 3.4/5
181 (T (@w)q =x P1=0:
By Nakayama's lemma,
BT (@w)q =0
and hencel®}(T (a)\) is a torsion R(a);,-module. By [Nek06], Theorem 7.8.6,x4.6.5.6],

I92(T () ) is also a torsionR(a),,-module. This completes the proof of the statements
about the cohomology oR ¢ (T (a)w)-
We have an exact sequence of complexesRifa)lWMmodules

0! Co(T@w)! C(T(@w)! U'(T@w)! O
25¢;°6p
(with maps induced by inclusion and projection). This shows
Her (T (8)w) =0
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for any integeri 0 andi 3. Also there is an injection
Ha(T(@w) ! BT (@)w)

and henceH{ (T (a)w) is a torsion R(a),y-module. By [Nek06], Theorem 7.8.6,x4.6.5.6],
HE (T (a)w) is also a torsionR(a),,-module. Now it remains to show thatHZ, (T (aQ)w) is
torsion free. Letx be an element oR(a),,. De ne

(T@E@w=X" = T(a),=x
We have an exact sequence of complexes
0! Cg(T@w) " Co(T@w)! Col(T@w=x)! 0
which gives a surjective map
He (T@w=x)  Hg (T (@w)IX]:

Since M
0! Hg(T@w=3"! Heon(Gasi T(@w=X) Hgon(Gpi (T (@)w=x)") Heont (G5 T (@) =x)
25
is an exact sequence and
Hgont(GQ;S; T@w=x)=0
(by proposition[3.5.1), we get
H2. (T (8)w=x)=0:
SoH}, (T (a)w) is torsion free.
Proposition 3.5.7. There exist non-negative integer8m; Nm+1 ; :ny; N, and matricesd
in Mp, n ,(R(@w), i=m;m+1; ;0;1such that there is an isomorphism

m m+1 0 1
R a(T@w) ' R@W " R@W T 17 R@W" RE@]
in the categoryParfgr(y,, (the term R(a),, is concentrated in degreg). The R(a),,-module
HE (T (a)w) is perfect.
Let be arbitrary. The isomorphism in propositior] 2.2.1 together with the above isomor-
phism induces an isomorphism

N CLON N LA (¢©) (d)
R oer(T;w)" [ &"! o ! ! 0!

in the categoryParf

o]

o (the term g' is concentrated in degreg). The composite map

H&(T@w) r@w: o! R@E@WIMA)  r@.: o ' F3Im( (d)) HE(T,w)
is an isomorphism. Moreover the inclusion ma® ! O ™ induces an isomorphism
Hér(T; IW) o Qint ' Hér(T int ;IW):

Proof. SinceT (a);, is a freeR(a)w-module, the complexR cont(Gp; T (8)y,) is perfect by
proposition[2.2.1. SR (T (a)w) is a perfect complex oR(a).,-modules by [Btal4), Tag
066R]. Hence it has perfect amplitude contained in an intergm; mY, i.e., it is isomorphic
to a bounded complexP of projective R(a),,-modules of nite type (hence free of nite
rank by [Mat80 | Proposition 3.G] asR(a), is local) with P' = O for every i < m and
i>m©C If m° 2, then automatically R (T (a)w) has perfect amplitude contained in
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[m; 2]. Whenm®> 2, by [Nek06, x4.2.8],R (T (a)w) has perfect amplitude contained in
[m; 2] as

Her (T (@w) =0
foralli 3. Sothe rstisomorphism follows. Then propositiof 2.2]1iges

L
R ei(T;w)" R a(T(@w) r@w; o:

So

d° L
R(a)nl' R(a)n] R(@w: O -

d!

R o(T.w)' [R@E ™ R@M1

dm d°

As the complex R(a);" ! R(a)”””l! " 17 R(@)pt! R(a)p2] is K-at (by [ [Stald],
Tag 064K]), its derived tensor product with o is equal to the tensor product by/$tal4)
Tag 06Y6]. Thus we get the second isomorphism. The third isompiism follows from the
rst two. Since

L .
R a(Trgw)' R a(T;w) o O™
(by proposition[2.2.1), the second isomorphism gives the ah isomorphism.

Remark 3.5.8. From the above proposition, it is not clear ifH3,(T. ) is zero (at least for
some ) because taking cohomology does not commute with taking aed (or usual) tensor

product in general. For example, the complex
0 1 0 1
p pxX p?
@ XA ) @ X2  pX A 5
C = Zy[IX]]! Zp[[X)" ! Zo[[X]]

is exact at the middle term €f.[FO12], Remark 2.17]). But for each integek 2,

C LZp[[X]]Zp[[X X +1 1+p)=C ZppZlX[HX +1 (1+p")

is not exact at the middle term. However applying the Euler-Pacare characteristic formula
([Nek06| Theorem 7.8.6,x4.6.5.6]) twice and using the above proposition, we deduace i
theorem- thatHg, (T, .W) is zero for almost all . Under Greenberg's conjecture (which

is equivalent to conjecture 3.5.21 byHPWO06 |, Theorem 1]),HZ, (T . ) is zero for any (by
lemma|3.5.1# and theorern 3.5.22).

By proposition [3.5.6 and| 3.5[7,HZ.(T (a)\y) is torsion and perfect overR(a),,. So
detr(a),, HE (T (@)w) is well-de ned. Its image in FracR(a)w) (considered without the
grade) under the composite map
detrea, Her (T(@w) ! detrea, He (T(@w)  r@w, FracR(@)w)

= detracran) Hé (T (@w) Rr@w Frac(R(aw) (by proposition[2.1.2)
= det Frac(R(a)Wv)(o)
= (Frac(R(a@)w); 0)
is an invertible ideal of FracR(a)). SinceR(a),, is local, this image is free (bylMat80 |,
Proposition 3.G]) and hence equal to € )R(a). for some nonzero elements in R(a)w .
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Note that = 2 R(a)l™ = (R(a)w)™ (this equality holds asR(a)™ is nitely generated as
an R(a)-module by [Ser00, Proposition 11, Chapter IlI]). Put
Y

Eul = Det (Fr id)j; 0 macrean) 2 R(@w NTOQ
25 ,6p;
kT(a)' 1

where Det( ) denotes the determinant of a linear operator on a free moaul
De nition 3.5.9. The two-variable algebraicp-adic L-function of T (a),, is de ned to be

L 29(a) = 2 Frac(R(a)w):

Eul

353 R f(T:IW);R Gr(T;Iw)-

Theorem 3.5.10. For any ,
TS, =0
forany " 6 p,
(3.5.1) KIS (T w) =tk BA(T. 1) =tk HE (T w) =tk HE (T w);

}qfl (Tiw) = Hé;r(T; w) =0
for any integeri< landi> 2. The o -moduleH} (T ) is torsion free, the o -module
HE, (T i) is torsion free and
(352 BYT.w)=0=) HG(T.m)=00 HETmw)=00 BT n,)=0:
If the group HL,(T.\) is zero, thenHZ (T.,) is perfect. For almost all , the group
HE (T, w) is zero.
Proof. The rst equality follows from Iemma.MNote that
(3.5.3) 0! Co(T.w)! Ci(T.w)! U'(T.w)! O

'2S¢,°6p

is an exact sequence of complexes of -modules. By [FO12| Proposition 2.25],
ﬁfi (T:w)=0

for any integeri < 1 andi > 2. So for any such integei, H, (T. ) is also zero. Then
equation (3.5.3) gives the exact sequence o -modules below.
(3.5.4)

M
0! Hclar(T;IW)! ﬁfl(T;IW)! Hgont(Fr‘;Tl;‘lw)! char(T;IW)! ﬁfz(T;IW)! 0

2S¢,
‘e p

Using Nek06 Theorem 7.8.6x4.6.5.6], we obtain equation| (3.5]1).
Now we prove thatHZ, (T ., ) is torsion free. Letx be an element of o . De ne

(T, w=x)" = TTlW:X:
We have an exact sequence of complexes
0! CGr(T;|W) " CGr(T;IW) ! C:Gr(THW:X) ! O;
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which gives a surjective map
ng(T;lw:X) HE, (T w)IX:

Since
M
0! ng (T; Iw =X) ! Hgont(GQ;S; T; Iw =X) Hgont(Gp; (T; Iw =X)+) ! Hgont(G\ ; T; Iw =X)
"2S¢

is an exact sequence and
Heont (Gaisi T, w=X) = 0

(by proposition[3.5.1), we get

H2 (T, w=x)=0:
This proves

H& (T, w)[x] = 0:

A similar argument also shows that the i -module HE, (T w .,,) is torsion free.

