
Universit �e Paris-Sud
Facult �e des Sciences d'Orsay

TH �ESE

Pr�esent�ee pour obtenir

LE GRADE DE DOCTEUR EN SCIENCES
DE L'UNIVERSIT �E PARIS-SUD XI

Sp�ecialit�e: Math�ematiques

par

Jyoti Prakash Saha

An algebraic p-adic L-function for
ordinary families

Soutenue le 11 Juin 2014 devant la Commission d'examen:
M. Jo•el Bella •�che (Rapporteur, absent �a la soutenance)
M. Denis Benois (Rapporteur)
M. Christophe Breuil (Examinateur)
M. Ga•etan Chenevier (Examinateur)
M. Laurent Clozel (Examinateur)
M. Olivier Fouquet (Directeur de th�ese)
M. Adrian Iovita (Directeur de th�ese)









in memory of late Dr. Abir Kumar Adhikari





Abstract, R�esum�e, Abstract

An algebraic p-adic L-function for ordinary families

Abstract. In this thesis, we construct algebraicp-adic L-functions for families of Galois
representations attached top-adic analytic families of automorphic representations using the
formalism of Selmer complexes. This is achieved mainly through making a modi�cation of
the Selmer complex to ensure that we deal with perfect complexes and proving a control
theorem for the local Euler factors at places not lying abovep. The control theorem for local
Euler factors is obtained by studying the variation of monodromy under pure specializations
of p-adic families of Galois representations restricted to decomposition groups at places of
residue characteristic di�erent from p. This allows us to prove a control theorem for the
algebraicp-adic L-functions that we construct for Hida families of ordinary cusp forms and
ordinary automorphic representations for de�nite unitary groups. For the Hida family of
ordinary cusp forms, we construct a two-variable algebraicp-adic L-function and formulate
a conjecture relating it with the analytic p-adic L-function constructed by Emerton, Pollack
and Weston. Using results due to Kato, Skinner and Urban, we prove this conjecture in
some special cases.

Keywords. p-adic L-functions, Selmer complexes, families of Galois representations,
purity, weight-monodromy conjecture.

Une fonction L p-adique alg�ebrique pour les familles ordinaires

R�esum�e. Dans cette th�ese, nous construisons des fonctionsL p-adique alg�ebriques pour
les familles de repr�esentations galoisiennes attach�eesaux familles p-adique analytiques de
repr�esentations automorphes en utilisant le formalisme des complexes de Selmer. Ce r�esultat
est obtenu principalement en e�ectuant une modi�cation des complexes de Selmer pour
sassurer que nous traitons avec des complexes parfaits et d�emontrer un th�eor�eme de contrôle
pour les facteurs d'Euler locaux aux places en dehors dep. Le th�eor�eme de contrôle pour
les facteurs d'Euler locaux est obtenu par l�etude de la variation de la monodromie sous
sp�ecialisations purs des famillesp-adiques de repr�esentations galoisiennes restreintes aux
groupes de d�ecomposition en dehors dep. Cela nous permet de d�emontrer un th�eor�eme de
contrôle pour les fonctions alg�ebriquespadique que nous construisons pour les familles de
Hida de formes paraboliques ordinaires et les repr�esentations automorphes ordinaires pour les
groupes unitaires d�e�nies. Pour les familles de Hida de formes paraboliques ordinaires, nous
construisons un fonctionL p-adique alg�ebrique de deux variables et formulons une conjecture
la reliant �a la fonction L p-adique analytique construite par Emerton, Pollack et Weston.
En utilisant des r�esultats de Kato, Skinner et Urban, nous montrons cette conjecture dans
certains cas particuliers.
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Mots-clefs. Fonctions L p-adique, complexes de Selmer, familles des repr�esentations
galoisienne, puret�e, conjecture de monodromie-poids.

Un funzione L p-adiche algebriche per le famiglie ordinario

Abstract. In questa tesi, costruiamo funzioniL p-adiche algebriche per le famiglie di
rappresentazioni di Galois associate a famigliep-adiche analitiche di rappresentazioni au-
tomorfe, utilizzando il formalismo dei complessi di Selmer. Questo risultato �e ottenuto
principalmente attraverso una modi�ca del complesso di Selmer, attuata in modo tale da
garantire che i complessi studiati siano perfetti e attraverso un teorema di controllo per i
fattori di Eulero locali nei primi diversi da p. Il teorema di controllo per fattori di Eulero
locali si ottiene studiando la monodromia al variare delle specializzazioni pure di famiglie
p-adiche di rappresentazioni di Galois ristrette a gruppi didecomposizione a primi di fuorip.
Questo ci permette di dimostrare un teorema di controllo perfunzioni L p-adiche algebriche,
costruite per famiglie di Hida di forme cuspidali ordinarie erappresentazioni automorfe or-
dinarie per i gruppi unitari de�niti. Per la famiglia di Hida d i forme cuspidali ordinarie,
costruiamo una funzioneL p-adica algebrica di due variabili e formuliamo una congettura
che stabilisca il legame con la funzioneL p-adica analitica costruita da Emerton, Pollack e
Weston. Utilizzando i risultati di Kato, Skinner e Urban, dimostriamo questa congettura in
alcuni casi particolari.

Parole chiave. Funzioni L p-adiche, complessi di Selmer, famiglie di rappresentazioni
di Galois, purezza, congettura di peso-monodromia.
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Introduction

Let K 1 =K be a Zp-extension of a number �eldK and let K � K n � K 1 denote the
sub-extension of degreen. Then K. Iwasawa showed in [Iwa59 ] that the exact power ofp
dividing the order of the class groupX n of K n is given forn large enough by the formula

(0.0.1) �n + �p n + �

where� � 0, � � 0 and� are integers. Immediately thereafter, J.-P. Serre noticed in [Ser95]
that this result followed from two general principles: �rst, the inverse limit X 1 of the X n

with respect to the norm map is a �nite type torsion module over � = Zp[[Gal(K 1 =K )]] (a
regular ring of dimension 2); second, there exists a speci�celement! n such that X n is equal
to X 1 =! n . As the order of the class group is linked via the Dirichlet class number formula
to special values of the zeta function, these results suggest that the variation of class groups
in Zp-extensions could be linked withp-adic L-functions and indeed, the Kubota-Leopoldt
zeta function was given a new construction in terms of cyclotomic Zp-extensions in [Iwa69 ].
In [Maz72 ], B. Mazur proved that the formula (0.0.1) admitted an extension to the growth
of the Tate-Shafarevich group of abelian varieties inZp-extensions and he proposed a bold
generalization of these facts to the Galois cohomology of the �etale cohomology of varieties
over Q. However, already in the context of abelian varieties, a remarkable fact is that the
control theorem relating the Selmer group over � to the Selmer group overZ[Gal(K n=K )] is
true only up to error terms of local origins, the error terms at places abovep being sometimes
unbounded withn. The analogy mentioned above withp-adic interpolation of special values
of L-functions can perhaps account for the strange behavior atp: just as one should not
expect to be able to interpolate special values ofL-functions without �rst removing an Euler
factor at p, one should presumably not expectp-adic interpolation of Galois cohomology
modules to proceed smoothly without modifying the condition at p. The relevance (if any)
of error terms at other places, on the other hand, remained mysterious.

In the late 80s and early 90s, several theoretical improvements completely changed our
approach to these classical questions. First, R. Greenberg proposed in [Gre89, Gre91 ] that
the appropriate context for the study ofp-adic variation of special values ofL-functions and
Selmer modules was the universal deformation of a Galois representation of geometric origin.
Second, the conjectures formulated by Bloch, Kato in [BK90, Kat93 ] considerably deep-
ened our understanding of the behavior of special values ofL-functions. In particular, they
made clear that special values ofL-functions should be linked to some integral basis in the
determinant of the Galois cohomology complex of motives with coe�cients. Seen from this
dual perspective, the proper extension of Iwasawa's and Mazur's classical control theorem
should be that specialization of some integral basis in the determinant of the Galois coho-
mology complex of motives with coe�cients in universal deformation rings at an arithmetic
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point x should be equal to the integral basis of the determinant of the Galois cohomology
of the motive over Q corresponding tox coming from the conjectures on special values of
L-function. As in [Kat04 ], one can check for instance that this formulation applied to the
motive Q(1) recovers exactly Iwasawa's control theorem and that no prime ` 6= p can make
a contribution to the error term in the setting of Zp-extensions. However, in the simplest
example ofp-adic universal families of rank 2 motives, that isp-adic families of ordinary
eigenforms parametrized by the Hida-Hecke algebra, even a precise formulation of the con-
jectural form of the control theorem has been heretofore lacking.

The reasons for this are twofold. To start with, universal deformation rings are typi-
cally not known to be regular rings, so complexes of Galois cohomology ofp-adic families
with coe�cients in universal deformation rings are usuallynot known to be perfect com-
plexes, precluding the possibility of taking unconditionally their determinants. Even in the
more classical formulation of Greenberg ([Gre91 ]), one needs to consider the characteristic
ideal of some modules and this requires at least the ring to benormal. This for instance is
presumably why there is no de�nition of an algebraic counterpart to the analytic p-adic L-
function for Hida families in [EPW06 ] by Emerton, Pollack, Weston. Moreover, even when
the complexes are known to be perfect, the error terms ubiquitous in control theorems since
[Maz72 ] can be very hard to explicitly control in the universal deformation. This happens
for instance in works by Fouquet, Ochiai ([Och06, FO12 ]) and is related to the variation
of the inertia invariants in families.

In this manuscript, we prove a perfect control theorem at arithmetic points on a branch
of the Hida family for GL2(Q) and de�nite unitary groups with no assumption on the nature
of the universal deformation ring, and thus construct unconditionally an algebraicp-adic L-
function for the Galois representations attached to these Hida families. The fundamental tool
allowing this progress is the recognition of the crucial role played by the weight-monodromy
conjecture in the variation of special values ofL-function (an idea which we learned from
Nekov�a�r [ Nek06 ] and Ochiai [Och06 ]). The philosophy behind the conjectures of Bloch,
Kato, Fontaine and Perrin-Riou ([BK90, FPR94 ]) is that special values ofL-function
should encode extension of motives which are not too much rami�ed. This implies that
the local conditions at ` 6= p conjectured to appear in the de�nition of algebraicp-adic
L-functions will involve rami�cation. The weight-monodromy conjecture allows to relate
inertia invariants of pure modules with eigenvalues of the Frobenius morphisms and this
allows at the same time to de�ne unconditionally an algebraic p-adic L-function as well as
proving it satis�es a control theorem at arithmetic points.

Statement of results

In this section, we summarize the results obtained in chapter 1, 3, 4.

Purity for big Galois representations. Let p be a rational prime andK denote a
�nite extension of Q` with ` 6= p. Let R be a characteristic zero domain containingZp as a
subring. Denote the fraction �eld of R by K and �x an algebraic closureK of K. Denote
the integral closure ofR in K by OK . Note that any ring homomorphism from R to an
algebraically closed �eld 
 of characteristic zero extendsto OK [1=p], we �x such an extension

xvi



and denote it by by abuse of notation. Observe thatQ is contained insideOK [1=p]. Suppose
that GK = Gal( K=K ) acts on a freeR-module T such that its action is monodromic (i.e.,
a �nite index subgroup of I K acts through its Zp-quotient via the exponential of a nilpotent
matrix, see De�nition 1.1.1). Let M � denote the associated monodromy �ltration onT .
Denote theGK -representationT 
 R K by V. For a Zp-algebra homomorphism� : R ! Qp,
the GK -representationT 
 R ;� Qp is denoted byV� . The Weil-Deligne parametrization ofV
(resp. V� ) is denoted by WD(V) (resp. WD(V� )). For a Weil-Deligne representationV, its
Frobenius semisimpli�cation is denoted byV Fr-ss.

Theorem A (Purity for big Galois representations). Suppose that� : R ! Qp is a Zp-
algebra homomorphism such that theGK -representation V� is pure of weightw (see x1.0.1
or de�nition 1.1.47). Let p� denote the kernel of� . Then the following hold.

(1) The terms and gradings ofM � become free overR p� after localizing them atp� and
for any i 2 Z, the map� induces isomorphisms

M i 
 R ;� Qp ' M �;i ; Gri M � 
 R ;� Qp ' Gri M �; �

of WK -modules.

(2) There exist
(a) an integer J � 1,
(b) integers 0 � t1 < � � � < t J ,
(c) an integer I � 1,
(d) (i) unrami�ed characters � 1; � � � ; � I : WK ! O �

K
,

(ii) irreducible Frobenius-semisimple representations

� 1 : WK ! GLd1 (Q); � � � ; � I : WK ! GLdI (Q)

with �nite image and
(e) integers nij � 0 for 1 � i � I; 1 � j � J such that the following hold.

� There are isomorphisms of Weil-Deligne representations

WD(V)Fr -ss '
IM

i =1

JM

j =1

Spt j
(� i 
 � i )

n ij

=K
;

WD(V� )Fr -ss '
IM

i =1

JM

j =1

Spt j
(� � (� i 
 � i ))

n ij

=Qp
:

� The representation � � (� i 
 � i ) : WK ! GLdi (Qp) has image contained in
GLdi (Q) for all 1 � i � I .

Furthermore, the integersI; J; t i ; nij and the representations� i ; � i depend onV, but
not on � .

(3) The � -specialization of the central irreducible summands ofWD(V)Fr -ss (considered
over OK [1=p]) are strictly pure of weightw.

(4) The polynomialEul(V)� 1 has coe�cients in OK \R p� , its � -specialization isEul(V� )� 1.
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(5) The R p� -modulesT I K
p� , Tp� =T I K

p� are free and the map� induces an isomorphism

T I K 
 R ;� Qp ' T I K
p�


 R p� ;� Qp ' V I K
� :

Consequently, the complex[T I K
� � 1
��! T I K ] concentrated in degree 0, 1 descends

perfectly to the complex[V I K
�

� � 1
��! V I K

� ] concentrated in degree 0, 1, i.e.,

[T I K
� � 1
��! T I K ]

L

 R ;� Qp ' [V I K

�
� � 1
��! V I K

� ]:

For a more general version, we refer to theorem 1.2.4 which isthe main result of chapter
1. The main upshot of purity for big Galois representations is that using this one can prove
control theorems at pure specializations for (the local factors outside p of) the algebraicp-
adic L-functions that we construct in chapter 3, 4. Using the same tool and [Ber13 , Lemma
5.5], we also hope to construct an algebraicp-adicL-function along irreducible components of
eigenvarieties. In fact we expect that using purity of big Galois representations, an algebraic
p-adic L-function can be constructed for any family of Galois representations and pseudo-
representations interpolating Galois representations over Qp whose restriction to local Galois
groups at places not dividingp are pure. We refer to the introduction of chapter 1 for a
detailed discussion about an appropriate context of purityfor big Galois representations, a
sketch of its proof, consequences and explanation of the inevitability of the hypothesis that
R is a domain.

Algebraic p-adic L-functions for the Hida family for GL2(Q). The results obtained
in chapter 3 are summarized here. In this chapter, we construct algebraicp-adic L-functions
Lalg

p;Gr (� ); Lalg
p0;Gr (� ); Lalg

p;Kato (� ). Using 1.2.4 and purity of modular Galois representations,we
show that they satisfy control theorems at arithmetic specializations (under some hypothe-
sis). We also relate our construction with Greenberg's strict Selmer group (using [Kat04 ,
Theorem 17.4], [Nek06 , Theorem 7.8.6]). Now we state these results referring to chapter 3
for details.

Let R(a) denote the quotient of the Hida-Hecke algebrahord
1 by a minimal prime ideala.

Suppose that the composite map

hord
1 � R(a) ,! Frac(R(a))

is minimal in the sense of [Hid88a , p. 317]. LetT (a) denote Hida's big Galois representation
of GQ;S over R(a) where S denotes a �nite set of places ofQ containing p and the place at
in�nity. Assume that the residual representation � associated with theGQ;S-representation
T (a) is absolutely irreducible (this is assumption 3.2.4). Foran arithmetic specialization�
of R(a), put

O� = Im �

and let T� denote theGQ;S-representationT (a) 
 R(a);� O� .
Let

T (a)Iw = T (a) b
 Zp Zp[[Gal(Q1 =Q)]];

T�; Iw = T� 
 Zp Zp[[Gal(Q1 =Q)]]
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denote the cyclotomic deformation ofT (a) and T� respectively whereQ1 denotes the cy-
clotomic Zp-extension ofQ. Put

� O � = O� 
 Zp Zp[[Gal(Q1 =Q)]];

R(a)Iw = R(a) b
 Zp Zp[[Gal(Q1 =Q)]]:

In de�nition 3.3.4, we de�ne Lalg
p;Gr (T (a)Iw ), Lalg

p0;Gr (T (a)Iw ), Lalg
p;Kato (T (a)Iw ), Lalg

p;Gr (T�; Iw ),
Lalg

p0;Gr (T�; Iw ), Lalg
p;Kato (T�; Iw ) where � denotes an arithmetic specialization ofR(a).

Theorem B. Let � be an arithmetic specialization ofR(a). Then the isomorphisms in
propositions 2.1.2, 2.2.1, 2.2.3 induce an isomorphism

Lalg
p;Gr (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p;Gr (T�; Iw )

when� is p-distinguished. They also induce isomorphisms

Lalg
p0;Gr (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p0;Gr (T�; Iw );

Lalg
p;Kato (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p;Kato (T�; Iw ):

Theorem C. Let � be an arithmetic specialization ofR(a) such that O� is a DVR. The
Selmer complexR� f (T�; Iw ) de�ned with respect to Greenberg's local condition (see de�nition
2.2.2) is a perfect complex of� O � -modules and the mapi � O �

(� ; � ; � ) (as in equation(2.1.4))

induces an isomorphism betweenLalg
p;Gr (T�; Iw ) and

�
det� O �

R� f (T�; Iw )
� � 1

. For any integer
i < 1 and i > 2,

eH i
f (T�; Iw ) = 0 :

Suppose thatp does not divide the level of the ordinary form associated with� . Then
eH 2

f (T�; Iw ) is a torsion � O � -module and eH 1
f (T�; Iw ) is zero. The surjective map

eH 1
f (A �; Iw ) � Selstr

A �; Iw

as in Lemma 3.4.4 induces an injective map

(0.0.2) DP

�
Selstr

A �; Iw

�
,! eH 2

f (T�; Iw )

with �nite cokernel. Consequently we get a canonical isomorphism

Lalg
p;Gr (T�; Iw ) �= (char� O �

DP (Selstr
A �; Iw

); 0)

using equations(2.1.3), (2.1.5) and (3.4.2).

The above two theorems correspond to theorem 3.3.7 (resp. 3.4.5). The crucial ingre-
dients of the proof are theorem 1.2.4 and purity of modular Galois representations (resp.
[Kat04 , Theorem 17.4], [Nek06 , Theorem 7.8.6]).

In x3.5, we show that all the cohomologies of the complexC �
Gr (T (a)Iw ) are zero, except

possibly the second cohomology, which is torsion overR(a)Iw (proposition 3.5.6). This result
allows to construct atwo-variable algebraicp-adic L-function L alg

p (a) 2 Frac(R(a)Iw ) whose
image under modp reduction generates the characteristic ideal of the Pontrjagin dual of the
strict Selmer group Selstr

A � p ; Iw
for p varying in a dense subset of Specarith (R(a)) ( � p denotes an

arithmetic specialization ofR(a) whose kernel isp). On the other hand, these characteristic
ideals are generated by the analyticp-adic L-functions of f � p (computed with respect to a
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canonical period), which are interpolated by an elementLan
p (a) of R(a)Iw (as constructed in

[EPW06 ]). This suggests a link betweenL alg
p (a) and Lan

p (a), which leads to the conjecture
below.

Conjecture 1. The elementL alg
p (a) of Frac(R(a)Iw ) is an element ofR(a) int

Iw and

L alg
p (a)R(a) int

Iw = Lan
p (a)R(a) int

Iw :

In the aboveR(a) int denotes the integral closure ofR(a) in its fraction �eld and R(a) int
Iw

denotes the completed tensor productR(a) int b
 Zp Zp[[Gal(Q1 =Q)]]. Assuming Greenberg's
conjecture on vanishing of� -invariants of modular forms (with absolutely irreducible and
p-distinguished residual Galois representation), we provethis conjecture in theorem 3.5.22.

Algebraic p-adic L-functions for the Hida family for de�nite unitary groups.
The results obtained in chapter 4 are summarized here. In this chapter, we construct alge-
braic p-adic L-functions Lalg

p0;Gr (� ); Lalg
p;Kato (� ). Using 1.2.4 and purity of Galois representa-

tions associated with automorphic representations (whichare of dominant weight and stable)
for de�nite unitary groups, we show that they satisfy control theorems at arithmetic special-
izations of regular dominant weight whose associated Galois representations are crystalline
at each place lying abovep and associated automorphic representations are stable. Nowwe
state this result referring to chapter 4 for details.

Let R(a) denote a partial normalization (as de�ned inx4.3) of the quotient of the Hida-
Hecke algebrah� ;ord

f � v g (U(p1 ); OK ) by a minimal prime ideal a (hereK denotes a �nite exten-
sion of Qp). Let T (a) denote Hida's big Galois representation ofGF;S over R(a) where S
denotes a �nite set of places of a CM �eldF containing the places abovep and the places at
in�nity. Assume that the residual representation � associated with theGF;S -representation
T (a) is absolutely irreducible (this is assumption 4.3.1). Foran arithmetic specialization�
of R(a), put

O� = Im �

and let T� denote theGF;S -representationT (a) 
 R(a);� O� . Denote the automorphic repre-
sentation attached to� by � � .

Let

T (a)Iw = T (a) 
 Zp Zp[[Gal(F1 =F)]];

T�; Iw = T� 
 Zp Zp[[Gal(F1 =F)]]

denote the cyclotomic deformation ofT (a) and T� respectively whereF1 denote the cyclo-
tomic Zp-extension ofF . Put

� O � = O� 
 Zp Zp[[Gal(F1 =F)]]:

In de�nition 4.3.3, we de�ne Lalg
p0;Gr (T (a)Iw ), Lalg

p;Kato (T (a)Iw ), Lalg
p0;Gr (T�; Iw ), Lalg

p;Kato (T�; Iw ) where
� denotes an arithmetic specialization ofR(a) of regular dominant weight such thatV� jGF w

is crystalline for any placew of F lying above p. By lemma 4.3.5, the kernels of such
specializations form a dense subset of Spec(R(a)).

Theorem D. Let � be an arithmetic specialization ofR(a) of regular dominant weight such
that � � is stable andV� jGF w

is crystalline for any placew of F lying abovep. Then the
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isomorphisms in propositions 2.1.2, 2.2.1, 2.2.3 induce isomorphisms

Lalg
p0;Gr (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p0;Gr (T�; Iw );

Lalg
p;Kato (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p;Kato (T�; Iw ):

The above theorem corresponds to theorem 4.3.6. The crucialingredient of its proof is
theorem 1.2.4 and purity of Galois representations associated with the automorphic forms
(which are of dominant weight and stable) for de�nite unitary groups. Note that though
such Galois representations are not known to be motivic, in [Pin92 , Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic representations, for example the
weight-monodromy conjecture, which is known by [Car12 ].

Organization

This thesis is arranged in four chapters.
The �rst chapter is the technical heart of this manuscript. Here we develop a tool

(theorem 1.2.4) to understand the variation of the inertia invariants (as a Frobenius module)
in a family, which we call purity for big Galois representations. This describes the Weil-
Deligne parametrization of a pure specialization of a big Galois representation in terms
of the Weil-Deligne parametrization of the big Galois representation and thus describes
the variation of the inertia invariants at pure specializations. This allows to prove control
theorems for (the local factors outsidep of the) the algebraicp-adic L-function that we
construct in chapter 3, 4.

The second chapter recalls the notion of Selmer complexes and the notion of determinant
functors as introduced in [Nek06, KM76 ] respectively.

In the third chapter, we construct algebraicp-adic L-functions along irreducible compo-
nents of the Hida family of ordinary cusp forms and prove that they satisfy perfect control
theorems at arithmetic specializations. We also relate ourconstruction with Greenberg's
strict Selmer group. In the �nal section, we conjecture a link between our construction and
the analytic p-adic L-function as constructed in [EPW06 ].

In the fourth chapter, we construct algebraicp-adic L-functions along irreducible com-
ponents of the Hida family for de�nite unitary groups and prove that they satisfy perfect
control theorem at arithmetic specializations which are ofregular dominant weight and whose
associated Galois representations are crystalline at all the places abovep.

Notations

For each �eld E of characteristic zero, we �x an algebraic closureE once and for all and

denote the absolute Galois group Gal(E=E) by GE . We also �x embeddingsC
i 1 -Q

i p
,! Qp

once and for all.
Let F be a number �eld andv denote a �nite place ofF . Then the decomposition group

and inertia group of F at v will be denoted by GFv , I Fv respectively. When no confusion
arise, they will be denoted byGv, I v respectively. The geometric Frobenius element ofGv=Iv

is denoted by Frv.
Throughout this manuscript, the reciprocity isomorphism of local class �eld theory is

normalized by letting uniformizers correspond to geometric Frobenius elements.
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CHAPTER 1

Purity for big Galois representations

1.0. Introduction

1.0.1. Weight-Monodromy Conjecture. Let p be a rational prime, K be a �nite
extension ofQ` with ` 6= p. Denote the residue �eld of the ring of integers ofK by k. Let
� denote a lift of the geometric Frobenius toGK . Suppose thatV is a �nite dimensional
continuous representation ofGK over Qp. Then the Grothendieck monodromy theorem
(Theorem 1.1.25) gives a nilpotent endomorphismN of V, called the monodromy of V,
attached to which there is an increasing �ltrationM � on V which is stable under the action
of GK and is called themonodromy �ltration . The GK -representationV is said to bepure of
weightw 2 Z (pure for short) if the characteristic roots of� on Gri M � are #k-Weil numbers
of weight w+ i . The Weight-Monodromy Conjecture (henceforth WMC) states the following.

Conjecture 1.0.1 ([Ill94 ]). Let X be a projective smooth variety overK . Then for any
integer i , the GK -representationH i

�et (X Q`
; Qp) is pure of weighti .

The Galois representations associated with automorphic representations are expected
to come from geometry and hence believed to be pure. The WMC is known for many
automorphic Galois representations, see [Car86 , Th�eor�eme A], [ Bla06 , Theorem 2], [HT01,
TY07, Shi11, Car12, Sch12, Clo13 ] for example.

1.0.2. Local Euler factors. For a Weil-Deligne representationV = ( r; N ) of WK over
an algebraically closed �eld 
 of characteristic zero, its local Euler factor is de�ned as

Eul(( r; N ); X ) = det(1 � X� jV I K ;N =0 )� 1 2 
( X )

whereV I K ;N =0 denotes the subspace ofV on whichI K acts trivially and N is zero (cf. [Tay04 ,
p. 85]).

For a Galois representation� : Gal(E=E) ! GL(V) of the absolute Galois group of a
number �eld E on a �nite dimensional vector spaceV over an algebraically closed �eld 
 of
characteristic zero, its local Euler factor at a �nite placev of E not dividing p is de�ned by

Eulv(�; X ) = Eul(WD( VjGv ); X ) 2 
( X ):

1.0.3. Families. Following works of Bella•�che, Chenevier, Coleman, Hida, Mazur et. al.,
it is believed that automorphic Galois representations live in families. In precise terms, we
expect to have a tuple

Fp = f � ; E; p;R ; Spclarith (R); T g

which we call afamily, where
(1) � is a set of automorphic representations ofG(AF ) (where G denotes a reductive

group andAF denotes the ring of ad�eles of some number �eldF ) and to each� 2 �,
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there is ap-adic Galois representation� �;p : GE ! GLn (Qp) associated with it (the
integer n � 1 does not depend on� ),

(2) E is a number �eld, p is a rational prime,
(3) R is a characteristic zero domain containingZp as a subalgebra, usually of large

Krull dimension,
(4) Spclarith (R) is a non-empty subset of HomZp -alg(R ; Qp) and there is a map

Spclarith (R) ! � ; � 7! � � ;

(5) T is a freeR-module equipped with an action of the absolute Galois groupGE =
Gal(E=E) of E and for any � 2 Spclarith (R), the GE -representationsT 
 R ;� Qp and
� � � ;p are isomorphic,

(6) for any �nite place v of E not dividing p, the representationT jGv is monodromic
(see de�nition 1.1.1).

Let K denote the fraction �eld of R . We �x an algebraic closureK of K. The integral
closure ofR in K (resp.K) will be denoted by OK (resp.OK ). By V, we will denote the
GE -representationT 
 R K. For an element� of HomZp -alg(R ; Qp), we set

V� := T 
 R ;� Qp:

In the following v will always denote a �nite place ofE. For such a place not dividingp,
we put

Spclpure
v (R) := f � 2 HomZp -alg(R ; Qp) j V� jGv is pureg:

We say the WMC holds forFp at a �nite place v of E not dividing p if for any � 2 �, the
Gv-representation� �;p jGv is pure. We saythe WMC holds forFp if the WMC holds for Fp

at all �nite places of E not dividing p. Note that if the WMC holds for Fp, then

Spclarith (R) � Spclpure
v (R)

for all v not dividing p.

Hida families of ordinary automorphic representations for various reductive groups pro-
vide ample examples of families. In chapter 3 and 4, we will consider the Hida families for
GL2(Q) and de�nite unitary groups.

For notations used in the example below, we refer to chapter 3.

Example 1.0.2. Hida theory of ordinary forms forG = GL 2(Q) shows that

Fp = f � ; Q; p;R ; Spclarith (R); T g

is a family whereR = R(a) = hord
1 =a, Spclarith (R) denotes the set of arithmetic special-

izations of R(a), � denotes the set of ordinary automorphic representations of GL2(Q)
corresponding to the ordinary eigen cusp forms lying on the component Spec(hord

1 =a) of
Spec(hord

1 ), T denotesT (a). The set Spclarith (R) of arithmetic specializations is dense in
HomZp -alg(R ; Qp). Moreover the WMC is known for this family (see Prop 3.1.1).

We refer to chapter 4 for the notations and terminologies used in the example below.
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Example 1.0.3. Let F be a CM �eld and F + be its maximal totally real sub�eld. Let G
be the de�nite unitary group de�ned over F + (as in x4.1.1). Let p be a prime,R = R(a),
Spclarith (R) denote the set of arithmetic specializations ofR(a), � denote the set of ordinary
automorphic representations ofG(AF + ) of dominant weights corresponding to the arithmetic
specializations ofR(a), T denoteT (a) as in chapter 4. Then

Fp = f � ; F; p;R ; Spclarith (R); T g

is a family. The set Spclarith (R) of arithmetic specializations is dense in HomZp -alg(R ; Qp).
By [Car12 , Theorem 1.2], WMC is known for the arithmetic specializations ofT which are
of dominant weight and whose associated automorphic representation is stable.

1.0.4. Local Euler factors in families. Given a family Fp, we may wonder if the
local Euler factors of its specializations are interpolated by the local Euler factors ofV, i.e.,
we may ask if

Eulv(V; X )� 1 2 O K [X ]; � (Eulv(V; X )) = Eul v(V� ; X )

holds for all v - p and � 2 HomZp -alg(R ; Qp). First of all, this need not hold. For example, if
Gv acts unipotently on T , then its rank of I v-invariants, i.e., the degree of Eulv(V; X )� 1, is
equal to the dimension of null space of the monodromy ofT jGv , which might increase under
a specialization� of R , making the degree of Eulv(V� ; X )� 1 larger than that of Eulv(V; X )� 1.

However the arithmetic specializations ofR are of our interest and we may ask if the
local Euler factors of the arithmetic specializations ofFp are interpolated by the local Euler
factors ofV, i.e., if

(Eul-Interp) Eul v(V; X )� 1 2 O K [X ]; � (Eulv(V; X )) = Eul v(V� ; X )

holds for all v - p and � 2 Spclarith (R). By the theorem below, this is true when the WMC
holds for Fp.

1.0.5. Main result. Let R be a characteristic zero domain containingZp as a subal-
gebra. Denote the fraction �eld ofR by K and �x an algebraic closureK of K. Denote
the integral closure ofR in K by OK . Note that any ring homomorphism from R to an
algebraically closed �eld 
 of characteristic zero extendsto OK [1=p], we �x such an exten-
sion and denote it by by abuse of notation. Observe thatQ is contained insideOK [1=p].
Suppose thatGK acts on a freeR-moduleT such that its action is monodromic (i.e., a �nite
index subgroup ofI K acts through its Zp-quotient via the exponential of a nilpotent matrix,
see De�nition 1.1.1). Let M � denote the associated monodromy �ltration onT . Denote
the GK -representationT 
 R K by V. For a Zp-algebra homomorphism� : R ! Qp, put
V� = T 
 R ;� Qp. SinceT is monodromic,V� is also monodromic. Denote the associated
monodromy �ltration on V� by M �; � .

Theorem 1.0.4 (Purity for big Galois representations). Suppose that� : R ! Qp is a
Zp-algebra homomorphism such that theGK -representation V� is pure of weightw. Let p�

denote the kernel of� . Then the following hold.
(1) The terms and gradings ofM � become free overR p� after localizing them atp� and

for any i 2 Z, the map� induces isomorphisms

M i 
 R ;� Qp ' M �;i ; Gri M � 
 R ;� Qp ' Gri M �; �
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of WK -modules.

(2) There exist
(a) an integer J � 1,
(b) integers 0 � t1 < � � � < t J ,
(c) an integer I � 1,
(d) (i) unrami�ed characters � 1; � � � ; � I : WK ! O �

K
,

(ii) irreducible Frobenius-semisimple representations

� 1 : WK ! GLd1 (Q); � � � ; � I : WK ! GLdI (Q)

with �nite image and
(e) integers nij � 0 for 1 � i � I; 1 � j � J

such that the following hold.
(I) There are isomorphisms of Weil-Deligne representations

WD(V)Fr -ss '
IM

i =1

JM

j =1

Spt j
(� i 
 � i )

n ij

=K
;

WD(V� )Fr -ss '
IM

i =1

JM

j =1

Spt j
(� � (� i 
 � i ))

n ij

=Qp
:

(II) The representation � � (� i 
 � i ) : WK ! GLdi (Qp) has image contained in
GLdi (Q) for all 1 � i � I .

Furthermore, the integersI; J; t i ; nij and the representations� i ; � i depend onV, but
not on � .

(3) The � -specialization of the central irreducible summands (see de�nition 1.1.24) of
WD(V)Fr -ss (considered overOK [1=p]) are strictly pure of weightw.

(4) The polynomialEul(V)� 1 has coe�cients in OK \R p� , its � -specialization isEul(V� )� 1.

(5) The R p� -modulesT I K
p� , Tp� =T I K

p� are free and the map� induces an isomorphism

T I K 
 R ;� Qp ' T I K
p�


 R p� ;� Qp ' V I K
� :

Consequently, the complex[T I K
� � 1
��! T I K ] concentrated in degree 0, 1 descends

perfectly to the complex[V I K
�

� � 1
��! V I K

� ] concentrated in degree 0, 1, i.e.,

[T I K
� � 1
��! T I K ]

L

 R ;� Qp ' [V I K

�
� � 1
��! V I K

� ]:

For a more general version, we refer to theorem 1.2.4 which isthe main result of this
chapter. Its proof is obtained by using theorem 1.2.1, 1.2.2, 1.2.3 (see equation (1.2.1) for
the logical order of these results). We establish these fourtheorems from a sequence of ten
main propositions (proposition 1.3.1, 1.3.4, 1.3.5, 1.4.2, 1.4.3, 1.4.5, 1.4.6, 1.5.1, 1.5.3, 1.6.8)
among which proposition 1.3.4 is the crux of the proof, whichwe call purity for big Galois
representations. Since the full strength of proposition 1.3.4 is realized intheorem 1.2.4, we
will also refer to theorem 1.2.4 bypurity for big Galois representations. The (philosophical)
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reason behind such a terminology is explained below.

By theorem 1.2.4, the shapes of the indecomposable summandsof the Frobenius semisim-
pli�cation of the Weil-Deligne parametrization of a pure specialization V� of the big Galois
representation T determines the shape of the indecomposable summands of WD(V)Fr-ss.
Conversely, the shape of the indecomposable summands of WD(V)Fr-ss determines the shape
of WD(V� )Fr-ss for any pure specialization� . Moreover for such� , the central irreducible
summands (see de�nition 1.1.24) of WD(V� )Fr-ss are interpolated by the central irreducible
summands of WD(V)Fr-ss by the same theorem. On the other hand, the purity of a Weil-
Deligne representation overQp is solely determined by its central irreducible summands.

So by theorem 1.2.4, the central irreducible summands of WD(V)Fr-ss interpolates the
central irreducible summands of WD(V� )Fr-ss, i.e., the purity determining data of WD(V� )Fr-ss

for any pure specialization� of R . For this reason, we call this theorempurity for big Galois
representations.

1.0.6. Consequences. We explain some consequences of theorem 1.0.4.

1.0.6.1. Algebraic p-adic L-functions. Theorem 1.2.4 is the technical tool that we de-
veloped and successfully use in chapter 3, 4 to construct an algebraic p-adic L-function
along irreducible components of Hida families of ordinary forms for GL2(Q), de�nite unitary
groups. Using similar techniques and [Ber13 , Lemma 5.5], we also hope to construct an
algebraicp-adic L-function along irreducible components of eigenvarieties. In fact we expect
that using purity of big Galois representations, an algebraic p-adic L-function can be con-
structed for any family of Galois representations and pseudo-representations interpolating
Galois representations overQp whose restriction to local Galois groups at places not dividing
p are pure.

1.0.6.2. Rationality in automorphic families. Given a familyFp satisfying the WMC, the-
orem 1.0.4(2)(I) shows that the indecomposable summands off WD(V� )Fr-ssg� 2 Spclarith (R ) are
interpolated by Weil-Deligne representations de�ned overOK [1=p] and by theorem 1.0.4(2)(II),
the specialization of any of these representations under any � has image contained in GLd(Q)
for some integerd (depending on the representation). In particular, the structure of the
Frobenius semisimpli�cation of the Weil-Deligne parametrizations of arithmetic specializa-
tions are rigid in a family satisfying the WMC.

1.0.6.3. Euler factors. Given any family Fp satisfying the WMC, we have

Eulv(V; X )� 1 2 O K [X ]; � (Eulv(V; X )) = Eul v(V� ; X )

for all v - p and � 2 Spclarith (R) by theorem 1.0.4(4),i.e., (Eul-Interp) holds.

Remark 1.0.5. For the Hida family as in example 1.0.2, (Eul-Interp) is proved in [Nek06 ].

Remark 1.0.6. Our proof of this theorem does not assume

Spclpure(R) := f � 2 HomZp -alg(R ; Qp) j V� jGK is pureg
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to be dense in HomZp -alg(R ; Qp). Note that given a family Fp for which Spclarith (R) is dense
in HomZp -alg(R ; Qp), using Hilbert's nullstellensatz, (Eul-Interp) can be proved for � in a
dense subset of Spclarith (R).