Equation (3.5.4) above gives the rst implication of equatin (3.5.2). The second impli-
cation follows from the nal isomorphism of propositior] 3.5] and Nek06/, Theorem 7.8.6,
x4.6.5.6]. Then lemmd 3.5]4 and equatiorj (3.5.4) give the hamplication of equation
@52)

If HE,(T.w) is zero, thenH& (T . ) is perfect by proposition. For almost all ,
HE, (T.w) is torsion by this proposition. So by[Nek06}, Theorem 7.8.6x4.6.5.6],HE, (T w)
is also torsion. Thus for almost all , HL,(T. ) is zero being torsion free.

Theorem 3.5.11. Let be such that the following conditions hold.

(1) (= )80,
(2) HL.(T. ) is zero,
(3) forall "2 S; 6 p,

rkT(a)" =rkT":
Then
(3.5.5) char , H&(Tm )= (= ) onm
and
(3.5.6) BT ) =0; BATmuw) . Frac( om)=0:
Consequently
(3.5.7) char . B(T )= (L393) on

and (L pa'g(a)) belongs to o . For almost all , the rst three conditions hold.
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Proof. By theorem|3.5.10, det, HZ,(T. ) is well-de ned. Its image in Frac( o ) (con-
sidered without the grade) under the composite map

det , HE(T.\w) ! det_  HZ(T.w) , Frac( o)

= detrae( o ) H&(T:w) o Frac( o)  (by proposition[2.1.2)

= detFrac( o )(O)

= (Frac( 0 );0)
isequalto (= ) o (by proposition[3.5.7). Then by propositior]f A.5.1L,
oint Hér(T; w) o om
Using proposition[3.5.F again, we get equatiof (3.5.5).

By theorem[3.5.1DHZ, (T, ) is torsion. So by propositior] 3.5]7HZ, (T  ,,) is torsion
and hence by[Nek06 |, Theorem 7.8.6x4.6.5.6],HZ, (T i ;) is also torsion. Since it is tor-

sion free (by theorenﬁ 3.5.10), it is zero. Then theorem 3.8 showst} (T i .\, ) is zero. Then
by [Nek06, Theorem 7.8.6x4.6.5.6], (T w .;,v) is torsion over o . This proves equation

(3.5.6). Equation (3.5.7) follows from equation[ (3.5]5)eimma[3.5.2 and lemmf 3.5.5.

The rst condition of the above theorem is immediate for almst all . The second and
the third condition hold for almost all by theorem[3.5.1D and lemmfp 3.5.2 respectively.

(: ) oint =Chal‘

3.54. R (7). Let Sy denote the set of places of containing p;1 and the places
of rami cation of ~. Put

TET@ rak
Let —,, denote theGq.s,-representation de ned by

“w = kK[[Gal(Q: =Q)]I:
De ne

Tw = kKI[Gal(Q: =Q)II:

Remark 3.5.12. Let S%denote a nite set of places of) containing Sy. The i-th cohomology
of R &r(Go:so; 1) is denoted byH, (S%~,,)- When we are interested in the rank or the
triviality of HE,(S% ™), we denote it by H, (7). By lemma[3.5.13, this does not cause
any confusion.

Lemma 3.5.13. Let S°denote a nite set of places of containing Sg. Then HE,(S% )
is free overk|[[T]] and there exists an exact sequence of complexes

(3.5.8) 0! CGr(GQ;SO;_Iw) ! CGr(GQ;So;_Iw) ! Cur(G‘;_lw) Lo
*2S0S,
Consequently
rkiqrrgH & (S% ") = K kgrH G (So; Tw):
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Proof. The rst exact sequence follows fromNek06 |, Proposition 7.8.8]. Since no power of
Fr- is one in ,, equation (3.5.8) gives the exact sequence

0! HG(S%7w) ! Ha(Soimw)! “W=Fr 1)
whose last term is torsion ovek[[T]]. This proves the lemma.
Lemma 3.5.14. For any ,
rkirH G (Ciw) = Kk rrpH G (T mw) =8+ ki rrpHE (T now)[$ ]

Proof. This follows from the exact sequence

0! Co(Tmu)! Co(Tma)! CorCw wqrpk [TI)! O

3.5.5. A main conjecture. By theorem|3.5.11, for almost alp 2 D (D as in the proof
of lemma[3.5.8), we get

char o, I'qu(T p;Iw) = p(L ;Ig(a)) o) p:

On the other hand, by EPWO6 |, there exists an element j"(a) in R(a)w which interpolates
the analytic p-adic L-function of f & (computed with respect to certain period) forp 2
Sped™ (R(a)). Suppose that the conditions below hold.

Assumption 3.5.15.

(1) The assumptions 3.2.4 and 3.3|1 hold.

(2) The character ¢ (as in ¥3.2.3) is trivial.
(3) There exists a primegjjN such that™ (as in proposition[3.2.3) is rami ed at q.
(4) The image of ™ contains SL,(R(a)=m).

Then this analytic p-adic L-function generates char, Dp(Sef,i”pllw) (by [[SU14]| Theo-
o :

rem 1]), which is equal to char, BA(T .. ) if p2 D (by theorem|3.4.5). This shows that
p
the mod p reduction of L pa'g(a) and L3"(a) are associates for almost afp2 D.

Conjecture 3.5.16. The two-variable algebraig-adic L-function L pa'g(a) is an element of
R(a)" and
L 9@R@i = Ly (@R@)1:

Remark 3.5.17. This conjecture does not seem to follow from a straightforwa argument
using density of arithmetic points because there are nonsaiates inZ[[X ]] which become
associates modulo every arithmetic prime. As an example, weaynconsider the elements
p+ X2 andp+ pX + X2 If we have one-side divisibility, then the above conjecterfollows
since an element oR(a)™ (* R(a)™[[T]]) can become a unit modulo an arithmetic prime
only if its constant term is a unit in R(a)'™. Showing one-side divisibility is not immediate
either, as there are element§ g in Z,[[X]] (for instancef = p+ X2 andg= p+ pX + X?)

such thatf -gandf modP j gmodP for each arithmetic primeP.
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De nition 3.5.18. Let R be aring. Iff(T) 2 R[[T]] is a power series, then itcontent is
denoted byi (f (T)) and is de ned as the ideal oR generated by the coe cients off (T).

If R is a local ring andf (T) 2 R[[T]] has unit content, then the -invariant (f (T)) of
f(T) is de ned to be the smallest degree in whid(T) has a unit coe cient.

By choosing a topological generator of = Gal( Q; =Q), we identify Rby , with
R[[T]] for R = R(a)™;0O™". Recall from that O[[T]] denotes theZ,-subalgebra of
Z,[[T]] spanned by the subset®, [[T]] whereL ranges over all nite extensions of,.

De nition 3.5.19.  If L 29(a) is an element ofR(a)jy = R(a)™[[T]], then 29(a) is de ned
by

MW@=1 L) :
If 29(a) = R(a)™, then the algebraic -invariant %(a) is de ned to be L 29(a) .

Remark 3.5.20. It would be clear from the context whether denotes the -invariant or
an arithmetic specialization.

By [EPWO06 | Theorem 1], the -invariant of (the characteristic ideal of the dual of the
Selmer group of)T , vanishes for one arithmetic specialization, of R(a) if and only if
the -invariant of (the characteristic ideal of the dual of the Sener group of) T vanishes
for any arithmetic specialization of R(a). If this is the case, followingloc. cit., we write

alg(—) = 0. By loc. cit., Greenberg's conjecture on vanishing otinvariants of modular forms
(with absolutely irreducible and p-distinguished residual Galois representation) is equilent
to the conjecture below.

Conjecture 3.5.21. If ~ satis es assumption 3.2.4 and 3.3]1, then

Ag(—)=0:
Theorem 3.5.22. The two-variable algebraig-adic L-function L pa'g(a) is an element of
R(a)™. Under assumptions 3.2}4 anfl 3.3/ 1, the following conditions are equivalent.

@ *()=0,

(2) #9(a) = R(a)™,
(3) H& (Tw) =0,
(4) for all

I'q]cl(T int ;IW) =0
and the -invariant of the on -modulechar 182(T i1 ) is zero,

(5) for some
I'Qfl(T int ;IW) =0
and the -invariant of the om -modulechar _, 182(T in 1) IS zeTO.

Suppose that the assumptidn 3.5]15 holds. Then the above ve conditions are equivalent to
an(a) — R(a)i”t:

Assume further that 29(7) =0. Then
W)= *(a);

L @R = L (@R(@):
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Proof. By theorem[3.5.11,
(Lg9@)2 om O[]

for almost all 2 Homo, .aig(R(@); Zy). So by proposition[A.4.}, ey divides in R(a)[.

Let Do denote the subset oD such that for any p in Do, |, satis es the rst three

conditions of theoren] 3.5.11 (with replaced by ;). By theorem|[3.5.1], the complement of
Do in D is nite. Since D is dense in Sped(a)), Dy is also dense in it.

Now suppose that the assumptions 3.2.4 afnd 3.8.1 hold. Them &l p 2 Dy,
char o BT ;)= oL 5%@) o,
char , BZ(T ,.w) =char Dp(Seﬁ”p,M)
P P !

by theorem[3.5.1L and theorem 3.4.5 respectively. SinBg is nonempty, by EPWO06 |,
Theorem 1], the rst two conditions above are equivalent. Fixan elementq in Do. By

lemmal3.5.14H¢, (T) is zero if and only ifHE, (T ..w)[$ ] is zero, which holds if and only if
the -invariant of a generator of char, B2(T «iw) IS zero (by lemma 3.5.5 andHEPWO06 |,
q

Lemma 3.7.4]). Since 4(L pa'g(a)) generates char, 42(T ..), we get
q
H&(CW)=00 (2 = R@"™:
So the rst three conditions above are equivalent. By lemm@a.B.14, (3) implies (4) and (5)

implies (3). So conditions (3), (4), (5) are equivalent.
First note that for all p2 Dy,

char , De(SeR’ )= o(L5'(@) o
by [SU14|, Theorem 1] and hence
o(L9@) 0, = pL3@) o,
So the rst ve conditions are equivalent to
9(a) = R(@)n:
Suppose that 29(7) = 0. Then by [Och05), Lemma 3.7],
L@ = u(T" +a (T" '+ +a); LI@=T+b T+ + by
with ap;  ;a 13y, ;b 1 2 R@™ and u;v 2 (R(@)) . Since for allp 2 Doy,
o(L 29(a)) and ,(L3"(a)) are associates in o ,» the elements (T"+a (T" *+  +ay),
o(TS+ by (TS 1+ + ky) are also associates ing . Hence
o(TM + & T+ + Q) = p(TS"'bslTSl"' + ly)
for all p2 Dy. SinceDy is dense in Sped(a)), we get
T'+a (TN '+ +a=T°+h T° '+ +hy
This proves the result.

p
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CHAPTER 4

Algebraic p-adic L-functions for the Hida family for de nite
unitary groups

In this chapter, we construct algebraicp-adic L-functions Lg‘!?(ato( );LSL?GF( ) along
branches of the Hida family for de nite unitary groups and pree that they satisfy a perfect
control theorem at arithmetic specializations of regular @minant weight whose associated
automorphic representations are stable and associated Gial representations are crystalline
at each place above (theorem[4.3.6). The crucial step of their proof is the recogion of
the role of purity in understanding the variation of inertia invariants in families. Though
such Galois representations are not known to be motivic, i®in92 |, Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic rneresentations, for example purity.
By [Carl2], the Galois representations associated with the automdng forms (which are
of dominant weight and stable) for de nite unitary groups ae pure. So this variation is
well-understood by theorenj 1.2]4. In this chapter, from{4.3, we assume throughout that
the condition[4.3.1 holds.

The local conditions used inL;L?Gr( ) at placesw - p is a modication US( ) of
the unramied condition U, ( ) of Greenberg (as de ned in[[lek06) x0.8.1] following
[Gre89) Gre91]). We use the local conditionU2( ) in stead of U} ( ) as it is pointed
out in [FO12] Remark 2.17] that the inertia invariants of a big Galois regesentation may
not specialize perfectly to the inertia invariants of a spealization of . The construction of
Lf}';gKato( ) uses no condition atp and uses the conditiolU$( ) at placesw 6 p.

The organization of this chapter is as follows. In the rst setion, we review the notion of
automorphic representations of a de nite unitary group andts associated Galois represen-
tation. In the second section, we discuss the set up of Hida twy for unitary groups. For
these two sections, we follondG12, p. 264{268]. Howeveloc. cit. often refers to Gerl0]
for a more detailed exposition and proofs. So we will refer appropriate results in [Gerl0 ]
(which uses Hid88a, Hid89, Hid95, Hid98, Mau04, TU99 ] among others). In the
third section, we construct algebraig-adic L -functions Lf)";gKato( )s L";,‘L?Gr( ) along branches
of this Hida family and prove that they satisfy perfect contrbtheorems.

4.1. Automorphic representations and Galois representations

4.1.1. De nite Unitary Groups. Let F beaCM eld, F* be its maximal totally real
sub eld. Denote the non-trivial element of GalF=F*) by c. Let n 2 be an integer and
assume that ifn is even, thenn[F* : Q] is divisible by 4. Then by the argument of HTO1 ,
Lemma 1.7.1], there exists an involutiory of second kind onB = M,(F) whose associated
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reductive algebraic groupG over F* de ned by
G(R)=fg2B (: Rjgg=1g foranyF"-algebraR

has the following properties:

(@) G is an outer form of Gly=g+ with G ' GLp=¢,
(b) for every in nite place v of F*, G(F,) ' U, (R),
(c) for every nite place v of F*, G is quasi-split atv.

By [CHTO08 , x3.3], we can choose an ord€dg in B such that Oé = O and Og,, is
a maximal order inB,, for all placesw of F which are split overF*. This choice gives a
model of G over O+, which we x from now on.

For every nite place v of F* which splits asww* in F there is a natural isomorphism
w:G(Fy )} GLn(Fy)
which restricts to an isomorphism betweei®(O¢-) and GLn(Ok,,).

For each embedding : F* ! Rand ~: F ] C an extension of , choose an isomor-
phism
-:.B F+: R B [:;..C: Mn(F~)
so that -(xY) = Y( -(x)°). Then ~ _ identies G(F*) with U,(R).
4.1.2. Algebraic representations. Let p > n be a rational prime and assume (as in
[HTO1 , 1.7]) that every prime of F* lying abovep splits in F. Let K be a nite extension
of Qp inside Q, which contains the image of every embedding | Q, and a primitive p-th

root of unity (as in [GG12, p.266]). Let$ denote a uniformizer of the ring of integerOy
of K and F denote the residue eld.