1.0.7. Sketch of the proof. The main idea of the proof of purity for big Galois rep-
resentations (theorem 1.0.4) lies in the proof of proposition 1.3.4. For simplicity, assume
that I K acts unipotently on T . Then this proposition says that thecentral elementsof
WD(V� )Fr-ss are the � -specialization of thecentral elementsof WD(V)Fr-ss when V� is pure.
Its proof is outlined in x1.3.2.1. We explain how this proposition implies theorem 1.0.4(2).

By the conjugation relation of the Frobenius in the tamely rami�ed Galois group of K ,
factors of powers of #k appear in the elements of the multisetCR of the characteristic
roots of � on V according to the sizes of the Jordan blocks of the monodromy. Under a
Qp-specialization� , the monodromy might degenerate and possibly go to zero making the
Jordan blocks of� (N ) of size 1� 1. However, these factors of powers of #k present in the
elements of the multisetCR remain intact under such a specialization and the specialization
of this multiset gives the multiset CR� of the characteristic roots of� on V� . When V� is
pure, its monodromy can be read o� from the amount of factors of powers of #k in the
elements of the multisetCR� compared to its central elements.

Since the central elements of WD(V� )Fr-ss are the � -specialization of the central ele-
ments of WD(V)Fr-ss (by proposition 1.3.4), the indecomposable summands of WD(V� )Fr-ss

are forced to be interpolated by the indecomposable summands of WD(V)Fr-ss (by lemma
1.1.45).

This gives theorem 1.0.4(2). The proof of proposition 1.3.4is outlined in x1.3.2.1.

1.0.8. Inevitability of the hypothesis that R is a domain. In the proof of theorem
1.2.4, we crucially use (through proposition 1.3.1) the hypothesis that the ringR is a domain.
We cannot expect to prove theorem 1.2.4 when the ringR is replaced by a more general
ring, an example being a ring with �nitely many minimal primes.

In fact a crucial step in our proof of theorem 1.2.4 is to pin down the factors of powers #k
in the characteristic roots of� on the semistable part ofV and the amount of these factors
in them is governed by the size of the Jordan blocks of the monodromy of the semistable
part of V. When the coe�cient ring R of T is not a domain, then the shapes of the Jordan
blocks of the images of its monodromy in the stalks of Spec(R) at the generic points need
not be independent of the generic points. Thereby making it impossible to pin down the
factors of powers of #k in the characteristic roots of � on the semistable part ofV in a
reasonable manner. In fact one can provide a counterexampleeven in the very simple case
whereR = Qp[[X ]] � Qp[[X ]] � Qp[[X ]] by taking

N =

0

@
(0; 0; 0) (X; 0; 0) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (0; X � 1; 0)
(0; 0; 0) (0; 0; 0) (0; 0; 0)

1

A ;
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letting I K act unipotently on T = R 3 (consequentlyV is its own semistable part) and� act
on T via a matrix

0

@
(� 1; � 1;  1) (0; 0; 0) (0; 0; 0)

(0; 0; 0) (� 2; � 2;  2) (0; 0; 0)
(0; 0; 0) (0; 0; 0) (� 3; � 3;  3)

1

A 2 GL3(R):

By the Iwasawa relation (as in equation (1.1.1)), we are forced to have

� 1 = � 2q� 1; � 2 = � 3q� 1:

Let

a1 = f 0g � Qp[[X ]] � Qp[[X ]];

a2 = Qp[[X ]] � f 0g � Qp[[X ]];

a3 = Qp[[X ]] � Qp[[X ]] � f 0g

denote the minimal primes ofR. Note that the Jordan decomposition of the image ofN in
Frac(R=a1), Frac(R=a2), Frac(R=a3) is

0

@
0 X 0
0 0 0
0 0 0

1

A ;

0

@
0 0 0
0 0 X � 1
0 0 0

1

A ;

0

@
0 0 0
0 0 0
0 0 0

1

A

respectively. Thus the behaviour of the monodromyN is not uniform along the irreducible
components of Spec(R) and this prohibits us from pinning down the factors of powers of q
in the roots of

(T � (� 1; � 1;  1))( T � (� 2; � 2;  2))( T � (� 3; � 3;  3))

in a uniform manner, i.e., from obtaining an integereij for i 6= j such that

(� i ; � i ;  i ) = qeij (� j ; � j ;  j ):

Thus we cannot hope to track the `right' factors of powers of #k in the characteristic
roots of � on the semistable part ofV unlessR is domain. Thus it seems hard to have a
reasonable formulation of the statement of proposition 1.3.1 (together with a proof) that
could lead to a proof of theorem 1.2.4 for more general ringsR. So we are compelled to
assume thatR is a domain.

1.0.9. Organization. In the proof, one needs the notion of Weil-Deligne representa-
tions, Weil-Deligne parametrization of Galois representations etc. with coe�cients in a do-
main. This has been given in the �rst section in a way analogous to [Del73b , 8.4{8.6],
[Tay04 , p. 77{78].

The organization of this chapter is as follows. First we recall the structure of the absolute
Galois group of̀ -adic �elds. Second, we describe the notion of Weil-Delignerepresentations,
Grothendieck monodromy theorem, Weil-Deligne parametrization, pure modules. In section
1.2, we state the main results of this chapter, which are theorem 1.2.1, 1.2.2, 1.2.3, 1.2.4. In
the subsequent sections, we present the proof of these theorems.
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1.1. Local Galois representations at v - p

1.1.1. Structure of GK . Let ` be a rational prime. Only for this chapter, let K 1

denote a �nite extension ofQ` and OK denote its ring of integers andk its residue �eld.
Denote the cardinality of k by q. Let $ denote a uniformizer ofOK and valK : K � � Z
be the $ -adic valuation. Let j � j K := (# k)� valK ( � ) be the corresponding norm. The action
of GK on K preserves valK (by [Neu99 , Theorem 4.8, Chapter II] for instance) and hence
induces an action ofGK on k, so that we have a homomorphismGK ! Gk . The inertia
group I K is de�ned as the kernel of this map and is equipped with the subspace topology
induced fromGK . Note that we have a short exact sequence

0 ! I K ! GK ! Gk ! 0:

Let Fr k 2 Gk be the geometric Frobeniuselement. Then the Weil groupWK is de�ned as
the subgroup ofGK consisting of elements which map to an integral power of Frk in Gk . Its
topology is determined by decreeing thatI K is open, and has its usual topology.

The Artin map
Art K : K � ��! W ab

K

is normalized so that the uniformizing parameters go to geometric Frobenius elements. Let

PK := Gal( K=K tame)

denote the wild inertia subgroup where

K tame =
[

` -n

K ur ($ 1=n); K ur = K
I K

(see [Neu99 , Proposition 7.7, Chapter II] for example). Then given a compatible system
� = ( � n )` -n of primitive roots of unity, we have an isomorphism

t � : I K =PK
��!

Y

p6= `

Zp

where
� ($ 1=n)

$ 1=n
= � (t � (� ) mod n)

n :

Any other compatible system of roots of unity is of the form� u for someu 2
Q

p6= ` Z �
p , and

we have
t � u = u� 1t � :

By [NSW08 , Theorem 7.5.2], for all� 2 WK and � 2 I K , we have

(1.1.1) t � (�� � � 1) = "(� )t � (� )

where
" :=

Y

p6= `

"p : GK !
Y

p6= `

Z �
p

1The same notation is introduced in x4.1.2 to denote an extension ofQp.
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is the product of the cyclotomic characters. For a primep 6= `, let t �;p denote the composite
map

(1.1.2) t �;p : I K ! I K =PK
t ��!

Y

p6= `

Zp ! Zp

where the �rst map is the quotient map and the third map is the projection map. Finally
de�ne vK : WK ! Z by

� jK ur = Fr vK (� )
k

for all � 2 WK .
We end this section with the following de�nition.

De�nition 1.1.1. Let A be a commutativeZp-algebra of characteristic zero. Suppose that
M is a free A-module with anA-linear GK -action

� : GK ! Aut A (M )

on it. We sayM is monodromicwith monodromyN over K 0 if there exists a �nite extension
K 0=K and a nilpotent elementN 2 EndA[1=p](M 
 A A[1=p]) such that for all � 2 I K 0

� (� ) = exp( t �;p (� )N )

in EndA[1=p](M 
 A A[1=p]):

Remark 1.1.2. Note that N is unique when it exists sinceA is of characteristic zero
(cf. Theorem 1.1.25).

1.1.2. Weil-Deligne representations.

De�nition 1.1.3 ([Del73b , 8.4.1], [Tay04 , p. 77{78]). Let A be a commutative domain of
characteristic zero.

(1) A representationof WK over A is a representation ofWK on a free A-module of
�nite rank which is continuous if the module is endowed with the discrete topology
(i.e., a representation with open kernel).

(2) A Weil-Deligne representationof WK on a freeA-moduleM of �nite rank is a triple
(r; M; N ) consisting of a representationr : WK ! Aut A (M ) and an endomorphism
N 2 EndA (M ) such that for all � 2 WK ,

r (� )Nr (� )� 1 = (# k)� vK (� )N

in EndA[1=`](M 
 A A[1=`]).

Note that a Weil representation can be considered as a Weil-Deligne representation with
zeroN and these two representations will often be identi�ed.

De�nition 1.1.4. Let A be a domain of characteristic zero.
(1) A representation of I K on a freeA-module of �nite rank n is said to semistablethe

characteristic polynomial of� is (X � 1)n for any � 2 I K .
(2) A representation of I K on a free A-module of �nite rank is said to totally non-

semistableif there exists an element� 2 I K such that the characteristic polynomial
of � does not vanish at 1.

9



(3) A representation of WK or a Weil-Deligne representation ofWK is said to be
semistable(resp.totally non-semistable) if its restriction to I K is semistable (resp. totally
non-semistable).

Remark 1.1.5.
(1) SinceI K is compact and open inWK , if r is a representation ofWK then r (I K ) is

�nite.
(2) For a Weil-Deligne representation (r; N ) of WK , N is necessarily nilpotent.

Lemma 1.1.6. Let R be a ring andr : WK ! GLn (R) be a group homomorphism under
which I K has �nite image. Then r is trivial on some open subgroup ofWK and hence has
open kernel.

Proof. It su�ces to show that ker r contains an open subgroupH of WK because then kerr
would be the union of all the translates ofH of the form gH with g in ker r . Now H can
be taken to be kerr j I K , which being of �nite index in I K is open in I K and hence open in
WK . �

De�nition 1.1.7. Given two Weil-Deligne representations(r1; M1; N1) and (r2; M2; N2) of
WK over a domainA, their sum and tensor product is de�ned by

(r1; M1; N1) � (r2; M2; N2) = ( r1 � r2; M1 � M 2; N1 � N2);

(r1; M1; N1) 
 (r2; M2; N2) = ( r1 
 r2; M1 
 M 2; idM 1 
 N2 + N1 
 idM 2 ):

Note that the sum and tensor product of Weil-Deligne representations de�ned over a
domain A are Weil-Deligne representations overA (cf. [Del73a , 3.1.2]).

De�nition 1.1.8. For a �nite extension K 0=K , the restriction of a Weil-Deligne represen-
tation (r; M; N ) of WK to WK 0 is de�ned by

(r; M; N )jWK 0 = ( r jWK 0; M; N ):

Notice that the above restriction is a Weil-Deligne representation over WK 0.

1.1.2.1. Inertia invariants as WK -summand. Let V = ( r; N ) be a Weil-Deligne represen-
tation of WK with coe�cient in a �eld (necessarily of characteristic zero by the de�nition of
Weil-Deligne representation given above) and� 2 GL(V) denote the element

� =
1

#Im( r (I K ))

X

g2 Im( r (I K ))

g 2 End(V):

Lemma 1.1.9. The element� is an idempotent and thusV decomposes into an internal
direct sum of subspaces

(1.1.3) V = �V � (1 � � )V

with
�V = V I K :

The above decomposition is an internal direct sum ofWK -stable subspaces and these sub-
spaces are stable underN . Moreover (r jV I K ; N jV I K ), (r jV I K ;c ; N jV I K ;c ) are Weil-Deligne
representations and

(r; N ) = ( r jV I K ; N jV I K ) � (r jV I K ;c ; N jV I K ;c )

10



as Weil-Deligne representations where� denotes the internal direct sum andV I K ;c denotes
(1 � � )V .

In V I K ;c, the letter c stands for complement. We callV I K ;c the complement of the inertia
invariant of V .

Proof. Since for any� 2 I K ,

r (� )� = �;

r (� )(1 � � ) = r (� ) � r (� )�

= r (� ) � �

= r (� ) � �r (� )

= (1 � � )r (� );

the spacesV I K = �V and V I K ;c = (1 � � )V are stable under the action ofI K .
Since I K is a normal subgroup ofWK , V I K is stable underWK . To prove that V I K ;c

is stable underWK , it su�ces to show that it is stable under the action of � . Let s =
#Im( r (I K )) and f � 1; � � � ; � sg be a set of lifts ofr (I K ) in I K . Then

�r (� )(1 � � ) = � (r (� ) � r (� )� )

= � (1 � r (� )�r (� )� 1)r (� )

= �

 

1 �
1
s

sX

i =1

r (�� i � � 1)

!

r (� )

=

 

� �
1
s

sX

i =1

�r (�� i � � 1)

!

r (� )

=

 

� �
1
s

sX

i =1

�

!

r (� ) (since I K is normal in WK )

= ( � � � )r (� )

= 0:

So � annihilates r (� )(1 � � )V and hencer (� )(1 � � )V is contained in (1� � )V .

Sincer is a Weil-Deligne representation,� commutes with N and henceV I K and V I K ;c

are stable under the action ofN . Thus the decomposition in equation (1.1.3) is an internal
direct sum ofWK -stable subspaces and these subspaces are stable underN .

As a consequence of the above, we have

r jV I K (� )N jV I K r jV I K (� )� 1 = (# k)� vK (� )N jV I K ;

r jV I K ;c (� )N jV I K ;c r jV I K ;c (� )� 1 = (# k)� vK (� )N jV I K ;c

for all � 2 WK . Since kerr is open inWK , the kernels

ker(r jV I K ) =
[

g2 ker( r j
V I K )

gkerr; ker(r jV I K ;c ) =
[

g2 ker( r j
V I K ;c )

gkerr
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are open subgroups ofWK . So the restriction of (r; N ) to V I K and V I K ;c are Weil-Deligne
representations and (r; N ) is equal to the internal direct sum of these restrictions asWeil-
Deligne representations. �

1.1.2.2. Frobenius semisimpli�cation. Let � denote a lift of Frk in WK . Suppose that
(r; N ) = ( r; V; N ) is a Weil-Deligne representation with coe�cients in a �eld L of character-
istic zero which contains all the characteristic roots of all the elements ofr (WK ). Let

r (� ) = r (� )ssu = ur (� )ss

be the Jordan decomposition ofr (� ) as the product of a diagonalizable matrixr (� )ss and a
unipotent matrix u. Following [Del73b , 8.5], [Tay04 , p. 78], de�ne

~r (� ) = r (� )u� vK (� )

for all � 2 WK .

Lemma 1.1.10 (cf.[Del73b , 8.5]). (~r; V; N ) is a Weil-Deligne representation.

Proof. First we show that u and N commute to deduce the appropriate conjugation action
of ~r on N . Let GL(V) act on EndL (V) by conjugation and denote this representation by

� : GL(V) ! GL(EndL (V)):

From now on the representation� will be considered as anL-algebra homomorphism

� : L[GL(V)] ! EndL (EndL (V)):

The relation
r (� )Nr (� )� 1 = (# k)� 1N

shows that

(1.1.4) � (r (� )) � N = (# k)� 1N;

i.e., N 2 EndL (V) is an eigenvector forr (� ) under the representation� . Note that

(1.1.5) � (r (� )) = � (r (� )ssu) = � (ur (� )ss) = � (u)� (r (� )ss)

where � (r (� )ss) is semisimple. Since� is a ring homomorphism and (u � 1)dim V = 0, the
operator � (u) is unipotent.

SinceN is an eigenvector for� (r (� )), it is also an eigenvector for� (r (� )ss) with the same
eigenvalue (#k)� 1. So equation (1.1.4) and (1.1.5) give

� (u) � N = N:

In other words u commutes withN . So for all � 2 WK we have

~r (� )N ~r (� )� 1 = (# k)� vK (� )N:

SinceI K is normal in WK , r (I K ) is normal in r (WK ) and hencer (� ) acts on r (I K ) by
conjugation. As r (I K ) is a �nite group, its automorphism group is �nite and hencer (� )d

commutes withr (I K ) for somed � 1. Sor (� )d commutes withr (WK ). By the same reason-
ing as above it follows thatud commutes with r (WK ).
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Recall that � (u) is a unipotent operator on EndL (V). Note that from the Jordan de-
composition of a unipotent matrix M , it follows that M �xes a vector v if and only if each
positive power ofM �xes v. So

ker(� (u)d � 1) = ker( � (u) � 1)

and henceu commutes with r (WK ). This shows that for any � 1; � 2 2 WK ,

~r (� 1� 2) = r (� 1� 2)u� vK (� 1 � 2 )

= r (� 1)r (� 2)u� vK (� 1 )u� vK (� 2 )

= r (� 1)u� vK (� 1 )r (� 2)u� vK (� 2 )

= ~r (� 1)~r (� 2):

So ~r is group homomorphism. To establish the lemma it remains to show that ker ~r is open
which follows from lemma 1.1.6. �

We continue to follow the notations as above and the assumption that L is a �eld of
characteristic zero containing all the characteristic roots of all elements ofr (WK ).

De�nition 1.1.11 (cf. [Del73b , 8.6]).
(1) The Weil-Deligne representation(~r; V; N ) is called theFrobenius semisimpli�cation

of (r; V; N ) and will be denoted byV Fr -ss,
(2) (r; N ) is said to beFrobenius-semisimpleif ~r = r .

1.1.2.3. Structure of Frobenius-semisimple Weil-Deligne representations.Let 
 denote
an algebraically closed �eld of characteristic zero.

De�nition 1.1.12.
(1) A Weil-Deligne representation over
 is said to beindecomposableif it is not iso-

morphic to a direct sum of two nonzero Weil-Deligne representations over
 .
(2) A representation M of WK over a commutative domainA of characteristic zero

is said to beirreducible (resp.Frobenius-semisimple) if the action of WK (resp. the
action of � ) on M 
 A Frac(A) is irreducible (resp. semisimple).

Lemma 1.1.13. Let � : G ! GLn (
) be a representation of a �nite groupG. Then there
exists a representation� 0 : G ! GLn (Q) such that� is a conjugate of the composite map

� 0 : G ! GLn (Q) ! GLn (
) :

Proof. It follows from [Tay91 , Theorem 1]. �

Proposition 1.1.14. Given an irreducible Frobenius-semisimple representationr : WK !
GLn (
) of WK over 
 , there exists an unrami�ed character

� : WK ! 
 �

such that the representation� � 1 
 r : WK ! GLn (
) has �nite image. Moreover, there exists
an irreducible Frobenius-semisimple representation� : WK ! GLn (Q) with �nite image such
that

r ' � 
 � =


where� =
 denotes the map� followed by the mapGLn (Q) ! GLn (
) induced by an embed-
ding of Q in 
 .
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Proof. The �rst part follows from the proof of [BH06 , 28.6 Proposition]. The rest follows
from lemma 1.1.13. �

De�nition 1.1.15. For an integer t � 0, a characteristic zero commutative domainA with
` 2 A � , a representation(r; M ) of WK over A and a choice of a square root ofq in A, let
Spt (r )=A denote the Weil-Deligne representation with underlying moduleM t+1 on whichWK

acts via
r jArt � 1

K j t=2
K � r jArt � 1

K j(t � 2)=2
K � � � � � r jArt � 1

K j(� t+2) =2
K � r jArt � 1

K j � t=2
K

and the monodromyN induces an isomorphism fromr jArt � 1
K j i � t=2

K to r jArt � 1
K j i +1 � t=2

K for all
0 � i � t � 1 and is zero onr jArt � 1

K j t=2
K .