Let , denote the set of places df* abovep, and |, the set of embeddings oF ™ | K.
For each placev 2 |, choose once and for all a placeof F lying abovev. Let ~, denote
the set of these places for v2 . Let I, be the set of embeddings ! K which give rise
to an element of 7,. From now on we will identify |, and I},. Let p denote the product of
all places in . We write

OF*;p = OF+ ZZp; FF-; = F+ QQp

Let T, B, GL, denote the diagonal torus, the Borel subgroup of upper triyular
matrices in GL,, regarded as algebraic groups ovér. We identify the character group

X (T, Z°
via the map which sends the character
diag(ty; ta) 7!ttt

to the tuple ( 1; ; n). Note that any character of T,, can also be regarded as a character
of B, via the natural homomorphismB, ! T,. Let"; denote the character

diag(ty; tn) 70t
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The set of characters

- flli IIj j i 6 jg
consists of the roots of G|, with respect to T,,. Our xed choice of the Borel subgroupB,
gives us a system * of positive roots,viz., the roots"; " for j>i . The simple roots for
this positive system are the roots; "j.; fori =1; ;n 1. There is a partial order on
X (T,) de ned by X
0 2 N(lli "i+1):

The Weyl group W, := Ng_, (T,)=T, acts onTnI by
w(t) = wiw !
and on X (T,) via the rule
(w )(t) = (w ttw):
We identify it with S, via the rule

w(ts;  t)w P=(tw s St i)
Let wp denote the longest element of the Weyl group. It sends the dlaater ( ,; ; ) to
the character ( ; ;1)

For a character of T, and a ring R, de ne the induced representation
Indg-" (Wo )=r = ff 2 R[GLA]jf (b9 = (Wo )(DF (9); 8R! A;g2 GLa(A);b2 By(A)g

on which GL, acts by right translation. This is a representation of the aebraic group
GL,-r. SinceK is at over Ok, we have

Indg-" (Wo )=k =(Ind §-"(Wo )0, o K

(see Jan03, Fact 3, xI.3.5]). WhenR = O ;K or F, by the proposition in [Jan03, xI1.2.6],
the induced module In(@h”(wo )=r is nonzero if and only if the character =( 4; ; 1)
satis es

1 n-
Such a character is called adominant characterfor GL,.
De nition 4.1.1. For a dominant character for GL,, we de ne the representation
=1Ind §-" (Wo )-oy :
We let M denote a nite free Ok -module, carrying an action of GL,(Og ), obtained by
evaluating onOkx. WeletW =M o, K. This space carries an action ofGL,(K).

We remark that the moduleM is nite and free over Ok as it is torsion free by de nition
and nitely generated by [Jan03, Proposition 1.5.12(c)].

If W is an algebraic representation of Gl.r and 2 X (T,), we denote byW the sub-
space oW on whichT, actsvia . The weightsof W are those characters for whichW 6 0.

Put
T=f(y ;22" 4 nd
and let G denote the unitary group as inx4.1.1.
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De nition 4.1.2.
(a) A dominant weight for Gis atuple =( ) 2 (Z!)™. If is a dominant weight for

G, de ne
M= oM W= LW =M oK
Then de ne representations
(G(Op+p) ! GL(M ) by g7t Lo ( (w)9);
tG(Fy)! GL(W) by 97! o ((+)9)
wherew( ) is the place in~, induced by .
() If =( ) 2(zZ™™, then we associate to it the character

Y
Ta(F7)' Ta(F)! K
v2Ip
de ned by Y
u7! ( (w):
21
©1If =( ) 2@ andw?2 Wy, ,weletw =(w ) 2 (Z").
(d) A dominant weight for G is regularif for eachv 2 , and eachj =1; 'n 1, there

exists 2 I, giving rise tow with  ;; > 4.

4.1.3. Automorphic forms on G. Let °denote a nite set of nite places of F*
disjoint from , and consisting of places which split if. Choose once and for all a place
v of F over each places 2 ° For eachv2 °[ ,, we will identify the groups G(F,") and
GL,(Fy) via  (as de ned inx4.1.1). If v is a place ofF * split over F and vis a place ofF
dividing v, then we let

(a) lw(v) denote the subgroup of GL(Og,) consisting of matrices which reduce to an upper
triangular matrix modulo v,

(b) Iw(v?°), for 0 b c, denote the subgroup of GL(Ok,) consisting of matrices which
reduce to an upper triangular matrix modulov& and to a unipotent matrix modulo .

Note that if k(¥) denotes the residue eld ofv;-then we have a natural isomorphism
Iw(v)=lw(v"h) " (k(v) )"

givenbyg=(g;j) 7! (du; ;Guwn) where the bars denote mod reduction. For eachv 2 ¢
we have a character

vE vl vn W)WY 1O
De ne
Q Mt ,g:= v2 Ok ( v):
It has an action of =, ;lw(v). If is a dominant weight forG, de ne

Mit o= M o Mp g
This also carries an action of5(Og+ ).
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De nition 4.1.3.  For an Ok -moduleA and a dominant weight for G, we de neS.;  4(A)
to be the space of function$ : G(F*)nG(At.) ! M.t .4 o, A such that there exists a
compact open subgroup

1; 9 Y
U GA: 1 ") G(Ok:p) Iw(v)
v2 0
with
(u o )f(gu) = f(9)
for all u2 U;g2 G(AL.) whereu | o is the projection ofuto ~, q G(F, ). The group
G(Ag! T ey G(OF+ ) s olw(¥) acts onS.; 4(A) via
(g f)(h)=(g q ,)f(hg):

If A is a K-module, then the grougG(AL. 0) v olw(¥) acts onS.;  4(A) via the same
formula. 0

If Uis aqubgroup ofG(A,lzj 1 ") G(Og+ ) w2 olw(¥), or if U is a subgroup of
G(AL) ) > olw(¥) and A is a K -module, then we de neS.; ,4(U;A) by

S vg(U;A): S vg(A)U:

Now we recall the relation between these spaces and the spatawdomorphic forms on
G as de ned for example in BJ79]. Let Qp! C be a eld isomorphism. Via this
isomorphism,C becomes &K -algebra. For each embedding : F* ] R, there is a unique
embedding ~: F | C extending such that !~ 2 ;. There is an induced action of
G(Ffy)onW . Cvia
g7 - (~(~(9))):
Denote this representation by . .

Q

Proposition 4.1.4. There is an isomorphism ofG(Aéj 0) v2 olw(¥)-modules
Sit,o(Qp)  HOomgesy(( v2 o€ 1) = ;A)

where A denotes the space of automorphic forms @(F " )nG(Ag-).

Proof. Follows from the proof of CHTO8 , Proposition 3.3.2].

4.1.4. Galois representations. We normalize the local Langlands correspondence as
in[CHTO8 , x3.1]. Ifwis a nite place of F and is an irreducible, admissible, representation
of GL,(Fy) de ned overﬁp, we letr,( ) denote thep-adic representation ofGg,, associated
(as in [Tat79 ]) with the Weil-Deligne representation reg( - j j ¢ ™=2) when it exists (.e.,
when the eigenvalues of rg¢ - j j ¢ ™=2)( ) are p-adic units for some lift ,, of Fry).
Here reg is as in HTO1 ]. We will denote the p-adic cyclotomic character by".

Proposition 4.1.5. Q Let be a dominant weight folG and be an irreducible constituent
of the G(AL; 0) w2 olw(¥)-representation S. Vg(ﬁp). Then there exists a continuous
semi-simple representation o
:Gr ! GLn(Qp);
which is uniquely determined by the following two properties.
(1) c LN n’

91



(2 if vz °[ ,isa nite place of F* which splits asww® in F, then
&,y WO )=

If the weak base change of to GL,(Af) is cuspidal, then for any nite placew of F not
dividing p, the restriction of  to Gg, is pure.