When A is an algebraically closed �eld and theWK -representation r is irreducible, the
representationr is called thecentral irreducible summandof Spt (r )=A .

When A is understood from the context, we will write Spt (r ) to denote Spt (r )=A .

Remark 1.1.16. Note that the above de�nition is independent of the choice of asquare
root of q when t is even.

Remark 1.1.17. Let r be a Frobenius-semisimple representation ofWK over 
. Then
Spt (r )=
 is indecomposable if and only ifr is irreducible.

De�nition 1.1.18. Suppose that an indecomposable Weil-Deligne representationV over 

is isomorphic to Spt (r )=
 . Then r is called thecentral irreducible summandof V.

When r is one dimensional, the elementr (� ) is called thecentral elementof V .

Remark 1.1.19. In the above, we should have de�ned the central irreducible summand of
V as theWK -isomorphism class ofr . However we will usually �x an isomorphism between
V and Spt (r )=
 for somer . So calling thisr the central irreducible summand ofV will not
cause much confusion.

Remark 1.1.20. The above de�nition of Spt (r )=
 di�ers from the de�nition of Sp t (r ) given
in [TY07 , p. 471]. In fact we have

Spt (r jArt � 1
K j t=2)=
 = Spt+1 (r ):

The reason behind introducing this \twisted" de�nition is t o make the expression of the
characteristic roots of� look symmetric.

Theorem 1.1.21. Any Frobenius-semisimple Weil-Deligne representation over
 is isomor-
phic to M

i 2 I

Spt i
(r i )=


for some irreducible Frobenius-semisimple representationsr i : WK ! GLn i (
) and this
decomposition is unique up to reordering and replacing factors by isomorphic factors. In this
decomposition, ther i are unrami�ed characters if the original representation is unrami�ed.

Proof. This follows from the proof of [Del73a , Proposition 3.1.3 (i)] and remark 1.1.20. �

Remark 1.1.22. We will often drop the subscript =
 whenever 
 is understood from the
context.
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In the above we would like to call the Spt i
(r i ) indecomposable summands ofV. However

they depend on the isomorphism class ofr i , so we make the following de�nition.

De�nition 1.1.23. An indecomposable summandof a Frobenius-semisimple Weil-Deligne
representationV over 
 is a Weil-Deligne subrepresentation ofV isomorphic to a summand
Spt i

(r i )=
 via the isomorphism

V '
M

i 2 I

Spt i
(r i )=


as in theorem 1.1.21.

Notice that V has #I indecomposable summands.

De�nition 1.1.24. Given a Frobenius-semisimple Weil-Deligne representationV of WK

over 
 , the central irreducible summands of its indecomposable summands are called the
central irreducible summandsof V.

Given a semistable Frobenius-semisimple Weil-Deligne representationV of WK over 
 ,
the central elements of its indecomposable summands are called thecentral elementsof V .

1.1.3. Grothendieck monodromy theorem. The following theorem is well-known
(see [ST68 , p. 515] for instance).

Fix � 2 GK a lift of Fr k and a compatible system (� n )` -n of primitive roots of unity. Let
t �;p : I K ! Zp denote the map (as in equation (1.1.2)) associated to this compatible system.

Theorem 1.1.25 (Grothendieck monodromy theorem). Let R be a commutativeZp-algebra.
Suppose thatR is a local domain with maximal idealm and �nite residue �eld of characteristic
p. Assume that p 6= 0 in R and R is complete with respect to them-adic topology. Let
� : GK ! GLn (R) be a continuous representation andi : GLn (R) ! GLn (R[1=p]) denote
the inclusion map. Then there is a �nite extensionK 0=K and a unique nilpotent matrix
N 2 GLn (R[1=p]) such that for all � 2 I K 0, we have

i (� (� )) = exp( t �;p (� )N )

in GLn (R[1=p]). For all � 2 WK , we have

(1.1.6) � (� )N� (� )� 1 = (# k)� vK (� )N

in M n (R[1=p]).

Before going through the proof, we recall that for any nilpotent matrix in M n (R), its
matrix exponential is an element ofM n (R[1=p]). Also for a unipotent matrix in M n (R[1=p])
(i.e., an element ofM n (R[1=p]) which di�ers from the identity matrix by a nilpotent matri x),
its logarithm is an element ofM n (R[1=p]). Moreover the composite maps exp� log and
log� exp are identity maps on the respective domains.

Proof. First we prove the uniqueness ofN . Suppose that there is a nilpotent matrixN 0

and a �nite extension K 00of K such that for all � 2 I K 00

i (� (� )) = exp( t �;p (� )N 0)

in GLn (R[1=p]). Then for all � 2 I K 0K 00, we have

exp(t �;p (� )N ) = exp( t �;p (� )N 0):
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SinceK 0K 00is a �nite extension ofK , t �;p (� ) is nonzero for some� 2 I K 0K 00. Hence by taking
logarithm, it follows that

N = N 0:

Now we show the existence ofN . Let GK 0 denote the kernel of the composite map

GK ! GLn (R) ! GLn (R=m)

where the last map is modm reduction. SinceR=m is a �nite �eld, K 0=K is a �nite extension.
The image of the subgroupGK 0 under � is contained in

1 + mM n (R) = ker(GL n (R) ! GLn (R=m))

and hence is a pro-p-group. Note that the kernel of the mapt �;p �ts into an exact sequence

0 ! PK ! ker t �;p !
Y

m6= `;p

Zm ! 0:

So the cardinality of kert �;p (as a supernatural number) is not divisible byp as PK is a
pro-`-group. Hence� is trivial on I K 0 \ ker t �;p . Thus � j I K 0

factors through

t �;p j I K 0
: I K 0 ! t �;p (I K 0 ):

Choose� 2 I K 0 such that t �;p (� ) generatest �;p (I K 0 ). By Iwasawa's relation (1.1.1), the
characteristic roots of� (� ) are roots of unity. Since� (I K 0 ) � 1 + mM n (R) and R=m is a
�nite �eld of characteristic p, the characteristic roots of� (� ) are p-power roots of unity. So
there exists a �nite extensionK 0=K0 such that all the characteristic roots of the elements of
� (I K 0) are 1, i.e., the elements of� (I K 0) are all unipotent.

Let
 : t �;p (I K 0) ! GLn (R)

be the unique continuous group homomorphism such that the diagram

I K 0

� j I K 0

&&
t �;p

��
t �;p (I K 0)

 //GLn (R)

commutes. Take� 0 2 I K 0 such that t �;p (� 0) generatest �;p (I K 0). Since � (� 0) is unipotent,
there exists a nilpotent matrix N0 2 M n (R[1=p]) such that

� (� 0) =  (t �;p (� 0)) = exp( N0):

SinceK 0=K is �nite, t �;p (� 0) is nonzero. Recall that it is an element ofZp by de�nition of
the map t �;p associated with the compatible system (� n )` -n of primitive roots of unity. So the
element

N =
1

t �;p (� 0)
N0 2 M n (R[1=p])

is well-de�ned. Then
� (� 0) =  (t �;p (� 0)) = exp( t �;p (� 0)N ):

So for anym 2 Z, we have

 (mt �;p (� 0)) = exp( mt �;p (� 0)N ):
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Hence
 (zt�;p (� 0)) = exp( zt�;p (� 0)N )

for all z 2 Zp, since is continuous.
Note that for any � 2 I K 0, t �;p (� )=t�;p (� 0) 2 Zp and hence

� (� ) =  (t �;p (� ))

=  
�

t �;p (� )
t �;p (� 0)

� t �;p (� 0)
�

= exp
�

t �;p (� )
t �;p (� 0)

� t �;p (� 0)N
�

= exp(t �;p (� )N ):

It remains to show the conjugation action of� (� ) on N for � 2 WK . SinceK 0=K is
�nite, there exists � 1 2 I K 0 such that t �;p (� 1) 6= 0. Then for any � 2 WK , we have

exp(� (� )t �;p (� 1)N� (� )� 1) = � (� ) exp(t �;p (� 1)N )� (� )� 1

= � (� )� (� 1)� (� )� 1

= � (�� 1� � 1)

= � (� (# k) � vK ( � )

1 ) since� is trivial on I K 0 \ ker t �;p

= exp(t �;p (� (# k) � vK ( � )

1 )N )

= exp((# k)� vK (� ) t �;p (� 1)N ):

Sincet �;p (� ) is nonzero, by taking logarithm we obtain the desired result. �

Remark 1.1.26. The endomorphismN above is called thelogarithm of the unipotent part
of the local monodromy(cf. [Ill94 , p. 13].

1.1.4. Weil-Deligne parametrizations.
1.1.4.1. Weil-Deligne parametrization forT[1=p]. Suppose thatR is a commutativeZp-

algebra and is a domain of characteristic zero. Denote its fraction �eld by K . Let T be a
free R-module with an R-linear action of GK on it via � . We assume thatT is monodromic
with monodromy N over K 0. Notice that for all � 2 WK

� (� )N� (� )� 1 = (# k)� vK (� )N

in EndR[1=p](T 
 R R[1=p]). Let T[1=p] denote theGK -representationT 
 R R[1=p].

De�nition 1.1.27 ([Del73b , 8.4.2]). The Weil-Deligne parametrization WD(T[1=p]) of
T[1=p] is a Weil-Deligne representation given by the pair(r; N ), wherer : WK ! Aut R[1=p](T[1=p])
is a group homomorphism de�ned by

r (� ) = � (� ) exp(� t �;p (� � vK (� ) � )N )

for all � 2 WK and N denotes the nilpotent endomorphism inEndR[1=p](T(1=p]) mentioned
above.

The lemma below shows that WD(T[1=p]) is well-de�ned.
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Lemma 1.1.28. The mapr is a group homomorphism and the Weil-Deligne parametrization
WD(T[1=p]) is a Weil-Deligne representation.

Proof. Let � 1 = � i �; � 2 = � j � be two elements ofWK with i; j 2 Z and �; � 2 I K . As
equations (1.1.1), (1.1.6) give

� (� j � ) exp(� t �;p (� � j � � j )N )� (� j � )� 1 = exp
�

� (� j � ) � t �;p (� � j � � j )N � � (� j � )� 1
�

= exp
� �

t �;p (� � j � � j )
��

� (� j � )N� (� j � )� 1
� �

= exp
�

q� vK (� � j ) t �;p (� )
�

q� vK (� j � )N
� �

= exp
�

qj t �;p (� )
�

q� j N
� �

= exp(t �;p (� )N );

we have

(1.1.7) � (� j � ) exp(� t �;p (� � j � � j )N ) = exp( � t �;p (� )N )� (� j � ):

Then

r (� 1� 2) = r (� i � � � j � )

= r (� i + j � � � j � � j � )

= � (� i + j � � � j � � j � ) exp(� t �;p (� � j � � j � )N )

= � (� i � � � j � ) exp(� t �;p (� � j � � j � )N )

= � (� i � )
�

� (� j � ) exp(� t �;p (� � j � � j )N )
�

exp(� t �;p (� )N )

= � (� i � )
�

exp(� t �;p (� )N )� (� j � )
�

exp(� t �;p (� )N ) (by equation (1.1.7))

=
�

� (� i � ) exp(� t �;p (� )N )
��

� (� j � ) exp(� t �;p (� )N )
�

= r (� 1)r (� 2):

So r is a group homomorphism. Note thatr is trivial on I K 0 (with K 0 as in Theorem
1.1.25). SoI K has �nite image underr and hencer has open kernel by 1.1.6. Also note that
r and N satisfy the appropriate conjugation relation by equation (1.1.6). Thus (r; N ) is a
Weil-Deligne representation. �

Proposition 1.1.29. The element

� =
1

#Im( r (I K ))

X

g2 Im( r (I K ))

g

in M n (R([1=p]) is an idempotent and we have

WD(T[1=p])I K = � WD(T[1=p]):
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The Weil-Deligne parametrizationWD(T[1=p]) of T[1=p] decomposes into an internal direct
sum of WK -stableR[1=p]-submodules as

WD(T[1=p]) = WD( T[1=p])I K � R[1=p] WD(T[1=p])I K ;c

where

WD(T[1=p])I K ;c := (1 � � )WD( T[1=p]):

The above summands are stable under the action ofN . WhenWD(T[1=p])I K andWD(T[1=p])I K ;c

are free overR[1=p],

(1.1.8) (r; N ) = ( r jWD( T [1=p]) I K ; N jWD( T [1=p]) I K ) � (r jWD( T [1=p]) I K ;c ; N jWD( T [1=p]) I K ;c )

is a decomposition of Weil-Deligne representations. Moreover for any prime idealp of R[1=p],
the R[1=p]p-modulesWD(T[1=p])I K

p , WD(T[1=p])I K ;c
p are free.

Proof. The proof of lemma 1.1.9 withV (resp.V I K , V I K ;c) replaced by WD(T[1=p]) (resp.
WD(T[1=p])I K , WD(T[1=p])I K ;c) throughout proves the proposition except the last state-
ment. SinceR[1=p]p is local, the freeness of WD(T[1=p])I K

p , WD(T[1=p])I K ;c
p over R[1=p]p

follows. �

We have an immediate corollary of the above proposition 1.1.29.

Corollary 1.1.30. Let T be as in theorem 1.1.25. ThenT[1=p] decomposes into an internal
direct sum of GK -stableR[1=p]-submodules

T[1=p] = T[1=p]ss � R[1=p] T[1=p]tnss :

The action of I K on T[1=p]ss 
 R K is semistable and its action onT[1=p]tnss 
 R K is totally
non-semistable. TheR[1=p]-submodulesT[1=p]ss and T[1=p]tnss of T[1=p] are de�ned by

T[1=p]ss = WD( T[1=p])I K ; T[1=p]tnss = WD( T[1=p])I K ;c

and theGK -action is de�ned by

� 7! r jWD( T [1=p]) I K (� ) exp(t �;p (� � vK (� ) � )N jWD( T [1=p]) I K );

� 7! r jWD( T [1=p]) I K ;c (� ) exp(t �;p (� � vK (� ) � )N jWD( T [1=p]) I K ;c )

respectively.

Proof. The �rst part follows from equation (1.1.8). It remains to prove the statement about
I K action on T[1=p]ss and T[1=p]tnss . SinceI K acts trivially on WD( T[1=p])I K , its action on
T[1=p]ss 
 R K is semistable. Now suppose thatT[1=p]tnss is nonzero and pick a prime ideal
p of R[1=p]. By the above lemma, WD(T[1=p])I K ;c

p is free. So for some element� 2 I K , the
characteristic polynomial of� on WD(T[1=p])I K ;c

p is a non-constant polynomial and does not
vanish at 1.

Let
r 0 = r j(WD( T [1=p]) I K ;c )p

; N 0 = N j(WD( T [1=p]) I K ;c )p
:

SinceN 0 commutes with r 0(� ) by Proposition 1.1.29,r 0(� ) and N 0 can be simultaneously
upper triangularized over some �nite extension of the fraction �eld K of R (by [RR00 ,
Theorem 1.1.5] for instance). Hence the same holds forr 0(� ) and exp(t �;p (� )N 0). SinceN 0

is nilpotent, the eigenvalues of exp(t �;p (� )N 0) are 1. So the characteristic polynomial of
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r 0(� ) exp(t �;p (� )N 0) is equal to the characteristic polynomial ofr 0(� ) which does not vanish
at 1 by the choice of� and hence the lemma. �

1.1.4.2. Weil-Deligne parametrization forV. We �rst prove a short lemma.
Let A be a ring,n � 1 be an integer and

An = P � Q

be a decomposition ofAn into a direct sum of its A-submodulesP and Q. For any ring
homomorphismf : A ! B , we will identify An 
 A;f B with B n and will denote by hf (P)i
(resp.hf (Q)i ) the B-submodule ofB n generated by the image ofP (resp.Q) in B under f ,

i.e., under the composite mapP ! An f n

�! B n (resp.Q ! An f n

�! B n ).

Lemma 1.1.31. Let f : A ! B be a ring homomorphism. Then the map

X 
 A;f B ! An 
 A;f B = B n

induces an isomorphism betweenX 
 A;f B and its imagehf (X )i in B n for X = P; Q.

Proof. It su�ces to prove the lemma for X = P. SinceQ is projective, it is at. Hence the
map

P 
 A;f B ! An 
 A;f B = B n

induces an isomorphism betweenP 
 A;f B and its image inB n , which is hf (P)i . �

Recall that K denotes the fraction �eld of R. Let V denote the GK -representation
T 
 R K = T[1=p] 
 R[1=p] K . De�ne its Weil-Deligne parametrization WD(V) as the pair
consisting of the group homomorphism

WK ! Aut K (V); � 7! i (� (� )) exp(� t �;p (� � vK (� ) � )N )

and the endomorphismN considered as an element of EndK (V).

From lemma 1.1.9, we have the decomposition

WD(V) = WD( V)I K � WD(V)I K ;c

of WD(V) into an internal direct sum of Weil-Deligne subrepresentations.

Lemma 1.1.32. We have

WD(V) = WD( T[1=p]) 
 R[1=p] K ;

WD(V)I K = WD( T[1=p])I K 
 R[1=p] K ;

WD(V)I K ;c = WD( T[1=p])I K ;c 
 R[1=p] K :

Proof. Follows from lemma 1.1.31. �

We have a corollary in analogy to corollary 1.1.30.

Corollary 1.1.33. Let V be as above. ThenV decomposes into an internal direct sum of
K [GK ]-submodules

V = Vss � K Vtnss :
The inertia group I K acts unipotently onVss and its action onVtnss is totally non-semistable.
TheseK [GK ]-submodules are de�ned by

Vss = WD( V)I K ; Vtnss = WD( V)I K ;c
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as K -vector spaces and theGK -action is de�ned by

� 7! r jWD( V ) I K (� ) exp(t �;p (� � vK (� ) � )N jWD( V ) I K );

� 7! r jWD( V ) I K ;c (� ) exp(t �;p (� � vK (� ) � )N jWD( V ) I K ;c )

respectively.