Proof. From [Labl1, Corollaire 5.3], we get a weak base change WBGQ(of to GL,(Af).
Then [CH, Theorem 3.2.5] associates a Galois representatiorio WBC( ). We de ne

to be , which satis es the stated properties byloc. cit. The last part follows from [Carl2,
Theorem 1.1, 1.2] and proofs of theorem 5.8 and corollary S8loc. cit.

De nition 4.1.6. Let be as in the statement of the above proposition. It is said to be
stable if its weak base chang@/BC( ) to GL,(Ar) is cuspidal.

In the main theorem of this chapter (theorem 4.3.6), we willansider stable automorphic
representations.

4.2. Hida Theory

4.2.1. Hecke algebras. Let denote a nite set of nite places of F* containing 9 ,
and such that every place in splits in F. Recall that for everyv2 °[ ,, we have xed
a placev-of F lying abovev. Now for every placev2 n( °[ ), x a place ¥ of F above
v. For v 2 , we will henceforth identify G(F, ) with GL ,(F,) via .

Let U = QV U, be a compact open subgroup dB(Al.) where U, G(F;) for each
nite place v of F* and
(@) if vZ splitsin F, then U, = G(O¢: ),
(b) if v2 © then U, = Iw(~),
(c)ifv2 ,, thenU, = G(O:).

We do not specifyU, forv2 n( °[ ) orforv2 notspltin F. ForO b ¢
de ne

Y
U(p®® = UP Iw(v°):

v2 p
4.2.1.1. Hecke operators.Let V;V°  G(AL!/ 0) sz olw(¥) be compact open sub-

groups of G(AL,). Let be a dominant weight forG.
Q

Let A be aK -module. Then for everyg 2 G(AL; 0) v2 olw(¥) there is an operator
[Vogv] 'St (VA Sy vg(VO;A)
de ned by

X
VQVIf = x f; f 2S¢ o(V5A)

using a decompositioiV@V =, x;V. This de nition is independent of the choice of;.
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If A is an Ok -module, but not a K -module, then assume that/; v2 2 G(Ok+ ) for all

v 2 V;\W2 VO In this case, for everyg 2 G(A:; 1 ) G(Of+yp) v olw(v), there is
an operator

[Vogv] S vg(V;A) 'S¢ vg(VO;A)
de ned as above.

Hecke operators at unrami ed places. Let w be a place ofF, split over overF* and
lying over a place ofF* outside . Let be a dominant weight forG and A be an Ok -
module. Let$, be a uniformizer inOg,. For eachj = 1; 'n, we let T denote the

endomorphism

0 1,
of S.¢ ,4(U(p*©); A)). Itis independent of the choice of the uniformizer. The ogratorsTVSj),
for varying w and j, all commute with each other. Also note that

Tod = (T{) T 0

Hecke operators at places dividing p. ForeachO b cwith ¢ 1, and eachv2 .,
the algebra

1 GLn(Ok,) GLn(Og,)  U(p""

W

Oi [IW(¥?)n GL (Fy)=w(¥™9]
is non-commutative and acts orS. ¢ ,4(U(p><); A) only when A is a K -module. Following
Hida, we consider a commutative subalgebra of this algebracgmodify the usual action of
the Hecke operators to de ne an action of this commutative swgebra onS. ¢ ,4(U(p"©); A)
for any Ok -module A. This modi ed action depends on the weight .

Let A be an Ok -module and be a dominant weight forG. Suppose that0 b ¢
with ¢ 1. Foreachv2 jandj =1; ;n, put

y- S« O .
) o 1,, 2GLi(F;

We will also regard &‘3 as an element of5(F; ) and G(AL.) via . If v2 then we let
U(;j$) , be the operator which acts orS. ,a(U(pP©); A) via
(wo )( €)) V(™) QuE™):
Explicitly, if we write U(p™9) $)U(p"%) as a disjoint union . x; {)U(p"), then for any
f 2S¢ ,4(U(p");A) we de ne
Ut f = (wo )( §)) 7 ) f
i

wherew, is considered as a charactef,(F,;) ! K as in De nition 4.1.2. This is an
element ofS. ¢ ,4(U(p>9);A) and is independent of the choice of;.

(
$

Now forv2 ,andu2 T,(Og,), let hui denote the operator

[U(p>9)uu(p"9]
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acting onS.¢ ,4(U(p"9);A). For

Y
U2 Tn(Of+yp) = Tn(Og;) = Tn(Okr,);
V2 p V2 p
we de ne Y
hui = huyi:
V2

4.2.1.2. Unitary Group Hecke algebras.

Lemma 4.2.1. For0 b cwithc 1, a dominant weight for G and an Oy -module
A, the operatorsT’, U andhui on'S.¢ ,4(U(p");A) de ned above commute with each

other. Moreover, ifb boénd ¢ then the inclusion

Sit (U A1 Si1 g(U(P™);A)
is equivariant for all of the operatorsTv(vj), U%) , and hui.
Proof. Follows from the proof of Hid95 , Proposition 2.2] f.[Gerl0, Lemma 2.3.3]).

De nition 4.2.2. For0 b cwithc 1, adominant weight for G and an Oy -algebra
A, let

hoe o(UEP)A) o (UEP);A)  End(S; 1 ,q(U(PY);A))
be the A-subalgebras generated by the operatdfé); (Tv(vn)) 1 and hui in the rst case and

the operatorsTy, (T{") 1, UY andhui in the second case.

Note that the map u 7! hui de nes a homomorphism
(4.2.1) Ta(Op+ =) ! h ¢ ,(U(P™);A) :

4.2.2. Ordinary Hecke algebras. Let A be an Ok -algebra of nite type. Since
. Vg(U(pb;C);A) is a nite type Ok -algebra, it decomposes as a direct product

M gUE™)A) = A (U™ Am

m

wherem runs over the set of maximal ideals dff ., Vg(U(pb?C); A) (by [Eis95, Corollary 7.6,
p. 188] for instance).
De nition 4.2.3. A maximal ideal m of f Vg(U(pb;C);A) is called ordinary if for each
v2 pandforeachj =1; ;n,the image ofU(;f;B) , Is nonzero infi. vg(U(pb?c);A):m.
We de ne the ordinary Hecke algebra
h;;for(jg(u(pb;c); A) = m ¢ vg(U(pb;C);A)m

m
where m runs over the ordinary maximal ideals. We Ieh;}"r‘:g(U(pb?C);A) denote the im-
age ofh.;  (U(p"9);A) in 1.7 (U(p"9);A). Sinceln. ™ (U(p"9);A) is a direct factor of
e Vg(U(pb?C);A), it corresponds to an idempotene 2 i, Vg(U(pb;C);A) with the property
that
(U A) = e (U A):
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If we let U(p) denote the product

Yo (i) b;
U(p) := U, 2 0.4 o(U(P™):A);

v2 pj=1
then one can check that

e=lm U(p)" 2 A ¢ o(U(P™);A):

Now de ne the ordinary parts of S.¢ ,4(U(p>%); A) by
M
ST Lg(U(P™); A) = €St ,o(U(P™);A) = S;t ,g(U(P™); A)mi
mord
wherem runs over the ordinary maximal ideals ofi . (U(p"°); A). The algebrash. ;fo“:g(U(pb;C); A)
andfr, }O“V’g(U(pb?C); A) act faithfully on S Vg(U(pb?C); A). The lemma below guarantees that
ordinary forms exist.

Recall that an open compact subgroup oB(Al.) is said to besu ciently small if for
some placev of F*, its projection to G(F, ) contains no element of nite order other than
the identity.

Lemma 4.2.4. Suppose that is su ciently smalland ¢ n 1. Then S?r? vg(U(pb?c);OK) 6
0.

Proof. This lemma can be deduced fromHid95 , Proposition 2.2] (see Gerl0, Lemma
2.4.3] for details).