1.1.5. Semistable part giving inertia invariant.

Proposition 1.1.34. Let V be as above. Then

V I K = ( Vss)I K

and the dimension ofV I K over K is equal to the number of indecomposable summands of
(WD( V)I K 
 K K )Fr -ss. Suppose that(WD( V)I K 
 K K )Fr -ss is isomorphic to� i 2 I Spt i

(r i ) as
Weil-Deligne representations where ther i are irreducible Frobenius-semisimple representation
of WK with coe�cients in K . Then the characteristic polynomial of� on V I K is

(1.1.9)
Y

i 2 I

(X � r i (� )q� t j =2):

Proof. Let v be an element of (Vtnss )I K . Sov is also an element of (Vtnss )I K 0 and hence

�
r jWD( V ) I K ;c (� 0) exp(t �;p (� � vK (� 0) � 0)N jWD( V ) I K ;c )

�
v = v

for all � 0 2 I K 0. Sincer j I K 0 is trivial, we get

�
exp(t �;p (� � vK (� 0) � 0)N jWD( V ) I K ;c )

�
v = v

for all � 0 2 I K 0. SinceK 0=K is �nite, there exists � 0 2 I K 0 such that t �;p (� 0) 6= 0. So we have

N jWD( V ) I K ;c v = 0:

Sincev 2 (Vtnss )I K , for all � 2 I K , we have

�
r jWD( V ) I K ;c (� ) exp(t �;p (� � vK (� ) � )N jWD( V ) I K ;c )

�
v = v;

i.e.,
�
r jWD( V ) I K ;c (� )

�
v = v:

Sincev 2 Vtnss = WD( V)I K ;c, we getv = 0. So

V I K = ( Vss)I K :
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Recall that the underlying vector spaces of the representationsVss, WD(V)I K and (WD(V)I K )Fr-ss

are the same. Notice that

V I K = ( Vss)I K

= f v 2 Vssj
�
r jWD( V ) I K (� ) exp(t �;p (� � vK (� ) � )N jWD( V ) I K )

�
v = v 8� 2 I K g

= f v 2 Vssj
�
r jWD( V ) I K (� ) exp(t �;p (� )N jWD( V ) I K )

�
v = v 8� 2 I K g

= f v 2 Vssj
�
exp(t �;p (� )N jWD( V ) I K )

�
v = r jWD( V ) I K (� � 1)v 8� 2 I K g

= f v 2 Vssj
�
exp(t �;p (� )N jWD( V ) I K )

�
v = v 8� 2 I K g

= f v 2 Vssj
�
N jWD( V ) I K

�
v = 0 8� 2 I K g

= f v 2 WD(V)I K j
�
N jWD( V ) I K

�
v = 0g

= ker
�
N jWD( V ) I K : WD(V)I K ! WD(V)I K

�
;

i.e.,

(1.1.10) V I K = ker
�
N jWD( V ) I K : WD(V)I K ! WD(V)I K

�
:

The above equation gives

dim V I K = dim ker
�
N jWD( V ) I K : WD(V)I K ! WD(V)I K

�

= dim ker
�
N jWD( V ) I K 
 K K : WD(V)I K 
 K K ! WD(V)I K 
 K K

�

= dim ker
�
N jWD( V ) I K 
 K K : (WD( V)I K 
 K K )Fr-ss ! (WD( V)I K 
 K K )Fr-ss

�

Hence the dimension ofV I K over K is equal to the number of indecomposable summands
of (WD(V)I K 
 K K )Fr-ss by theorem 1.1.21.

Now it remains to �nd the characteristic polynomial of� on V I K . Consider the following
list of polynomials ofK [X ].

(1) The characteristic polynomial of� on V I K ,
(2) the characteristic polynomial of� on ker

�
N jWD( V ) I K : WD(V)I K ! WD(V)I K

�
,

(3) the characteristic polynomial of� on

ker
�
N jWD( V ) I K 
 K K : WD(V)I K 
 K K ! WD(V)I K 
 K K

�
;

(4) the characteristic polynomial of� on

ker
�
N jWD( V ) I K 
 K K : (WD( V)I K 
 K K )Fr-ss ! (WD( V)I K 
 K K )Fr-ss

�
:

We claim that any two consecutive items of the above list are equal. The �rst equality follows
from the fact that the action of � on Vss and on WD(V)I K are the same via the maps� and r
respectively and from the equation (1.1.10). The second equality follows from the atness of
K over K and the last equality follows since the characteristic polynomial of any operator
and its semisimpli�cation are the same. By theorem 1.1.21, the lemma follows. �

From the above proof we have the following corollary.

Corollary 1.1.35. The characteristic polynomial of� on the spaces

V I K ; ker
�
N jWD( V ) I K 
 K K : (WD( V)I K 
 K K )Fr -ss ! (WD( V)I K 
 K K )Fr -ss

�

are the same.
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1.1.6. Indecomposable summands from monodromy �ltration. In the following,
we recall the de�nition of monodromy �ltration and explain how the structure of a Frobenius-
semisimple Weil-Deligne representation is determined by its monodromy �ltration.

1.1.6.1. Generalities on �ltrations. Following [SZ85, p. 495{496], we introduce some no-
tions on �ltrations.

De�nition 1.1.36.
(1) An increasing �ltration M � on a moduleV is a collection of submodulesf M i gi 2 Z,

such that
M i � 1 � M i

for all i 2 Z.

(2) A increasing �ltration M � on V is said to be�nite if M i = 0 for i su�ciently small
and M i = V for i su�ciently large.

(3) A decreasing �ltration M � on a moduleV is a collection of submodulesf M i gi 2 Z,
such that

M i � 1 � M i

for all i 2 Z.

A decreasing �ltration M � on V de�nes an increasing �ltration M � on V given by

M i = M � i

for all i 2 Z.

For an increasing �ltration M � on V, we put

Gri M � = M i =Mi � 1:

De�nition 1.1.37. Given two increasing �ltrations M � and N � on a module, their convo-
lution product M � � N � is de�ned by

(M � � N � ) i =
X

j + k= i

M j \ Nk :

1.1.6.2. Monodromy �ltration.

Proposition 1.1.38. Let N be a nilpotent endomorphism of a �nite dimensional vector
spaceV. Then there exists a unique �nite increasing �ltration M � such thatNM i � M i � 2

for all i and N k induces an isomorphismGrkM �
��! Gr� kM � for all k � 0.

Proof. See [Del80 , p. 165]. �

We will call M � the monodromy �ltration associated with the nilpotent endomorphism
N of V (cf. [Ill94 , p. 13]).

Remark 1.1.39. There is an explicit formula for the above �ltration M � (cf. [SZ85, p. 499]).
Let K � and I � denote the kernel �ltration and the image �ltration de�ned b y

K i = ker N i +1 ; I i = Im N i ; i 2 Z:
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Note that K � is an increasing �ltration and I � is a decreasing �ltration. Consider the
increasing �ltration I � associated withI � . Then M � is equal to the convolution product
K � � I � , i.e., for any k 2 Z,

(1.1.11) M k =
X

i + j = k

kerN i +1 \ N � j V =
X

i + j = k

N � j (ker N i +1 � j ) =
X

i

N i � k(ker N 2i +1 � k):

Remark 1.1.40. More generally, given a nilpotent endomorphismN on a moduleV, we
will de�ne the associated kernel �ltration K � , image �ltration I � , monodromy �ltration M �

on V by the above formulas,i.e.,

K i = ker N i +1 ; I i = Im N i ; i 2 Z;

M � = K � � I �

whereI � is the increasing �ltration associated withI � .

The following example is taken from [Del80 , I.6.7, p. 166].

Example 1.1.41. Let V denote a vector space of dimensiond + 1 ( d � 0) with a nilpotent
operator N on it which is equal to

0

B
B
B
B
B
B
@

0 1 0 � � � 0 0
0 0 1 � � � 0 0
0 0 0 � � � 0 0
...

...
...

. . .
...

...
0 0 0 � � � 0 1
0 0 0 � � � 0 0

1

C
C
C
C
C
C
A

with respect to a basis ofV of the form f e� d; e� d+2 ; � � � ; ed� 2; edg, i.e., Ne� d = 0 and
Ned� 2i = ed� 2i � 2 for all 0 � i � d � 1. From now on, we setei to be zero if it is not already
de�ned. The associated �ltrations K � and I � of N are given by

� � � � K � 1 = f 0g � K 0 = he� di � � � � � K i = he� d; � � � ; ed� 2(d� i ) i � � � � � K d = V � � � � ;

� � � � I � d� 1 = f 0g � I � d = he� di � � � � � I i = he� d; � � � ; ed+2 i i � � � � � I 0 = V � � � � :
The �ltration M � is given by

M i = hej j j � i i :
Note that

Gri M � = hei i :
Also

(1.1.12) dimN aV = maxf 0; d + 1 � ag for any integer a � 1;

(1.1.13) dimM i = max
�

0; min
��

i + d
2

�
+ 1; d + 1

��
for any i 2 Z:

Example 1.1.42. Let 
 be a characteristic zero �eld containing a square root of q. Let
t � 0 denote an integer andr : WK ! 
 denote a character. Suppose thatM

�
Spt (r )=


�
�

denote the monodromy �ltration on Spt (r )=
 associated with its monodromy. Then

Gri M
�
Spt (r )=


�
�

'

(
r jArt � 1

K j � i=2
K if i � t mod 2 and � t � i � t;

0 otherwise.
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Remark 1.1.43. In general, given a nilpotent endomorphism of a vector spaceV, V is a
direct sum of subspaces stable underN and the restriction of N to these subspaces is (a
conjugate) of the above form. The �ltration M � on V given by proposition 1.1.38 is the
direct sum of the �ltrations on the subspaces.

Remark 1.1.44. Given a Frobenius-semisimple Weil-Deligne representation of WK over a
�eld, the terms of the kernel and image �ltration on it associated with its monodromy are
stable underWK (by the conjugation relation between the monodromy and theWK -action).
So the monodromy �ltration is also stable underWK .

1.1.6.3. Indecomposable summands fromM � .

Lemma 1.1.45. Let V be a Frobenius-semisimple Weil-Deligne representation ofWK over
an algebraically closed �eld
 of characteristic zero. LetM � denote its monodromy �ltra-
tion. Let C denote a set of pairwise non-isomorphic irreducible Frobenius-semisimpleWK -
representations such that each element inC is isomorphic to a central irreducible summand
of V and each central irreducible summand ofV is isomorphic to an element ofC. Then

V '
M

r 2 C

M

t � 0

Spt (r )m(r jArt � 1
K j t= 2

K ;Gr � t M � )� m(r jArt � 1
K j( t +2) =2

K ;Gr � t � 2M � )

as Weil-Deligne representations where

m(� 1; � 2) = dim 
 Hom
 -linear (� 1; � 2)WK

for �nite dimensional WK -representations� 1; � 2 over 
 .

Proof. By theorem 1.1.21, there exist a �nite set of non-negative integers I and integers
nrt � 0 for r 2 C, t 2 I such that there is an isomorphism of Weil-Deligne representations

V '
M

r 2 C

M

t2 I

Spt (r )n rt :

So

M � '
M

r 2 C

M

t2 I

M
�

Spt (r )n rt

�

�
:

As any two elements ofC are pairwise non-isomorphic, for an integert � 0 and anyr 2 C,
we get

m(r jArt � 1
K j t=2

K ; Gr� tM � ) � m(r jArt � 1
K j(t+2) =2

K ; Gr� t � 2M � ) =

(
nrt if t 2 I;
0 otherwise:

Thus

V '
M

r 2 C

M

t � 0

Spt (r )m(r jArt � 1
K j t= 2

K ;Gr � t M � )� m(r jArt � 1
K j( t +2) =2

K ;Gr � t � 2M � ) :

�
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1.1.7. Pure modules.

De�nition 1.1.46. Let Q be a positive integral power of a rational prime. AQ-Weil number
of weight w 2 Z is an algebraic number� 2 Q such thatQi � is an algebraic integer for some
i 2 Z and j� (� )j = Qw=2 for all � : Q ,! C.

We will often call them Weil numbers whenQ is clear from the context.

De�nition 1.1.47.
(1) (cf. [Sch11, p. 1014]) A Frobenius-semisimple Weil-Deligne representationV of WK

over Qp is said to bepure of weightw if the eigenvalues of one (and hence any) lift
of the geometric Frobenius element onGri M � are # k-Weil numbers of weightw + i
whereM � denotes the monodromy �ltration onV.

(2) A p-adic representation of GK is said to be pure of weight w if the Frobenius
semisimpli�cation of its Weil-Deligne parametrization with respect to one (and hence
any) choice of� and � is pure of weightw.

(3) (cf. [TY07 , p. 471]) A Weil-Deligne representation V of WK over Qp is said to
be strictly pure of weight w if the eigenvalues of one (and hence any) lift of the
geometric Frobenius element onV are # k-Weil numbers of weightw.

Lemma 1.1.48. An indecomposable Frobenius-semisimple Weil-Deligne representationV of
WK over Qp is pure of weightw if and only if for any �nite extension K 0=K , V jWK 0 is pure
of weightw.

Proof. See [Bla06 , p. 42] for instance. �

Remark 1.1.49. The weight-monodromy conjecture 1.0.1 predicts that any Galois represen-
tation arising from geometry (i.e., from the �etale cohomology of projective smooth varieties)
is pure of integral weight.

1.2. (Statements of) Purity for big Galois representations with i ntegral models

In this section, we state a generalization of the result about constancy of dimension of
inertia invariants under arithmetic specializations (more precisely at the specializations sat-
isfying the Weight-Monodromy conjecture) along irreducible components of Hida families of
ordinary cusp forms (as in [Fou13 , Lemma 3.9] for example). We also prove that the inde-
composable summands of the Frobenius semisimpli�cation ofthe Weil-Deligne parametriza-
tion of the pure specializations are of the same shape and interpolated by \big integral
Weil-Deligne representations". We call thisrigidity of Galois typesand it is the analogue of
rigidity of automorphic types proved in loc. cit. for example.

1.2.1. Notations. Let R 6= 0 be a commutative Zp-algebra. Suppose thatR is a do-
main of characteristic zero. Denote the fraction �eld ofR by K and �x an algebraic closure
K of K. The integral closure ofR in K will be denoted by OK . The algebraic closure of
Qp in K is denoted byQp and the integral closure ofZp in Qp is denoted byZp. Note that
Zp � O K . The algebraic closure ofQ inside Qp will be denoted by Q. Notice that Q is
contained insideOK [1=p]. Recall that K denotes a �nite extension ofQ` with ` 6= p and q
denotes the cardinality of the residue �eld ofOK . By q1=2, we will denote a square root ofq in
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Q and for any n 2 Z, qn=2 will denote (q1=2)n . This determines a choice of a square root ofq
in K which is required to express WD(V)Fr-ss as a direct sum of Weil-Deligne representations
of the form Spt (r )=K when it has a nonzero indecomposable summand of even dimension.
Observe thatq1=2 is an element ofO�

K
as ` 6= p.

For a vector spaceU with an action of � (which denotes the lift of the geometric Frobenius
to GK as chosen inx1.0.1), the multiset of characteristic roots of� on it is denoted byCR(U).
The multisets CR(WD( V)Fr-ss), CR(WD( V� )Fr-ss) are denoted byCR; CR� .

1.2.2. Statement of theorems. Let � : R ! Qp be a Zp-algebra homomorphism.
Then � extends to a Zp-algebra homomorphism fromOK [1=p] to Qp. We �x one such
extension and denote it by� again. We will use the image ofq1=2 in Qp under � as square
root of q in Qp. Denote byO� the image of the map� : R ! Qp.

Let p� denote the kernel of� : R ! Qp. Note that � extends to a Zp-algebra ho-
momorphism R[1=p]p� ! Qp. By abuse of notation, this map will also be denoted by� .

Let i : R ! K denote the inclusion map. Then by abuse of language, the mapsM n (i ) :
M n (R) ! M n (K), GLn (i ) : GLn (R) ! GLn (K) will also be denoted byi . Similarly the
mapsM n (� ), GLn (� ) will also be denoted by� .

Let n � 1 be an integer and� : GK ! GLn (R) be a representation which is monodromic
with monodromy N over K 0. By de�nition 1.1.1, N is an element ofR [1=p]. De�ne T = R n

and let GK act on it via � . Denote by T [1=p] the GK -representationT 
 R R[1=p]. Let T�

denote theGK -representationT 
 R ;� O� and V� denote the representationT� 
 O � Qp. De�ne
the GK -representationV to be T 
 R K.

The kernel �ltration, the image �ltration and the monodromy �ltration on T (resp.V� )
obtained from the nilpotent operatorN onT (resp.� (N ) on V� ) will be denoted byK � ; I � ; M �

(resp.K �; � ; I �
� ; M �; � ) respectively (cf. Remark 1.1.40).2

In the following we say that the powers of the monodromyN do not degenerate under�
if the inequality 3

rkN a � rk� (N a)

is an equality for all integera � 1, i.e., if we have

dimK N aV = dim Qp
� (N a)V� 8 a 2 Z � 1:(mono-non-deg)

If we have

dimK N V = dim Qp
� (N )V� ;(mono-non-deg-1)

2Recall that we have used the notationsK and K to denote a �nite extension of Q` and the fraction
�eld of R respectively and they do not carry any bullets.

3If r a denotes the rank ofN a , then all the minors of N a of sizer a + 1 have determinant zero. So all the
minors of � (N a) of size r a + 1 have determinant zero, i.e., rk� (N a) � r a :
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then we say that the monodromyN does not degenerate under� . When

dimK M i 
 R K = dim Qp
M �;i 8 i 2 Z;(mono-�l-dim)

we say that the dimensions of the monodromy �ltrationsM � , M �; � match termwise.

Theorem 1.2.1 (Non-degeneracy of monodromy). Suppose thatV� is pure. Then the condi-
tions (mono-non-deg), (mono-�l-dim) hold, i.e., the powers of the monodromyN do not de-
generate under� and the dimensions of the monodromy �ltrationsM � , M �; � match termwise.

Theorem 1.2.2 (Compatibility and freeness of �ltrations). If the condition (mono-non-deg)
holds, then

(1) the terms of the �ltrations K � ; I � on T become free overR p� after localizing them
at p� and under the map� , they specialize perfectly to the respective terms of the
corresponding �ltrations K �; � ; I �

� on V� , i.e., for any i 2 Z, we have isomorphisms

K i 
 R ;� Qp ' K �;i ; I i 
 R ;� Qp ' I i
�

of WK -modules.
(2) the gradings ofK � ; I � become free overR p� after localizing them atp� and under the

map � , they specialize perfectly to the corresponding gradings ofK �; � ; I �
� respectively,

i.e., for any i 2 Z, we have isomorphisms

Gri K � 
 R ;� Qp ' Gri K �; � ; Gri I � 
 R ;� Qp ' Gri I �
�

of WK -modules.

If both the conditions (mono-non-deg), (mono-�l-dim) hold, then

(3) the terms and gradings ofM � become free overR p� after localizing them atp� .
Moreover for any i 2 Z, the map� induces isomorphisms

M i 
 R ;� Qp ' M �;i ; Gri M � 
 R ;� Qp ' Gri M �; �

of WK -modules.

Theorem 1.2.3 (Rationality and interpolation of summands). Suppose that both the con-
ditions (mono-non-deg), (mono-�l-dim) hold. Then there are isomorphisms of Weil-Deligne
representations

WD(V)Fr -ss '
IM

i =1

JM

j =1

Spt j
(� i 
 � i )

n ij

=K
;

WD(V� )Fr -ss '
IM

i =1

JM

j =1

Spt j
(� � (� i 
 � i ))

n ij

=Qp

for

(1) an integer J � 1,
(2) integers 0 � t1 < � � � < t J ,
(3) an integer I � 1,
(4) pairwise non-isomorphicWK -representations� 1 
 � 1, � � � , � I 
 � I where

� � 1; � � � ; � I : WK ! O �
K

are unrami�ed characters,
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�
� 1 : WK ! GLd1 (Q); � � � ; � I : WK ! GLdI (Q)

are irreducible Frobenius-semisimple representations with �nite image
and

(5) integers nij � 0 for 1 � i � I; 1 � j � J .

Consequently, the representation� � (� i 
 � i ) : WK ! GLdi (Qp) has image contained in
GLdi (Q) for all 1 � i � I . Moreover, the integersI; J; t i ; nij and the representations� i ; � i

depend onV, but not on � .

Theorem 1.2.4 (Purity for big Galois representations). Suppose thatV� is pure of weight
w. Then the following hold.

(1) The conditions (mono-non-deg), (mono-�l-dim) are satis�ed.

(2) The terms and gradings ofM � become free overR p� after localizing them atp� and
for any i 2 Z, the map� induces isomorphisms

M i 
 R ;� Qp ' M �;i ; Gri M � 
 R ;� Qp ' Gri M �; �

of WK -modules.

(3) There exist isomorphisms of Weil-Deligne representations

WD(V)Fr -ss '
IM

i =1

JM

j =1

Spt j
(� i 
 � i )

n ij

=K
;

WD(V� )Fr -ss '
IM

i =1

JM

j =1

Spt j
(� � (� i 
 � i ))

n ij

=Qp

for
(a) an integer J � 1,
(b) integers 0 � t1 < � � � < t J ,
(c) an integer I � 1,
(d) pairwise non-isomorphicWK -representations� 1 
 � 1, � � � , � I 
 � I where

� � 1; � � � ; � I : WK ! O �
K

are unrami�ed characters,
�

� 1 : WK ! GLd1 (Q); � � � ; � I : WK ! GLdI (Q)

are irreducible Frobenius-semisimple representations with �nite image
and

(e) integers nij � 0 for 1 � i � I; 1 � j � J .
Consequently, the representation� � (� i 
 � i ) : WK ! GLdi (Qp) has image con-
tained in GLdi (Q) for all 1 � i � I . Moreover, the integersI; J; t i ; nij and the
representations� i ; � i depend onV, but not on � .

(4) The � -specialization of the central irreducible summands ofWD(V)Fr -ss (considered
over OK [1=p]) are strictly pure of weightw.
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(5) The R p� -modulesT I K
p� , Tp� =T I K

p� are free and the map� induces isomorphisms

T I K 
 R ;� Qp ' T I K
p�


 R p� ;� Qp ' V I K
� :

Consequently, the complex[T I K
� � 1
��! T I K ] concentrated in degree 0, 1 descends

perfectly to the complex[V I K
�

� � 1
��! V I K

� ] concentrated in degree 0, 1, i.e.,

[T I K
� � 1
��! T I K ]

L

 R ;� Qp ' [V I K

�
� � 1
��! V I K

� ]:

(6) The polynomial Eul(V)� 1 has coe�cients in OK \ R p� and its � -specialization is
Eul(V� )� 1.

Proposition 1.2.5. The polynomial Eul(V)� 1 has coe�cients in OK and we have the in-
equality

dimK VI K � dimQp
V I K

� :

The proof of the above theorems rely on few propositions spread over the next sections.
In x1.m, we prove theorem 1.2.(m � 2) for m = 3; 4; 5; 6. Their logical dependence is given
below.

(1.2.1) Theorem 1.2.1

��

Theorem 1.2.2

w•

��
Theorem 1.2.3

qy
Theorem 1.2.4

The above proposition is proved inx1.6.3. This proposition is also proved in [BC09 , x7.8.1].
Before we go through the proofs, some remarks are in order.

Remark 1.2.6. In theorem 1.2.4, we do not claim that the direct sum
IM

i =1

JM

j =1

Spt j
(� i 
 � i )

n ij

=OK [1=p]

is isomorphic to (WD(T [1=p])Fr-ss 
 R [1=p] OK [1=p]. In fact this is not true, otherwise it would
imply that monodromy never degenerates underQp-specializations ofR which is false, for
example whenN is nonzero and goes to zero under aQp-specialization ofR.

Remark 1.2.7. The proof below does not requireR to be noetherian.

Remark 1.2.8. In the following, we do not requireV� to be pure unless explicitly mentioned.

1.3. Non-degeneracy of monodromy at pure specializations

1.3.1. Integrality over OK [1=p] and q-power factors in � -characteristic roots.
Let (r; N ) denote the Weil-Deligne parametrization ofT [1=p].

Proposition 1.3.1 (Rationality over OK [1=p]). Suppose thatV is semistable. Then there
exist

(i) an integer m � 1,
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(ii) integers 0 � t1 < � � � < t m ,
(iii) an integer M � 1,
(iv) M distinct unrami�ed characters r1; � � � ; rM of WK with � i := r i (� ) 2 O �

K
and

(v) integers nij � 0 for 1 � i � M; 1 � j � m (with
P M

i =1 nij � 1 for each j )

such that

(1.3.1) WD(V)Fr -ss '
mM

j =1

MM

i =1

Spt j
(r i )

n ij

=K

as Weil-Deligne representations. The map� gives an equality

� (CR) = CR�

of multisets.

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma 1.1.28. By lemma 1.1.10, WD(V)Fr-ss is a Weil-Deligne representation. Hence by
theorem 1.1.21, there are

(1) integersm � 1, 0 � t1 < t 2 < � � � < t m ,
(2) one-dimensional unrami�ed distinct Weil representations r1; � � � ; rM of WK over K

for some integerM � 1,
(3) integersnij � 0 for 1 � i � M; 1 � j � m

such that we have an isomorphism

WD(V)Fr-ss '
mM

j =1

MM

i =1

Spt j
(r i )

n ij

=K
;

of Weil-Deligne representations. It remains to show that the r i (� ) are elements ofO�
K

.

The characteristic roots of� on WD(V)Fr-ss are elements ofO�
K

since the characteristic
polynomial of � on WD(V)Fr-ss and WD(V) are the same and WD(V) is de�ned over R. So
the characteristic roots of� on the Spt j

(r i )=K are elements ofO�
K

.

If r i comes from an indecomposable summand of odd dimension (i.e., there exists 1�
j � m with t j + 1 odd and nij 6= 0), then r i (� ) 2 O �

K
. On the other hand, if it comes from

an indecomposable summand of even size, thenr i (� )q1=2 2 O �
K

. Sinceq1=2 is a unit in OK ,
we getr i (� ) 2 O �

K
. �

1.3.2. Determining weights of some Weil numbers. The goal of this subsection is
to state and prove proposition 1.3.4. In this subsection, wewill assume thatV is semistable
and use the notations of proposition 1.3.1.

Denote the number of indecomposable summands of WD(V)Fr-ss of dimensiont j + 1 by
cj . By proposition 1.3.1

cj =
MX

i =1

nij

31



for all 1 � j � m. Denote the indecomposable summands of WD(V)Fr-ss of dimensiont j + 1
by Vj 1; � � � ; Vjc j .

De�nition 1.3.2. When V is semistable, letCE(resp.CE� ) denote the multiset formed by
the central elements (as in de�nition 1.1.24) of the indecomposable summands ofWD(V)Fr -ss

(resp.WD(V� )Fr -ss).

In the following, the weight of a #k-Weil number � will be called the weight of� and
will be denoted bywt(� ).

Lemma 1.3.3. Suppose thatV is semistable andV� is pure of weightw. Let 1 � J � m
be an integer such that the� -specializations of the central elements of the indecomposable
summands ofWD(V)Fr -ss of dimension at leasttJ + 1 are Weil numbers of weightw. Then
for J � j � m; 1 � k � cj , there are distinct indecomposable summandsVjk of WD(V� )Fr -ss

such that

(1.3.2) dimQp
Vjk � t j + 1; � (CR(Vjk )) � CR(Vjk )

for all J � j � m; 1 � k � cj .

Proof. SinceI K acts trivially on WD( V� )Fr-ss, each indecomposable summand of WD(V� )Fr-ss

is a twist of Spt (1) (t = t1; � � � ; tm ) by an unrami�ed character (here 1 denotes the trivial
character of WK ). So for any indecomposable summandU of WD(V� )Fr-ss, the elements
of CR(U) are Weil numbers of distinct weights. Thus given any numberof elements of
the multiset CR� of the same weight, these elements come from the same number of in-
decomposable summands of WD(V� )Fr-ss, i.e., each of them is a characteristic root of� on
an indecomposable summand of WD(V� )Fr-ss and these summands are distinct. The lemma
follows. �

Proposition 1.3.4 (Purity for big Galois representation). Suppose thatV is semistable and
V� is pure of weightw. Then the images of the� i under � are # k-Weil numbers of weight
w. Consequently the map� gives an equality of multisets

� (CE) = CE� :

Before proving this proposition, we �rst give a sketch of itsproof.

1.3.2.1. Outline of the proof. The �rst part of proposition 1.3.4 is proved using induction
and then the last part is proved in the last paragraph of the proof. The induction goes in
three steps. In step 1, we prove that the� -specializations of the central elements of the inde-
composable summands of WD(V)Fr-ss of largest dimension are Weil numbers of weightw. In
step 2, we formulate the induction hypothesis, which says that for an integer 2� J � m, the
� -specialization of the central elements of the indecomposable summands of WD(V)Fr-ss of
dimension� tJ + 1 are Weil numbers of weightw. In step 3, using the induction hypothesis,
we prove that the� -specializations of the central elements of the indecomposable summands
of WD(V)Fr-ss of dimensiontJ � 1 + 1 are Weil numbers of weightw. These three steps prove
the �rst part of the above proposition.

We give the outline of the proof of step 1 and 3. Step 1 is provedusing only the three
facts below.
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(1) WD( V� )Fr-ss is pure of weightw,
(2) � (CR) = CR� as multisets,
(3) WD( V� )Fr-ss is annihilated by the D-th power of its monodromy whereD denotes

the dimension of an indecomposable summand of WD(V)Fr-ss of largest dimension.

Thereafter using the induction hypothesis, we prove that there exists a summandW
(resp.W) of WD(W)Fr-ss (resp. WD(V� )Fr-ss) such that

(1) W is pure of weightw,
(2) � (CR(W)) = CR(W) as multisets,
(3) W is annihilated by the D-th power of its monodromy whereD denotes the dimen-

sion of an indecomposable summand ofW of largest dimension.

So by the proof of step 1, it follows that the� -specializations of the central elements of
the indecomposable summands ofW of largest dimension are Weil numbers of weightw. By
the construction ofW, its indecomposable summands of largest dimension are precisely the
indecomposable summands of WD(V)Fr-ss of dimensiontJ � 1 + 1. This proves step 3. The
summandW of WD(V� )Fr-ss with the above-mentioned properties is obtained by applying
the above lemma.

Proof. Since
V� = T 
 R ;� Qp;

we have
N � = � (N ):

For any integer s � 0, all minors ofN s
� of size dimK N s(WD( V)Fr-ss) + 1 has zero deter-

minant (since the same holds forN s). Hence

(1.3.3) dimK N t j +1 (WD( V)Fr-ss) � dimQp
N t j +1

� (WD( V� )Fr-ss)

for 1 � j � m.

We �rst show that the � -specializations of the� i coming from the indecomposable sum-
mands of WD(V)Fr-ss of largest dimension (i.e., of dimensiontm + 1) are of weight w. Notice
that

(1) WD( V� )Fr-ss is pure of weightw,
(2) � (CR) = CR� as multisets,
(3) WD( V� )Fr-ss is annihilated by the tm + 1-th power of its monodromy, i.e.,

dimQp
N tm +1

� (WD( V� )Fr-ss) = 0

(by equation (1.3.1) and (1.3.3)).

SinceV� is pure of weightw, the indecomposable summands of WD(V� )Fr-ss are of di-
mension at mosttm + 1. These summands are of weightw. So the di�erence of the weights
of a highest weight and a lowest element of the multisetCR� is at most 2tm .

Let � i ; � j denote the central elements of two indecomposable summandsof WD(V)Fr-ss

of dimensiontm +1. Then � (� i qtm =2) and � (� j qtm =2) are elements ofCR� (by theorem 1.3.1)
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and hence

wt(� (� i qtm =2)) � wt(� (� j q� tm =2)) � 2tm ;

which gives

wt(� (� i qtm =2)) � wt(� (� j q� tm =2)) = 2 tm + wt(� (� i )) � wt(� (� j )) :

So � (� i ) and � (� j ) are Weil numbers of same weights.

By the same reasoning,� (� i )� (q1=2)tm (resp.� (� i )� (q1=2)� tm ) is a highest (resp. lowest)
weight element ofCR� . Since V� is pure of weight w, the Weil-Deligne representation
WD(V� )Fr-ss is also pure of weightw and hence its weightw is equal to the average of
the weights of a highest weight and a lowest weight element ofCR� . Notice that this
average weight is the weight of� (� i ). So the � -specialization of the central element of any
indecomposable summand of WD(V)Fr-ss of dimensiontm + 1 is a Weil number of weightw.

Note that if m = 1, then the �rst part of the above proposition follows. So assume that
m � 2. We will use induction to prove the �rst part of the proposition.

Let 2 � J � m be an integer such that the� -specializations of the central elements of
the indecomposable summands of WD(V)Fr-ss of dimension at leasttJ + 1 are Weil numbers
of weight w. To establish the �rst part of the proposition, it su�ces to s how that the � -
specializations of the central elements of the indecomposable summands of WD(V)Fr-ss of
dimensiontJ � 1 + 1 are also Weil numbers of weightw.

For J � j � m; 1 � k � cj , let Vjk be as prescribed by lemma 1.3.3. So we have

(1.3.4) dimQp
Vjk � t j + 1 > t J � 1 + 1

for all J � j � m; 1 � k � cj . Let

WD(V)Fr-ss = W �
mM

j = J

cjM

k=1

Vjk ; WD(V� )Fr-ss = W �
mM

j = J

cjM

k=1

Vjk

be the decomposition of WD(V)Fr-ss and WD(V� )Fr-ss into Weil-Deligne subrepresentations
whereW (resp.W) is the internal direct sum of the indecomposable summands of WD( V)Fr-ss

(resp. WD(V� )Fr-ss) apart from the Vjk (resp.Vjk ).

Then equation (1.3.1) gives

dimK N tJ � 1+1 (WD( V)Fr-ss) =
mX

j = J

cj (t j � tJ � 1):

Using equation (1.3.3), we get

(1.3.5)
mX

j = J

cj (t j � tJ � 1) � dimQp
N tJ � 1+1

� (WD( V� )Fr-ss):
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This decomposition gives
(1.3.6)

dimQp
N tJ � 1+1

� (WD( V� )Fr-ss) � dimQp
N tJ � 1+1

� W+
mX

j = J

cj (t j � tJ � 1)+
mX

j = J

cjX

k=1

�
dimQp

Vjk � (t j + 1)
�

where
mX

j = J

cjX

k=1

�
dimQp

Vjk � (t j + 1)
�

� 0

by equation (1.3.4) and also
dimQp

N tJ � 1+1
� W � 0:

Hence

(1.3.7) dimQp
Vjk = t j + 1

for all J � j � m; 1 � k � cj and

(1.3.8) N tJ � 1+1
� (W) = 0 :

Since � (CR(Vjk )) is a subset ofCR(Vjk ) for all J � j � m, 1 � k � cj , by equation
(1.3.7) we get

� (CR(W)) = CR(W)

as multisets. So we have
(1) W is pure of weightw,
(2) � (CR(W)) = CR(W) as multisets,
(3) W is annihilated by the D-th power of its monodromy whereD denotes the dimen-

sion of an indecomposable summand ofW of largest dimension.

So the � -specializations of the central elements of indecomposable summands ofW of
largest dimension (i.e., of dimensiontJ � 1 + 1) are Weil numbers of weightw by an argument
similar to the proof of the fact that the � -specializations of the central elements of the in-
decomposable summands of WD(V)Fr-ss of largest dimension (i.e., of dimensiontm + 1) are
Weil numbers of weightw.

Now it remains to show that � (CE) = CE� . Let CEo (resp.CEe) denote the multi-
set formed by the central elements of the indecomposable summands of WD(V)Fr-ss of odd
(resp. even) dimension. Note that the multisetsCEo, q1=2CEe are disjoint sub-multisets of
CR (one of them might be empty but not both). So� (CEo) and � (q1=2)� (CEe) are disjoint
sub-multisets of� (CR) = CR� . Moreover the equality� (CR) = CR� also shows that� (CEo)
(resp.� (q1=2)� (CEe)) is the submultiset of CR� of Weil numbers of weightw (resp.w + 1) by
the �rst part of proposition 1.3.4. Since WD(V� )Fr-ss is pure of weightw, we get

CE� = � (CEo) [
�

� (q1=2)� 1 �
�
� (q1=2)� (CEe)

� �
:

This gives the desired equality
� (CE) = CE� :

�
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1.3.3. Decomposition of WD(V� )Fr -ss. The proposition below is a consequence of the
above lemma. This lemma allows to determine the gradings of the monodromy �ltration of
WD(V� )Fr-ss from the setCR� using purity of V� . Then we get the structure of WD(V� )Fr-ss

from lemma 1.1.45.

Proposition 1.3.5. Suppose thatV is semistable andV� is pure. Then

(1.3.9) WD(V� )Fr -ss '
mM

j =1

MM

i =1

Spt j
(� � r i )

n ij

=Qp

as Weil-Deligne representations.

Proof. SinceV� and WD(V� )Fr-ss have same underlying vector spaces and have same mon-
odromy, the monodromy �ltration on WD( V� )Fr-ss is equal toM �; � .

SinceI K acts trivially on WD( V� )Fr-ss, its action is also trivial on the terms ofM �; � . So
GrkM �; � is a Frobenius-semisimple unrami�ed representation ofWK for any k 2 Z.

By proposition 1.3.4, the characteristic polynomial of� on GrkM �; � is

MY

i =1

Y

1� j � m
t j � k mod 2
� t j � k� t j

(X � � (� i )qk=2)n ij :

For � 2 Q
�
p , let  � : WK ! Q

�
p denote the unrami�ed character which sends� to � . Since

GrkM �; � is a Frobenius-semisimple unrami�ed representation ofWK , we get

GrkM �; � '
MM

i =1

M

1� j � m
t j � k mod 2
� t j � k� t j

�
 � (� i )qk= 2

� � n ij :

By lemma 1.1.45, the proposition follows. �

1.3.4. Proof of theorem 1.2.1.

Proof of theorem 1.2.1. SinceT is monodromic overK 0 (as assumed inx1.2.2), theWK 0-
representationVjWK 0 is semistable. Since theWK -representationV and WK 0-representation
VjWK 0 have same underlying vector space and have the same monodromy, their monodromy
�ltrations are equal. Thus it su�ces to prove theorem 1.2.1 when V is semistable. So
assume that theWK -representationV is semistable. By equations (1.1.12), (1.1.13) and the
equations (1.3.1), (1.3.9) above (the last two equations apply as V is semistable andV� is
pure), the powers of the monodromyN do not degenerate under� and the dimensions of
the monodromy �ltrations M � , M �; � match termwise. �

1.4. Compatibility of �ltrations

In this subsection, we prove theorem 1.2.2 in the following way. Its part (1) and (2)
follow from proposition 1.4.2, 1.4.3, 1.4.5. From proposition 1.4.6 below, its part (3) also
follows.
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1.4.1. Image �ltrations.

Lemma 1.4.1. Suppose that the condition(mono-non-deg)holds. Then for any integer
a � 0, the R p� -moduleTp� =(N aT )p� is free.

Proof. Consider the exact sequence

(1.4.1) 0! (N aT )p� ! T p� ! T p� =(N aT )p� ! 0

of R p� -modules where the second map is the inclusion map and the third map is the projec-
tion map. This gives

(1.4.2) rkR p�
Tp� =(N aT )p� = dim K V � dimK N aV:

Applying � 
 R p�
L � to the short exact sequence in equation (1.4.1) yields the exact

sequence ofL � -vector spaces below.

(N aT )p� 
 R p�
L � ! V 0

� ! (Tp� =(N aT )p� ) 
 R p�
L � ! 0

Considering the image of the �rst term of the exact sequence in its second term, we get
the short exact sequence

0 ! N a
� V 0

� ! V 0
� ! (Tp� =(N aT )p� ) 
 R p�

L � ! 0:

So
dimQp

�
(Tp� =(N aT )p� ) 
 R p�

L �

�

 L � Qp = dim Qp

V� � dimQp
N a

� V� :

Thus

(1.4.3) dimL � (Tp� =(N aT )p� ) 
 R p�
L � = dim Qp

V� � dimQp
N a

� V� :

Since the condition (mono-non-deg) holds, the equations (1.4.2), (1.4.3) show that the
rank and the residue dimension of theR p� -moduleTp� =(N aT )p� are the same. So the result
follows from Nakayama's lemma. �

Proposition 1.4.2 (Image �ltration) . Suppose that the condition(mono-non-deg)holds.
Then for any integera 2 Z, (N aT )p� is free overR p� and the map� induces an isomorphism

(1.4.4) (N aT )p� 
 R p� ;� L � ' N a
� V 0

� :

Proof. If a � 0, then N a = id and hence the lemma follows. So assumea � 0. Then from
the exact sequence in equation (1.4.1), it follows that (N aT )p� is free overR p� by applying
lemma 1.4.1 and Nakayama's lemma. By lemma 1.4.1 above, applying � 
 R p� ;� L � to the
exact sequence in equation (1.4.1) yields the short exact sequence below.