Remark 4.2.5. Each O -algebra homomorphism fromh ., Vg(U(pb?C);OK) to ﬁp deter-

minre]shan irreducible constituent of the G(AL; o) w2 olw(¥)-representations. Vg(ﬁp)
such that

VNS 1 g(U(P7):Qp) 8 0:
Such representations are calledordinary automorphic representationgof weight ).

4.2.3. Universal ordinary Hecke algebras.
4.2.3.1. Vertical control theorem.

Lemma 4.2.6. For 1 b c, the natural inclusion
S UE™);0k) ! ST 4(U(p™); Ok)
IS an isomorphism.

Proof. This follows from [Gerl0, Lemma 2.5.2].

For eachb 1, we let T,(p°) denote the subgroup ofT,(Ok+ ) de ned by the exact
sequence

0! Ta(P?)! Ta(Op+yp)! Ta(Op:=p")! O
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We let T, (p) = T,(p!) and we de ne the completed group algebras

b= Ok [Ta(P)]] = lim Ok [Ta(P)=Ta(p*)] forb 1, =
P b
T = Ok [[Tn(OF";p)]] =lim Ok [Tn(OF";p):Tn(pb)] " [ Ta(Op+=p)]:
b1

Note that * is automatically a , algebra forb 1. Let

h. P, (U(p'); Ok) = lim h. " (U(p™); Ok)

c1

and note that it naturally has a *-algebra structure by equation (4.2.1).

Lemma 4.2.7. The Hecke algebrdn;;f"“:g(U(p1 ); Ok ) is a nite faithful  -algebra where
by 1is large enough so that(p®™) is su ciently small.

Proof. It follows from [Gerl10, Corollary 2.5.4].

4.2.3.2. Weight independence.
Theorem 4.2.8. There is an Ok -algebra isomorphism
Lhgi iU );0) h P (U(p* ); Ok)
which satis es

@ (¢ =T and" (UH,)=UY ,
(b) * (hui)= (W )(u Y)hui for all u2 To(Of+ ).

Proof. Follows from [Gerl0, Proposition 2.6.1, Corollary 2.5.4].
Now we renormalize the -algebra structure onho;;f"“jg(U(p1 ); Ok ).

De nition 4.2.9. Let =( ) 2 (Z%)™ be the element with =(n 1,n 2; ;0) for
all . De ne a homomorphism

Ta(P) ! ho”0 (U(P" ); O)
by
u7! (wo ) (u)hui:

This gives rise to anO -algebra homomorphism ! ho;;f’“j(_],(U(p1 ); Ok ). We de ne the
universal ordinary Hecke algebran, ;Sr:(U(pl ); Ok ) to be ho;}o“jg(U(p1 ); Ok ) equipped with
this new -algebra structure.

We give it the structure ofa * = ok Ok [Tn(Of+ =p)]-algebra using the new -algebra
structure and the original Ok [T, (O - =p)]-structure.
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4.2.3.3. Control theorem. Let A be a nite type Ok -subalgebra ofZ,,
:Ta(p)! A
be a nite order character. Suppose that 1 is large enough so that

Ta(p)  ker():

Denote by S (U(p™); ;A ) the maximal subspace oB°F  (U(p™);A) on which hui =
(u) for all u 2 T,(p). Let h;}"r‘v’g(U(p”); ;A ) denote the quotient ofh;;fo“v"g(U(p”);A)
obtained by restricting operators toSC;’rfd ,oU(P™); ;A). These algebras are independent

of the choice ofr.

For a nite order character : T,(p) ! Qp and a dominant weight for G, dene } .
to be the kernel of theOy -algebra homomorphism ! ﬁp induced by the character

(Wo ) *(wo ) *:Ta(p)! Qp:

Theorem 4.2.10. Let be a dominant weight forG and : T,(p) ! Qp be a nite order
character with T,(p")  ker( ) for some integerr 1. Let K°denote the fraction eld of
=} . . Then the map' induces surjection of nite K Zalgebras

hO(UP );0k) 3. = h (U)K )
whose kernel is nilpotent.

4.2.3.4. Arithmetic primes. An arithmetic prime of a nite -algebra R is a prime} 2
SpecR) whose contraction to is of the form} . . In this case, is said to be theweightof
} . An arithmetic specializationof R is an Ok -algebra homomorphisnR ! Qp whose kernel
is an arithmetic prime. Theweightof an arithmetic specialization is the weight of its kernel.
The set of arithmetic primes ofR is denoted by Spe®™ (R).

Sinceh, ;‘32’(U(p1 ); Ok ) is a nite type -algebra anq Spec®™ () is dense in Spec()
by [Hid88a , Lemma 10.2, p.371], it follows that Spét" (h, 3‘32;’(U(p1 ); Ok)) is dense in
Spech; 7 (U(p' ); Ok)).

By the above theorem and remark 4.2.5, an arithmetic spedizétion of h, ;Sr;(U(pl ); Ok)
of weight determines an ordinary automorphic representation of weight .

4.2.4. Galois representations.

Proposition 4.2.11. Let m be a maximal ideal oh, ;‘;’r;(U(pl ); Ok ). Then there is a unique
semisimple representation
Tm:Ge ! GLn(h; 7g(U(p');Ok)=m)

characterized by the following properties:
(@) if vZ is a nite place of F* which splits asww® in F, then is unramied at w and
wWE,
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(b) if vZ is a place ofF* which splits asww® in F and Fr,, is the geometric Frobenius
element ofGg,=Ig,, then rpy(Fr,) has characteristic polynomial

X" TEX" T+ (1 (Nw) 0 D2=TOX T e (0 1)T(Nw) (" D27
Proof. Follows from [Ger10, Proposition 2.7.3].

A maximal ideal m of h; ;Srg(U(pl ); Ok ) is said to benon-Eisensteinif T, is absolutely
irreducible.

Proposition 4.2.12.  Let m be a non-Eisenstein maximal ideal df, frg(U(pl ); Ok ). Then
there is a continuous lifting

fm:Ge ! GLn(h; °5(U(P" ); Ok )m)

of r, satisfying the following properties. The rst two properties determine the lifting,,

uniquely up to conjugation by elements &L (h; ;‘f;(U(pl ); Ok )m) Which are trivial modulo

m.

(@) If vZ s a nite place of F* which splits asww® in F, then is unramied at w and
we.

(b) If vZ is a place ofF* which splits asww® in F and Fr,, is the geometric Frobenius
element ofGg, =Ig,, then r(Fry) has characteristic polynomial

XM TEX" T+ (1Y (Nw) O D2=TOX T+ (0 1)T(Nw) (" D27

(c) For each placew of F lying abovep, there exists ann-tuple of characters( wi; ; wn)
such thatrjg,  is conjugate to an upper triangular representation with the ordered tuple
( w1, ; wn) along the diagonal. In particular, for anyOy -algebra homomorphism
- by ;‘3:;'(U(p1 );iOk)m ! Zp, the representation( 'm)ice, IS CONjugate to an upper
triangular representation with the ordered tuplé wiy ) wn) along the diagonal.

Proof. It follows from [GG12, p.267{268] (which relies onGerl0, Proposition 2.7.4] for
part (a), (b), and on [Ger10, Corollary 3.1.4, Prop 2.7.2(2)] for part (c)).

If mis a non-Eisenstein ideal oh, ;‘jrg(U(pl ); Ok ), then the representationr,, inter-
polates the Galois representations attached to the ordingrautomorphic representations
corresponding to the arithmetic primes oh; “jrg(U(pl ); Ok )m.

4.3. Algebraic p-adic L-function along branches

In this section, we construct algebraip-adic L-functions L, L3% . along irreducible

components of the Hida family and show that it satis es a contl theorem at arithmetic
primes.
Let m be a maximal ideal ofh, fr;(U(pl ); Ok ) satisfying the following.

Assumption 4.3.1. The maximal idealm is non-Eisenstein.