(1.4.5) 0! (N aT )p� 
 R p� ;� L � ! V 0
� ! V 0

� =Na
� V 0

� ! 0

This proves
(N aT )p� 
 R p� ;� L � ' ker (V 0

� ! V 0
� =Na

� V 0
� ) ;

showing
(N aT )p� 
 R p� ;� L � ' N a

� V 0
� :

�

Now using proposition 1.4.2, we generalize lemma 1.4.1.
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Proposition 1.4.3 (Gradings of image �ltration) . Suppose that the condition(mono-non-deg)
holds. Then for anya; b2 Z with b � a, the R p� -module

(N aT )p� =(N bT )p�

is free and the map� induces an isomorphism
�
(N aT )p� =(N bT )p�

�

 R p� ;� Qp ' N a

� V� =Nb
� V� :

Proof. Note that if r � 0 is an integer, thenN r = id. So if a � 0 and b � 0, then lemma
1.4.1 gives the result. Ifa � 0 and b � 0, then the result follows asN b = id. So from now
on, we assumea � 0.

Consider the exact sequence

(1.4.6) 0! (N bT )p� ! (N aT )p� ! (N aT )p� =(N bT )p� ! 0

of R p� -modules where the second map is the inclusion map and the third map is the projec-
tion map. This gives

(1.4.7) rkR p�
(N aT )p� =(N bT )p� = dim K N aV � dimK N bV:

Applying � 
 R p�
L � to the short exact sequence in equation (1.4.6) gives the exact

sequence ofL � -vector spaces

(N bT )p� 
 R p�
L � ! N a

� V 0
� !

�
(N aT )p� =(N bT )p�

�

 R p�

L � ! 0

by proposition 1.4.2.

Considering the image of the �rst term of the exact sequence in its second term, we get
the short exact sequence

(1.4.8) 0! N b
� V 0

� ! N a
� V 0

� !
�
(N aT )p� =(N bT )p�

�

 R p�

L � ! 0:

So

dimQp

� �
(N aT )p� =(N bT )p�

�

 R p�

L �

�

 L � Qp = dim Qp

N a
� V� � dimQp

N b
� V� :

Thus

(1.4.9) dimL �

�
(N aT )p� =(N bT )p�

�

 R p�

L � = dim Qp
N a

� V� � dimQp
N b

� V� :

Since the condition (mono-non-deg) holds, the equations (1.4.7), (1.4.9) show that the
rank and the residue dimension of theR p� -module (N aT )p� =(N bT )p� are the same. So it is
free by Nakayama's lemma. Then equation (1.4.8) gives

�
(N aT )p� =(N bT )p�

�

 R p� ;� Qp ' N a

� V� =Nb
� V� :

�
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1.4.2. Kernel �ltrations. For i; j 2 Z, put

Sij = ker
�

T N i

�! T
�

\ Im
�

T N j

�! T
�

;

S0
�;ij = ker

�
V 0

�
N i

��! V 0
�

�
\ Im

�
V 0

�
N j

��! V 0
�

�
;

S�;ij = ker
�

V�
N i

��! V�

�
\ Im

�
V�

N j
��! V�

�
:

Note that

Sij = ker( N i T N j

�! N i + j T );

S0
�;ij = ker( N i

� V 0
�

N j
��! N i + j

� V 0
� );

S�;ij = ker( N i
� V�

N j
��! N i + j

� V� ):

Lemma 1.4.4. Suppose that the condition(mono-non-deg)holds. Then for anyi; j 2 Z,
(Sij )p� is free overR p� and the map� induces an isomorphism

(1.4.10) (Sij )p� 
 R p� ;� L � ' S0
�;ij :

Proof. Note that when j � 0, then N j = id and so this lemma follows from proposition
1.4.2. Wheni � 0, then Sij = f 0g, S0

�;ij = f 0g, so there is nothing to prove. So from now
on, we will assumei � 0; j � 0. Then localizing the exact sequence

0 ! S ij ! N j T ! N i + j T ! 0

at p� gives the short exact sequence

(1.4.11) 0! (Sij )p� ! (N j T )p� ! (N i + j T )p� ! 0:

The last three terms of this sequence are free overR p� by proposition 1.4.2. So it follows
that ( Sij )p� is free overR p� by Nakayama's lemma.

By proposition 1.4.2, applying� 
 R p� ;� L � to the exact sequence in equation (1.4.11)
yields the short exact sequence below.

(1.4.12) 0! (Sij )p� 
 R p� ;� L � ! N j
� V 0

� ! N i + j
� V 0

� ! 0

This proves
(Sij )p� 
 R p� ;� L � ' ker

�
N j

� V 0
� ! N i + j

� V 0
�

�
= S0

�;ij :
�

Proposition 1.4.5 (Kernel �ltration and gradings) . Suppose that the condition(mono-non-deg)
holds. Then for anya 2 Z, the R p� -moduleker (N a : T ! T )p�

is free and the map� induces
an isomorphism

ker(N a : T ! T )p� 
 R p� ;� Qp ' ker(N a
� : V� ! V� ):

Moreover for a; b 2 Z with a � b, the R p� -module ker(N a : T ! T )p� =ker(N b : T ! T )p�

is free and the map� induces an isomorphism
�

ker(N a : T ! T )p� =ker(N b : T ! T )p�

�

 R p� ;� Qp ' ker(N a

� : V� ! V� )=ker(N b
� : V� ! V� ):
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Proof. Note that there is nothing to prove ifa � 0. So we assume thata � 1. Consider the
short exact sequence

0 ! ker(N a : T ! T )p� ! T p�

N a

��! (N aT )p� ! 0

of R p� -modules. From proposition 1.4.2, the �rst part of the lemmafollows.

Note that if b � 0, then the second part follows from the �rst part. So we assume b � 1.
Applying snake's lemma on the commutative diagram

0 //ker(T N b

�! T ) //
•_

��

T N b
//N bT //

N a� b

��

0

0 //ker(T N a

��! T ) //T N a
//N aT //0

with exact rows, we get an isomorphism

coker
�

ker(T N b

�! T ) ,! ker(T N a

��! T )
�

' ker
�
N a� b : N bT ! N aT

�

of R-modules. So we have an exact sequence ofR-modules

0 ! ker
�

T N b

�! T
�

! ker
�

T N a

��! T
�

! S a� b;b ! 0:

By lemma 1.4.4, we are done. �

1.4.3. Monodromy �ltrations. Note that by equation (1.1.11)

(1.4.13) M k =
X

i + j = k

Si +1 ;� j ; M �;k =
X

i + j = k

S�;i +1 ;� j

for all k 2 Z.

Proposition 1.4.6 (Monodromy �ltration and gradings) . Suppose that the conditions(mono-non-deg),
(mono-�l-dim) hold. Then for any k 2 Z, (M k)p� is free overR p� and the map� induces
an isomorphism

(M k)p� 
 R p� ;� Qp ' M �;k :

Moreover for any i 2 Z, the R p� -module (Gr i M � )p� is free and the map� induces an
isomorphism

(Gr i M � )p� 
 R p� ;� Qp ' Gri M �; � :

Proof. The exact sequence

(1.4.14) 0! (M k)p� ! T p� ! (T =M k)p� ! 0

of R p� -modules show
rkR p�

(T =M k)p� = dim K V � dimK M k :

Moreover applying� 
 R p� ;� Qp to this exact sequence gives the exact sequence

(M k)p� 
 R p� ;� Qp ! V� ! (T =M k)p� 
 R p� ;� Qp ! 0
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of Qp-vector spaces. Note that lemma 1.4.4 and equation (1.4.13) show that the image of
the �rst term of the above exact sequence in the second term isM �;k . So we have an exact
sequence

0 ! M �;k ! V� ! (T =M k)p� 
 R p� ;� Qp ! 0
and thus

dimQp
(T =M k)p� 
 R p� ;� Qp = dim Qp

V� � dimQp
M �;k ;

i.e.,
dimL � (T =M k)p� 
 R p� ;� L � = dim L � V� � dimL � M �;k :

Since the condition (mono-�l-dim) holds, we get

rkR p�
(T =M k)p� = dim L � (T =M k)p� 
 R p� ;� L � :

So by Nakayama's lemma, (T =M k)p� is free overR p� and hence (M k)p� is free overR p� .

Thus applying � 
 R p� ;� Qp to the exact sequence in equation (1.4.14) yields

(M k)p� 
 R p� ;� Qp ' Im
�
(M k)p� 
 R p� ;� Qp ! V�

�
:

Then lemma 1.4.4 and equation (1.4.13) show that

(M k)p� 
 R p� ;� Qp ' M �;k :

Now let i be an integer. Then using the above isomorphism fork = i and repeating the
proof of freeness of (T =M k)p� overR p� with T ; M k ; V� ; M �;k replaced byM i ; M i � 1; M �;i ; M �;i � 1

respectively, we get (Gri M � )p� = ( M i =M i � 1)p� is free overR p� .

Finally the exact sequence

0 ! M i � 1 ! M i ! Gri M � ! 0

combined with the above equation gives

(Gr i M � )p� 
 R p� ;� Qp ' M �;i =M�;i � 1 = Gr i M �; � :

�

1.5. Rationality and interpolation of summands

In this section, we prove theorem 1.2.3. It follows from proposition 1.5.1, 1.5.3.

1.5.1. Rationality. Let (r; N ) denote the Weil-Deligne parametrization ofT [1=p]. By
proposition 1.1.29, the representation WD(T [1=p]) decomposes into an internal direct sum
of R[1=p]-submodules as

WD(T [1=p]) = WD( T [1=p])I K � WD(T [1=p])I K ;c;

both of which are stable underWK and N .

Proposition 1.5.1 (Rationality over OK [1=p]). There exist
(i) an integer m � 1,

(ii) integers 0 � t1 < � � � < t m ,
(iii) an integer M � 1,
(iv) M distinct unrami�ed characters r1; � � � ; rM of WK with � i := r i (� ) 2 O �

K
and

(v) integers nij � 0 for 1 � i � M; 1 � j � m (with
P M

i =1 nij � 1 for each j )
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such that

(1.5.1) (WD(V)I K )Fr -ss '
mM

j =1

MM

i =1

Spt j
(r i )

n ij

=K

as Weil-Deligne representations. There also exist
(i 0) an integer m0 � 1,

(ii 0) integers 0 � t0
1 < t 0

2 < � � � < t 0
m0,

(iii 0) an integer M 0 � 1,
(iv 0) � unrami�ed characters � 0

1; � � � ; � 0
M 0 : WK ! O �

K
,

� irreducible Frobenius-semisimple representations

� 0
1 : WK ! GLd1 (Q); � � � ; � 0

M 0 : WK ! GLdM 0(Q)

with �nite image and
(v 0) integers n0

ij � 0 for 1 � i � M 0; 1 � j � m0

such that

(1.5.2) (WD(V)I K ;c)Fr -ss '
m0M

j =1

M 0M

i =1

Spt0
j
(� 0

i 
 � 0
i )

n0
ij

=K

as Weil-Deligne representations. So

(1.5.3) WD(V)Fr -ss '
mM

j =1

MM

i =1

Spt j
(r i )

n ij

=K
�

m0M

j =1

M 0M

i =1

Spt0
j
(� 0

i 
 � 0
i )

n0
ij

=K

and the indecomposable summands ofWD(V)Fr -ss are de�ned overOK [1=p]. The character-
istic polynomial of � on WD(V)I K is

mY

j =1

MY

i =1

t jY

k=0

(X � � i q(� t j +2 k)=2)n ij :

For any prime ideal p of R [1=p], this polynomial is also the characteristic polynomial of�
on the freeR[1=p]p-moduleWD(T [1=p])I K

p and hence it is an element ofR [1=p][X ] \ O K [X ].

Remark 1.5.2. Henceforth we will consider the indecomposable summands of WD(V)Fr-ss

as de�ned overOK [1=p].

Proof. The Weil-Deligne parametrization WD(V) of V is a Weil-Deligne representation by
lemma 1.1.28. Its inertia invariants WD(V)I K and its complement WD(V)I K ;c are also Weil-
Deligne representations by lemma 1.1.9. By lemma 1.1.10, (WD(V)I K )Fr-ss, (WD( V)I K ;c)Fr-ss

are Weil-Deligne representations. Hence by theorem 1.1.21,there are
(1) integersm � 1, 0 � t1 < t 2 < � � � < t m ,
(2) one-dimensional unrami�ed distinct Weil representations r1; � � � ; rM of WK over K

for some integerM � 1,
(3) integersnij � 0 for 1 � i � M; 1 � j � m

and
(10) integersm0 � 1, 0 � t0

1 < t 0
2 < � � � < t 0

m0,
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(20) irreducible Frobenius-semisimple representationsr 0
1; � � � ; r 0

M 0 of WK over K for some
integer M 0 � 1,

(30) integersn0
ij � 0 for 1 � i � M 0; 1 � j � m0

such that we have isomorphisms

(WD( V)I K )Fr-ss '
mM

j =1

MM

i =1

Spt j
(r i )

n ij

=K
; (WD( V)I K ;c)Fr-ss '

m0M

j =1

M 0M

i =1

Spt0
j
(r 0

i )
n0

ij

=K

of Weil-Deligne representations. By proposition 1.1.14, for each 1� i � M 0, there exists an
unrami�ed character � 0

i : WK ! K
�

and an irreducible Frobenius-semisimple representation
� 0

i : WK ! GLdi (Q) with �nite image such that

r 0
i ' � 0

i 
 � 0
i=K

as WK -representations overK. So to establish equations (1.5.1), (1.5.2), it remains to show
that the r i and � 0

i have image inO�
K

. Since ther i and � 0
i are unrami�ed, it su�ces to show

that the r i (� ) and � i (� ) are elements ofO�
K

.

The characteristic roots of� on WD(V)Fr-ss are elements ofO�
K

since the characteristic
polynomial of � on WD(V)Fr-ss and WD(V) are the same and WD(V) is de�ned over R. So
the characteristic roots of� on the Spt j

(r i )=K and Spt0
j
(r 0

i )=K are elements ofO�
K

.
If r i comes from an indecomposable summand of odd dimension (i.e., there exists 1�

j � m with t j + 1 odd and nij 6= 0), then r i (� ) 2 O �
K

. On the other hand, if it comes from
a block of even size, thenr i (� )q1=2 2 O �

K
. Sinceq1=2 is a unit in OK , we getr i (� ) 2 O �

K
.

Similarly if the � 0
i comes from an indecomposable summand of odd dimension (i.e., there

exists 1� j � m0 with t0
j + 1 odd and n0

ij 6= 0), then � 0
i (� ) times a root of unity belongs to

O�
K

, which shows� 0
i (� ) 2 O �

K
. On the other hand if it comes from a block of even size, then

� 0
i (� )q1=2 times a root of unity belongs toO�

K
, which shows� 0

i (� )q1=2 2 O �
K

. Sinceq1=2 is a
unit in OK , we get� 0

i (� ) 2 O �
K

. So the equations (1.5.1), (1.5.2) follow.

Recall that there is a decomposition

WD(V) = WD( V)I K � WD(V)I K ;c

as an internal direct sum of Weil-Deligne subrepresentations by lemma 1.1.9. This shows

WD(V)Fr-ss = (WD( V)I K )Fr-ss � (WD( V)I K ;c)Fr-ss:

So equation (1.5.3) holds. Since the� 0
i are de�ned over Q and Q has an embedding into

OK [1=p], the � 0
i 
 � 0

i can be considered as a representation fromWK to GLdi (OK [1=p]). Thus
the indecomposable summands of WD(V)Fr-ss are de�ned overOK [1=p].

By equation (1.5.1), the characteristic polynomial of� on (WD(V)I K )Fr-ss is

mY

j =1

MY

i =1

t jY

k=0

(X � � i q(� t j +2 k)=2)n ij :

43



Since the multiset of characteristic roots of� on WD(V)I K and on (WD(V)I K )Fr-ss are the
same, the above polynomial is the characteristic polynomial of � on WD(V)I K .

Recall that for any prime idealp of R [1=p], WD(T [1=p])I K
p is free overR[1=p]p by propo-

sition 1.1.29. So any two consecutive entries of the list

(1) the characteristic polynomial of� on WD(T [1=p])I K
p ,

(2) the characteristic polynomial of� on WD(T [1=p])I K
p 
 R [1=p]p Frac(R[1=p]p),

(3) the characteristic polynomial of� on WD(T 
 R K)I K ,
(4) the characteristic polynomial of� on WD(T 
 R K)I K = WD( V)I K

are equal where the equality of the last two entries follows from [Fon04 , proof of Proposition
0.0]. So the characteristic polynomial of� on WD(T [1=p])I K

p is

mY

j =1

MY

i =1

t jY

k=0

(X � � i q(� t j +2 k)=2)n ij 2 R [1=p]p[X ]:

The last assertion follows sinceR[1=p] is equal to the intersection of its localizations at
prime ideals (taken insideK). �

1.5.2. Interpolating summands of WD(V� )Fr -ss.

Proposition 1.5.3. Suppose that the conditions(mono-�l-dim) , (mono-non-deg)hold. Then

WD(V� )Fr -ss '
mM

j =1

MM

i =1

Spt j
(� � r i )

n ij

=Qp
�

m0M

j =1

M 0M

i =1

Spt0
j
(� � (� 0

i 
 � 0
i ))

n0
ij

=Qp

as Weil-Deligne representations.

Proof. Let q denote a prime ofOK [1=p] lying above the primep� of R. Denote a lift of
� : OK [1=p] ! Qp to OK [1=p]q by � .

Since the conditions (mono-non-deg), (mono-�l-dim) hold,by theorem 1.2.2 theR p� -
module (GrkM � )p� is free and the map� induces isomorphism ofWK -representations

(GrkM � )p� 
 R p� ;� Qp ' GrkM �; �

for all k 2 Z.

So the WK -module GrkM � 
 R OK [1=p]q is free overOK [1=p]q and hence it is aWK -
representation. By proposition 1.5.1, the trace of thisWK -representation is same as the
trace of the WK -representation

0

B
B
B
B
@

MM

i =1

M

1� j � m
t j � k mod 2
� t j � k� t j

�
r i jArt � 1

K j � k=2
K

� n ij

=OK [1=p]q

1

C
C
C
C
A

�

0

B
B
B
B
B
B
@

M 0M

i =1

M

1� j � m0

t0
j � k mod 2
� t0

j � k� t0
j

�
(� 0

i 
 � 0
i )jArt � 1

K j � k=2
K

� n0
ij

=OK [1=p]q

1

C
C
C
C
C
C
A

:
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So the trace of theWK -representation GrkM �; � is same as the trace of theWK -representation

0

B
B
B
B
@

MM

i =1

M

1� j � m
t j � k mod 2
� t j � k� t j

�
�

r i jArt � 1
K j � k=2

K

� n ij

=Qp

1

C
C
C
C
A

�

0

B
B
B
B
B
B
@

M 0M

i =1

M

1� j � m0

t0
j � k mod 2
� t0

j � k� t0
j

�
�

(� 0
i 
 � 0

i )jArt � 1
K j � k=2

K

� n0
ij

=Qp

1

C
C
C
C
C
C
A

:

Since GrkM �; � is a semisimple representation ofWK , it is isomorphic to the above repre-
sentation (by [Ser98, Chapter 1, x2] for instance). The proposition follows from lemma
1.1.45. �

1.6. (Proof of) Purity for big Galois representations

Before proving theorem 1.2.4, we discuss some properties ofT I K .