Suppose thata is a minimal prime of h; frg(U(pl ); Ok ) contained in m. Then from

x4.2.4, we obtain a uniquely determined representation: Ge ! GL,(R(a)%) whereR(a)°=

h; ;3§(U(p1 ); Ok )m=a. Let R(a) denote the subalgebra oK := Frac(R(a)9 obtained by ad-

joining to R(a)°the coe cients of the characteristic polynomial of F, on the | ¢, -invariants
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of for the placesw of F at which is rami ed and has nonzerol g, -invariants. The ring
R(a) is a complete local domain and a nite type -module ([Eis95, Corollary 7.6, p. 188]).
Now de ne T (a) := R(a)" with a Gg-action on it via

Let S denote a nite set of places ofF containing the places of rami cation ofT (a), the
archimedean places of and the places ofF abovep. Denote by S; the set of nite places
in S. We will considerT (a) as a representation ofGgs.

For a ring homomorphism :R(a)! RO the -specializationof T (a) is denoted by T
and is de ned to be the Gg.s-representationT (a) r(a): R® with coe cients in R®% From
now on we denote the image of an arithmetic specialization: R(a) ! Gp by O and con-
sider such maps as ring homomorphisms onto their image®., as : R(a) O . Thus
for an arithmetic specialization of R(a), the -specializationT of T (a) will denote the
Ges-representationT (a) gr(y). O . For such a specialization, we denote by the Gg;s-
representationT o Q,.

In the following, w will denote a nite place of F.
Forwjp, let T(a)* (resp. T") denote the largestR-submodule ofT (a) (resp. T where
denotes an arithmetic specialization oR(a) of regular dominant weight such thatV jg,

is crystalline) on which Gg,-acts by the character ,; (resp. wi)-

Let F; denote the cyclotomicZ,-extension ofF . We denote the Galois group GaK, =F)
by . Denote the Iwasawa algebraOx [[]] by ., which is aGg.twjpg-module via the map

Ge:twijpg ! w Since Fy1 is unramied at placesw - p. For any nite type Ok -
subalgebraA of Z,, we will write A to denoteA o, w = A[[]]. We will consider 4 as
a Gg.twjpg-module via the mapGe.tyjpg ! A- The image of an element 2 Ge tyjpg

under this map will be denoted by ¢§]. The completed tensor produciR(a)Po, 1 will be
denoted byR(a@)y -

De ne the cyclotomic deformationT (), of T (a) as theGg.s-representationT (a) Po, 1w
over R(a),, obtained by tensoring theGg.s-representationsT (a) and ,. De ne the G-
representation

T(@)y = T@ Do w:

For an arithmetic specialization of R(a), de ne the cyclotomic deformationT ., of T
as theGgs-representationT o, woverO o, w= o . Denethe Gy-representation

+ —_ + .
T;|W_T Ok Iw -

Note that each arithmetic specialization : R(a) ! O of R(a) extends to a ,-algebra
homomorphism boK id , :R@w!'O ok w = o, which will be denoted by by
abuse of language.
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De nition 4.3.2. Let T be a free module of rank 2 Z ; over a complete local noetherian
domain R. Let Gg.s act continuously onT via a representationGg.s ! Autg(T). Sup-
pose that the characteristic polynomial ofr,, on T'fv Frac(R), denotedCP,,(X;T), has
coe cients in R whenever0 < rkgT'Fv < n for w - p.

For any w not dividing p, let US(T) denote the object in the derived category BEmodules
corresponding to

R (Pt R] concentrated in degree 0,1 0 < rkgT'Fv <n;

Ceont (Gr, =lg,; T'Fw) otherwise.

De nition 4.3.3. Let denote an arithmetic specialization ofR(a) such thatV jg. is
crystalline for any w j p. For w j p, put

UV?I(T (a)lw): R cont(GFW;R(a)lw)
Uv(\)/(T;Iw): R cont(Gr.; o)

whereGg,, acts onR(a), (resp. o ) by the character through which it acts oft (a),, (resp.
T!). For T = T(a)w; T, de ne the algebraicp-adic L-functions L %, (T), L3t (T)
as the objects oParf-isg (R = R(a)\w; o respectively) given by

0

M
(43.1) L3, (T) = deta(R coon(Grsi DI dete B LTI
WZSf
w-p

0 1

| M M
(4.3.2) Lo (T):=detr(R ceom(Grs; T)1]) detR% Ua (T[] UVCC(T)[1]§
wijp w2 St
w-p

respectively.

Lemma 4.3.4. The above objectisg';ﬂam (T) and LEL?Gr (T) are well-de ned forT = T(@Q)w; T w,
where is as in the above de nition.

Proof. The ringsR(a) and O are complete local rings (byEis95, Corollary 7.6, p. 188] for
instance). SoR(a),, and o are complete local rings.

By de nition of R(a) and O , the polynomialsCP,(X; T (&)) and CP,(X; T .},) have
coe cientsin R(a)y and o respectively for anyw - p (by theorem 1.2.4(6) and proposition
4.1.5). SoUS(T) is well-de ned and by proposition 2.2.1, it is a perfect coplex for w 2
Si;w-p. So Lg‘!?(am (T) is well-de ned (using the same proposition again).

By proposition 4.2.12, forw j p, the group Gg,, acts onT (a)y, (resp. T7,,) by an R(a)-
valued (resp. o -valued) character. SAU2(T) is well-de ned for w j p and they are perfect
complexes by proposition 2.2.1. Using this proposition aggiit follows that L‘;‘L?Gr(T) is
well-de ned.

Lemma 4.3.5. The arithmetic primes of R(a) which are kernels of the arithmetic special-
izations :R(a)! Z, satisfying
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(1) is of regular dominant weight,
(2) Vjg., Is crystalline for any placew of F lying abovep,

form a dense subset dbpecR(a)).

Proof. By the comment after the proof of Gerl0, Lemma 2.6.4], Gerl0, Lemma 2.7.5(2),
Proposition 2.7.2(2), (4)] and the last paragraph of the praf of [Gerl0, Corollary 3.1.4],
the lemma follows.

Theorem 4.3.6. Let be an arithmetic specialization oR(a) of regular dominant weight
such that is stable andV jg., is crystalline for all w j p. Then the isomorphisms in
propositions 2.1.2, 2.2.1, 2.2.3 induce isomorphisms

(4.3.3) Las (T @) r@w: o = Lot (Tiw);

(4'3'4) Lgl;gKato (T (a)lw) R(@w; O = I-Sl;gKato (T;IW)
under the assumption 4.3.1.

Proof. By proposition 2.1.2 and proposition 2.2.1, it remains to mve the control theorem
for the factors coming from \local conditions". Forw j p, the complexUS(T (a)w) is K -
at by [ Stal4, Tag 064K] and hence the control ofJ2(T (a),,) follows from [Stal4, Tag
06Y6]. So it remains to prove the control theorem atv - p, i.e., the -specialization of
detUd(T (a)) is detU2(T .\, ). Let w - p denote a nite place of F. By proposition 2.1.2,
it su ces to prove the control theorem for U2(T (a) ).

The restriction of the Gr.s-representationT (a) to the decomposition groupGg,, is con-
tinuous and its coe cient ring R(a) has nite residue eld of characteristicp 6 . So by
theorem 1.1.25, theGg,, -representationT (a) is monodromic. Moreovew jg.  is pure for any
arithmetic specialization of R(a) and w - p (by proposition 4.1.5). So theorem 1.2.4 applies
to T (a) and its arithmetic specializations. By theorem 1.2.4(5) rad proposition 2.2.1, we
need to prove the control theorem fotJ(T (a)w) only when 0< rkr(yT (8)'F» <n. Assume
that this inequality holds. Then U2(T (a)\y) is K - at by [ Stal4, Tag 064K]. So its derived
tensor product overR(a),, with o (through ) is equal to the tensor product by tal4,

Tag 06Y6],i.e., [ o !'"THT@)  1and this is U(T . ) by theorem 1.2.4(6).
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APPENDIX A
Divisibility

A.1. Valuations
Let
Vo1 Q,! Q[flg

denote the valuation normalized so that/,(p) = 1. If | denotes a primitive p"-th root of
unity in Q, (r 1), then

I 1
) P e 1)
by [Neu99, Proposition 7.13, Chapter Il]. For any integerk 2,

(A.1.1) Vo( 1)

(A.1.2) Vo(l+p* 1) L
For any integerk 2 and 16 2 . (Z,),
1+p* 1= ( 1@A+p“ + Q+p* 1
gives
(A.1.3) o @+ p* D=v( 1

by equations (A.1.1), (A.1.2).
Let K=Q, denote a nite extension contained insideﬁp. Let $ denote a uniformizer of
Ok .

Lemma A.1.1. Letf(X) 2 Ok [X] be a distinguished polynomial of degrek 1. Letk 2
denote an integer and , denote a primitive p'-th root of unity. Then

Wl (@ D)= s

for r 0.

Proof. Write
f(X)= g+ X + +¢g X941+ X
with ¢o; :Ca 12 $0k. Lett denote the least nonnegative integer such thag 6 0. Put
¢ =1. So
f(X)= aX'+  + X%
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If t = m, then

Vo(f (p(1+ P 1))

Vo G p(1+p)* 1)
dvp( pr (1 + p)k 1)

=dvp( p 1) (by equation (A.1.3))
d

= — by equation (A.1.1)):

5 ip 1) (by eq ( )

Now lett < d. Note that

V(G (L4 DY 1)) = vp() + e

Gy e (LR 1Y = vyl +

d
t(p)
So foranyt s<d,

Vp(Gs( w1+ P)* 1)) >vp(a( w1+ P* 1))
asr 0. Hence the lemma.

A.2. Divisibility in Ok [[X]]
Let m; denote the maximal ideal ofZ,. The symbol will be used to denote elements
ofmy . For 2 m; and any nite extension L=Q,, the map
OL[XN! Z, X7
is denoted by by abuse of notation.

Lemma A.2.1. Let ; Dbe two elements 0D [[X]] with 6 0. Suppose that ( ) divides
( ) for almost all 2 mz, . Then divides in Ok [[X]].

Proof. Suppose that is zero. By Weierstrass preparation theorem,
(X) = $*P(X)U(X);  (X)= $"Q(X)V(X)

where a; b are nonnegative integersJ(X);V(X) are units in Og [[X]] and P(X); Q(X) 2
Ok [X] are distinguished polynomials. Without loss of generalityve assume thatJ (X ); V(X)
are equal to 1. Put

P(X)= a+aX + +ap X™ 1+ XM
QX) =+ bX +  +b X" 1+ X"
with a;; 2 $ Ok, m;n 2 Z ,. When m;n are zero, we interpretP (X); Q(X) as 1.

We have
Vo (p@+p)* 1) v( (p@+p* 1)
wheneverk O:r 0. Note that lemma A.1.1 remains valid even whed = 0. So lemma
A.1.1 gives

m n
A CRE VI S

forr 0. Thusa b Sowe may assume thada 0;b=0.
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Write .
(X)=Q(X)= (X )"

i=1
with ;2 Zp. Note that 2 mz . Let L=K denote a nite extension containing ; .
So it su ces to prove that if (X ) divides ($2P (X)) in Z, for almostall 2 my, (with
2 my \O ), then X divides $ 2P (X) in O_[X], which is immediate.

A.3. Divisibility in R
Let K denote the fraction eld of Ok [[X]]. For an extensionL=K contained in K, the

integral closure ofOk [[X]] in L is denoted byO,. Let R denote a nite type Ok [[X]]-
subalgebra ofOg. Its integral closure in its fraction eld is denoted byR™.

Lemma A.3.1. Let ; be two elements oR with 6 0. Suppose that for almost all
2 Homo, -ag(R;Zp), ( ) divides ( )in Z,. Then divides in R™.

Proof. Let L=K denote a nite Galois extension containing; . SinceO_ is a nite type
R-algebra, ( ) divides ( )in Z, for almost all 2 Homg, -aig(OL; Zp).

For each 2 Homo, .aig(Ok [[X]; Zp), we x a lift €2 Homo, -ag(OL;Z,). Note that
for any 2 Gal(L=K), € is also an element of Ho®), .ag(OyL;Zp). For almost all 2

Homo, -aig(Ok [[X1]; Zp), the images of th$ coe cients of

P(Y)= Y (=)
2Gal(L=K)
under € are elements oZ,. SinceP(Y) has coe cients in K (X)), the images of its coe -
cients under are elements o, for almost all 2 Homg, q(Ok [[X1];Zp)- In particular,
the images of the coe cients ofP(Y) under are elements o, for almost all 2 mz,. By
lemma A.2.1,P(Y) has coe cients in Ok [[X]]. So the element= of Frac(R) is integral
over Ok [[X]] and hence is an element d®'™.

A.4. Divisibility in ~ RJ[[T]]

Let O[[T]] denote theZ,-subalgebra ofZ,[[T]] spanned by the subset®, [[T]] whereL
ranges over all nite extensions 0fQ,. Note that O[[T]] is smaller thanZ,[[T]] and each
element ofO[[T]] lie in O_[[T]] for some nite extensionL=Q, (depending on the element).

Proposition A.4.1. Letf(T);g(T) be two elements oR[[T]] whereg(T) 6 0. Suppose that
(g(T)) divides (f (T)) in O[[T]] for aimost all in Homo, -ag(R;Z,). Then g(T) divides
f(T) in RM[[T]).
Proof. Write
f(T)=a+ a,T+ ;o 9(T)= b+ bT+
Note that for an integerr 1, if T" dividesg(T), then it also dividesf (T). So without loss
of generality, we may assume thaly 6 0. Let

h(T)= o+ T+ 2 Frac(R)[[T]]
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be such that
f(T) = h(T)a(T);
i.e., Co;C; 2 Frac(R) are de ned byX
Gh = an:
i+j=n
Since (cp) is an element ofZ,, for almost all 2 Homo, _ag(R; Zp), by lemma A.3.1,¢,
belongs toR™. Suppose thatc,;  ;c, are elgments oR™. Then the image of

n

an+1 i=0 Cibn+1 i
b

under is an element oZ; foralmostall 2 Homo, .ag(R;Z;). By lemmaA.3.1,ch.p 2R ™.
By induction, ¢ 2R™ foralli 2 Z o.

Ch+1 =

A.5. Integrality of determinants

Let O be a nite type Ok -subalgebra ofZ,,. Let O™ denote the integral closure oD in
its fraction eld and M denote a nitely generated torsionO[[T]]-module. Suppose thaM
is a perfectO[[T]]-module. The image of defryM in Frac(O[[T]]) (considered without the
grade) under the composite map

detogryM ! detogryM  ory Frac(O[[T]])
= detgacogryy M oy Frac(O[[T]]) (by proposition 2.1.2)
= det frac(ogrry) (0)
= (Frac(O[[T]]); 0)
is free and hence equal to£ )OI[T]] for some nonzero elements of O[[T]].
Proposition A.5.1. We have

(A51) Charoim [[T]](M O[[TI] Oint [[T]]) = —()int [[T]]

Consequently, the element divides in O™ [[T]].

Proof. The image of deg;ryM in Frac(O[[T]]) (considered without the grade) under the
composite map

detomry M ogrp O™[[TT] ! detongry(M  ogry O™ [[TI)  om gryy Frac(O[[TI])
= detpacogry (M ogrg O™ [[TI) o gryy Frac(O[[T1])
= detpacorry (0)
= (Frac(O[[T]]); 0)

is chargn rrp(M oty O™[[T1D) ' So equation (A.5.1) holds and hence divides in
O™[[T]].
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