1.6.1. Compatibility. Recall that p� denotes the kernel of� : R ! Qp. Denote the
image of this map byL � and note that it is a sub�eld of Qp as it is isomorphic toR p� =p� R p� .

Denote the GK -representationT 
 R L � = T� 
 O � L � by V 0
� . Let (r � ; N � ) denote the

Weil-Deligne parametrization ofV 0
� . Denote by (rp� ; Np� ) the localization WD(T [1=p])p� of

the Weil-Deligne parametrization WD(T [1=p]) = ( r; N ) at p� . Denote the image of

� =
1

#Im( r (I K ))

X

g2 Im( r (I K ))

g

in M n (R [1=p]p� ) by � p� , which is an idempotent as� is so. Since

V 0
� = T [1=p]p� 
 R [1=p]p� ;� L � ;

we have

(1.6.1) r � = � � rp� and N � = � (Np� ):

De�ne the element

� � =
1

#Im(( � � r )( I K ))

X

g2 Im(( � � r )( I K ))

g 2 M n (L � ):

Then by lemma 1.1.9,� � is an idempotent and WD(V 0
� ) decomposes into an internal

direct sum of Weil-Deligne subrepresentations as

(1.6.2) WD(V 0
� ) = WD( V 0

� )I K � WD(V 0
� )I K ;c:

Proposition 1.6.1 (Compatibility) . We have

(r � ; N � )jWD( V 0
� ) I K = �

�
(rp� ; Np� )j

WD( T [1=p])
I K
p�

�

(r � ; N � )jWD( V 0
� ) I K ;c = �

�
(rp� ; Np� )j

WD( T [1=p])
I K ;c
p�

�

as Weil-Deligne representations.
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Proof. Recall that by proposition 1.1.29, WD(T [1=p])p� decomposes into an internal direct
sum of Weil-Deligne representations as

(1.6.3) WD(T [1=p])p� = WD( T [1=p])I K
p�

� WD(T [1=p])I K ;c
p�

with

WD(T [1=p])I K
p�

= � p� WD(T [1=p])p� ; WD(T [1=p])I K ;c
p�

= (1 � � p� )WD( T [1=p])p� :

By equation (1.6.1), we have
� (� p� ) = � � :

Since� p� , 1 � � p� are idempotents, it follows that

� � � � (� p� ) = � �

(1 � � � ) � � (1 � � p� ) = 0

(1 � � � ) � � (� p� ) = 0

(1 � � � ) � � (1 � � p� ) = 1 � � � :

So

(1.6.4) WD(V 0
� )I K = � (WD( T [1=p])I K

p�
); WD(V 0

� )I K ;c = � (WD( T [1=p])I K ;c
p�

):

Now the �rst part of the proposition follows from equation (1.6.1). �

Corollary 1.6.2. We have
dimK VI K � dimQp

V I K
� :

Proof. Put

(1.6.5) N1 = N j
WD( T [1=p])

I K
p�

; N � 1 = N � jWD( V 0
� ) I K :

Then proposition 1.6.1 gives
N � 1 = � (N1):

By proposition 1.1.34 and [Fon04 , proof of Proposition 0.0], we obtain the desired inequality.
�

Remark 1.6.3. When V is semistable, this corollary can be deduced from equation (1.3.3)
using proposition 1.1.34.

Remark 1.6.4. This corollary is also obtained in [BC09 , x7.8.1].

1.6.2. Generating inertia invariants. Recall that we have decompositions

WD(V 0
� ) = WD( V 0

� )I K � WD(V 0
� )I K ;c;

WD(T [1=p])p� = WD( T [1=p])I K
p�

� WD(T [1=p])I K ;c
p�

:

as in equation (1.6.2) and (1.6.3). From equation (1.6.4), we have

(1.6.6) WD(V 0
� )I K = � (WD( T [1=p])I K

p�
); WD(V 0

� )I K ;c = � (WD( T [1=p])I K ;c
p�

):

By de�nition of semistable and totally non-semistable parts (as given in corollary 1.1.30
and 1.1.33), we get

� ((T [1=p]ss)p� ) = ( V 0
� )ss; � ((T [1=p]tnss )p� ) = ( V 0

� )tnss
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From equation (1.6.5), we have

N1 = N j
WD( T [1=p])

I K
p�

; N � 1 = N � jWD( V 0
� ) I K :

So this can be rewritten as

N1 = N j(T [1=p]ss )p�
; N � 1 = N � j(V 0

� )ss

and we have
N � 1 = � (N2)

by proposition 1.6.1. Now put

N2 = N j(T [1=p]tnss )p�
; N � 2 = N � j(V 0

� ) tnss

and note that proposition 1.6.1 gives

N � 2 = � (N2):

Notice that
N = N1 � N2; N � = N � 1 � N � 2:

In the following we will also use the notationN1 (resp.N2) to denote the restriction of
N to T [1=p]ss (resp.T [1=p]tnss ).

Recall from corollary 1.1.30 that we have a decomposition

T [1=p] = T [1=p]ss � T [1=p]tnss :

We will denote the projection maps

T [1=p] ! T [1=p]ss; T [1=p] ! T [1=p]tnss

by � ss and � tnss respectively. Similarly the projection maps

V� ! (V� )ss; V� ! (V� )tnss

are denoted by� �;ss ; � �;tnss respectively. From lemma 1.1.31 and proposition 1.6.1, we have
isomorphisms

T [1=p]ss 
 R [1=p];� Qp = ( T [1=p]ss)p� 
 R [1=p]p� ;� Qp ' (V� )ss;

T [1=p]tnss 
 R [1=p];� Qp = ( T [1=p]tnss )p� 
 R [1=p]p� ;� Qp ' (V� )tnss

induced by the map� and consequently

(1.6.7) � ss 
 R [1=p];� Qp = � �;ss ; � tnss 
 R [1=p];� Qp = � �;tnss :

Lemma 1.6.5. We have

(1.6.8) T [1=p]I K = ker ( N1 : T [1=p]ss ! T [1=p]ss)

and consequently

0 ! T [1=p]I K ! T [1=p]ss
N1�! N1T [1=p]ss ! 0

is exact. Moreover when the condition(mono-non-deg-1)holds, the localizations of all the
terms of this exact sequence atp� are free overR[1=p]p� .
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Proof. A little modi�cation of the proof of proposition 1.1.34 gives the proof of equation
(1.6.8).

First note that equation (1.1.10) gives

(T [1=p] 
 R [1=p] K)I K = ker
�
N1 : WD(T [1=p] 
 R [1=p] K)I K ! WD(T [1=p] 
 R [1=p] K)I K

�
:

Since
WD(T [1=p] 
 R [1=p] K)I K = WD( T [1=p])I K 
 R [1=p] K

by lemma 1.1.32 and
T [1=p]ss = WD( T [1=p])I K

by de�nition (as given in corollary 1.1.30), we get

(T [1=p] 
 R [1=p] K)I K = ker
�
N1 : T [1=p]ss 
 R [1=p] K ! T [1=p]ss 
 R [1=p] K

�
:

Note that T [1=p] can be considered inside (i.e., can be thought of as anR[1=p]-submodule
of) T [1=p] 
 R [1=p] K as it is torsion free (being free over a domain). So

T [1=p]I K = T [1=p] \ (T [1=p] 
 R [1=p] K)I K

= ( T [1=p]ss � T [1=p]tnss ) \ ker
�
N1 : T [1=p]ss 
 R [1=p] K ! T [1=p]ss 
 R [1=p] K

�

= T [1=p]ss \ ker
�
N1 : T [1=p]ss 
 R [1=p] K ! T [1=p]ss 
 R [1=p] K

�

= ker( N1 : T [1=p]ss ! T [1=p]ss):

This proves equation (1.6.8) which in turn shows that the sequence stated in the lemma is
exact.

Now it remains to prove the last part of the lemma. Note that by proposition 1.1.29,
(T [1=p]ss)p� is free over R[1=p]p� . So by Nakayama's lemma, it su�ces to prove that
(N1T [1=p]ss)p� is free overR[1=p]p� . Again by Nakayama's lemma and the exact sequence

0 ! (N1T [1=p]ss)p� ! (T [1=p]ss)p� ! (T [1=p]ss=N1T [1=p]ss)p� ! 0;

it is enough to prove that (T [1=p]ss=N1T [1=p]ss)p� is free overR[1=p]p� . This would follow
from Nakayama's lemma, once we prove that

rkR [1=p]p�
(T [1=p]ss=N1T [1=p]ss)p� = dim K Vss � dimK N1Vss

is same as

dimL � (T [1=p]ss=N1T [1=p]ss)p� 
 R [1=p]p� ;� L � = dim L � (V 0
� )ss � dimL � N � 1(V 0

� )ss:

This follows as
N = N1 � N2; N � = N � 1 � N � 2;

N � = � (N ); N � 1 = � (N1); N � 2 = � (N2)
and the condition (mono-non-deg-1) holds. �

We record an immediate corollary of the above proof.

Corollary 1.6.6. Suppose that the condition(mono-non-deg-1)holds. Then the map�
induces an isomorphism

N1T [1=p]ss 
 R [1=p];� Qp ' N � 1(V� )ss:
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Proof. In the above proof we have seen that (T [1=p]ss=N1T [1=p]ss)p� is free overR[1=p]p� .
So the exact sequence

0 ! (N1T [1=p]ss)p� ! (T [1=p]ss)p� ! (T [1=p]ss=N1T [1=p]ss)p� ! 0

gives

(N1T [1=p]ss)p� 
 R [1=p]p� ;� Qp ' Im
�

(N1T [1=p]ss)p� 
 R [1=p]p� ;� Qp ! (T [1=p]ss)p� 
 R [1=p]p� ;� Qp

�
:

Since
(T [1=p]ss)p� 
 R [1=p]p� ;� Qp ' (V� )ss

from lemma 1.1.31 and proposition 1.6.1, we get the corollary. �

Lemma 1.6.7. We have an exact sequence

0 ! T [1=p]I K ! T [1=p]
(N1 � � ss )� � tnss���������! N1T [1=p]ss � T [1=p]tnss ! 0

of representations ofWK overR[1=p]. Moreover when the condition(mono-non-deg-1)holds,
the localizations of all the terms of this sequence atp� are free overR[1=p]p� .

Proof. Exactness of the above sequence follows since

T [1=p] = T [1=p]ss � T [1=p]tnss

and
0 ! T [1=p]I K ! T [1=p]ss

N1�! N1T [1=p]ss ! 0
is exact by the above lemma.

By proposition 1.1.29, the localization ofT [1=p]tnss at p� is free overR[1=p]p� . So we are
done by the above lemma. �

Proposition 1.6.8. The R p� -modulesT I K
p� , Tp� =T I K

p� are free and the map� induces an
isomorphism

T I K
p�


 R p� ;� Qp ' V I K
� :

Proof. From lemma 1.6.7, it follows that

(T [1=p]I K )p� ; T [1=p]p� =(T [1=p]I K )p�

are free overR[1=p]p� . Note that p =2 p� as p� = ker( � : R ! Qp). So R[1=p]p� = R p� and
the modules

T I K
p�

= ( T [1=p]I K )p� ; Tp� =T I K
p�

= T [1=p]p� =(T [1=p]I K )p�

are free overR p� .

Now it remains to prove
T I K 
 R ;� Qp ' V I K

� :

Note that applying � 
 R [1=p];� Qp to the exact sequence in lemma 1.6.7 yields the short exact
sequence

0 ! T [1=p]I K 
 R [1=p];� Qp ! V� ! N1T [1=p]ss 
 R [1=p];� Qp

M
T [1=p]tnss 
 R [1=p];� Qp ! 0

where the third arrow is
((N1 � � ss) � � tnss ) 
 R [1=p];� Qp:
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In other words

0 ! T I K 
 R ;� Qp ! V�
(N � 1 � � � )� � �;tnss����������! N � 1(V� )ss

M
(V� )tnss ! 0

is exact by corollary 1.6.6, lemma 1.1.31, proposition 1.6.1 and equation (1.6.7). So

T I K
p�


 R p� ;� Qp ' ker(N � 1 : (V� )ss
N � 1��! (V� )ss)

= ker( N � 1 : WD(V� )I K
N � 1��! WD(V� )I K ):

By equation (1.1.10), we get
T I K

p�

 R p� ;� Qp ' V I K

� :
�

1.6.3. Proof of theorem 1.2.4 and proposition 1.2.5.

Proof of theorem 1.2.4. Suppose thatV� is pure of weightw. Part (1), (2), (3) of this
theorem follow from theorem 1.2.1, 1.2.2, 1.2.3 respectively.

SinceV� is pure, part (4) of theorem 1.2.4 holds.

The �rst part of theorem 1.2.4(5) follows from proposition 1.6.8. The rest follows from
[Sta14, Tag 064K], [Sta14, Tag 06Y6].

Note that Eul(V)� 1 has coe�cients in R p� by part (5). Since V is de�ned over R,
the polynomial Eul(V)� 1 has coe�cients in OK \ R p� . Its � -specialization is Eul(V� )� 1 by
proposition 1.1.34 and theorem 1.2.4(3). So we have part (6)of theorem 1.2.4. �

Proof of proposition 1.2.5. SinceV is de�ned over R, the polynomial Eul(V)� 1 has co-
e�cients in OK . The inequality of this proposition is from corollary 1.6.2. �
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CHAPTER 2

Determinants and Selmer complexes

In this chapter we recall the notion of determinant functor and Selmer complexes referring
to [KM76, Nek06 ] for further details. These are used in the next two chaptersto construct
algebraicp-adic L-functions for Hida families.

2.1. Determinants

2.1.1. Triangulated categories. In this subsection, we review the notion of derived
category from [Sta14]. Notice that the sign convention of [Sta14] agrees with the sign
convention of [BBM82 , x0.3.1, p. 2] (by [Sta14, Tag 014L]), which is followed by [Nek06 ,
x1.1.3]. So the following is consistent with [Nek06 ].

2.1.1.1. Cochain complexes.We �rst recall some notions and describe some of their prop-
erties. Fix an abelian categoryA and denote the category of cochain complexes inA by
C(A). There are shift functors [n] on C(A) de�ned as follows:

(1) for a cochain complexX ,

X [n] =

(
X [n]i = X n+ i

di
X [n] = ( � 1)ndn+ i

X

;

(2) for a morphism of cochain complexesf : X ! Y,

f [n]i = f n+ i :

The cone of a morphismf : X ! Y of cochain complexes inA is the object of C(A)
de�ned by

Cone(f ) =

8
><

>:

Y � X [1]

di
Cone(f ) =

 
di

Y f i +1

0 di
X [1]

!

: Y i � X [1]i ! Y i +1 � X [1]i +1 :

The cone �ts into an exact sequence of complexes

(2.1.1) 0! Y
j

�! Cone(f )
p
�! X [1] ! 0;

where j and p are the canonical inclusion and projection respectively. The corresponding
boundary map

@: H i (X [1]) = H i +1 (X [1]) ! H i +1 (Y)

is induced byf i +1 . Note that the above exact sequence gives the triangle (X; Y; Cone(f ); f; j; p )
in C(A) (cf.[Sta14, Tag 014E]).
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2.1.1.2. Homotopy category.The homotopy categoryK (A) of the abelian categoryA
has the same objects asC(A) and its morphisms are homotopy classes of maps of complexes
(cf.[Sta14, Tag 013H]). Note that the shift functors [n] on the category of cochain complexes
give rise to functors [n] : K (A ) ! K (A) such that [n] � [m] = [ n + m] and [0] = id (equality
as functors). The categoryK (A) is a triangulated category with these translation functors
and distinguished triangles as the triangles in it isomorphic to the image of the triangle

X
f
�! Y

j
�! Cone(f )

� p
�! X [1]; f 2 HomC(A )(X; Y )

in C(A) under the functor C(A) ! K (A) (cf.[Sta14, Tag 014S, Tag 014I, Tag 014L]).

2.1.1.3. Derived category.Recall that A denotes an abelian category. The derived cat-
egory D(A) of A is the triangulated category de�ned as the quotient of the triangulated
category K (A) by its full triangulated subcategory of acyclic complexes, which is the lo-
calization of K (A) at the quasi-isomorphisms (cf.[Sta14, Tag 05RU, Tag 05RI, Tag 05R6,
Tag 05R6]). The additive functorsf [n]gn2 Z on D(A) are induced by those ofK (A) and
the distinguished triangles ofD(A) are the triangles in D(A) whice are isomorphic to the
image of a distinguished triangle under the localization map (cf.[Sta14, proof of Tag 05R6]).

2.1.1.4. Complexes of modules.For a ring R, let RMod denote the category ofR-modules,
which is an abelian category. Its derived categoryD(RMod) is a triangulated category. Its
full subcategory of cohomologically bounded complexes is denoted byD b(RMod) and the full
subcategory ofD b(RMod) of complexes having cohomology of �nite type overR is denoted
by D b

f t (RMod). Notice that D b(RMod), D b
f t (RMod)) are preserved under the translations

[1]; [� 1] and any arrowf : X ! Y in D b(RMod) (resp.D b
f t (RMod)) can be completed to

a distinguished triangle (X; Y; Z; f; g; h ) in D(RMod) with Z in the objects of D b(RMod)
(resp.D b

f t (RMod)). So they are triangulated subcategories ofD(RMod) with the restrictions
of f [n]gn2 Z as the translations and distinguished triangles as the triangles in it which are dis-
tinguished triangles inD(RMod) (cf.[Sta14, Tag 05QX, Tag 066R, footnote in Tag 05QM]).

2.1.1.5. Exact sequences.Recall that A denotes an abelian category. The functorC(A)
to D(A) becomes a� -functor with the following rule (cf.[Sta14, Tag 0152]). For every exact
sequence of complexes

0 ! X
f
�! Y

g
�! Z ! 0

in C(A), de�ne the arrow
� = � X ! Y ! Z : Z ! X [1]

in D(A) by

Z
q

 � Cone(f )
� p
�! X [1]

whereq : Cone(f ) ! Z denotes the arrow inC(A) which is zero onX [1] and g on Y.

Remark 2.1.1. Note that the map � associated with the exact sequence of equation (2.1.1)
satis�es

�
Y

j�! Cone(f )
p�! X [1]

= f [1] in HomD (A )(Z; X [1])

(cf.[Sta14, Tag 014I]).
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2.1.2. Perfect complexes. A complex M � of R-modules is said to beperfect if a
bounded complexP � of projective R-modules of �nite type is quasi-isomorphic to it (see
[SGA71 , p. 42{]). An R-module M is said to beperfect if it becomes perfect when con-
sidered as complex concentrated in degree zero. The derivedtensor product of a perfect
complex overR with an R-algebraR0 is perfect overR0 (by [Sta14, Tag 066W] for example).

Denote by ParfR the full subcategory of the derived category ofR-modulesD(RMod)
consisting of perfect complexes. The category ParfR is equivalent to the category ParfSpec(R)

(as in [KM76 , p. 39] for example) by [KM76 , Proposition 4].

Note that Parf R is preserved under the translations [1]; [� 1], it is a full subcategory of
the triangulated categoryD(RMod) and any arrowf : X ! Y in ParfR can be completed to
a distinguished triangle (X; Y; Z; f; g; h ) in D(RMod) with Z an object of ParfR (cf.[Sta14,
Tag 066R]). So it is a triangulated subcategory ofD(RMod) with the restrictions of f [n]gn2 Z

as the translations and its set of distinguished triangles consists of the distinguished trian-
gles inD(RMod) which are also a triangle in ParfR (cf.[Sta14, Tag 05QX, footnote in Tag
05QM]; or alternatively [Sta14, Tag 09QH, Tag 07LT]). Similarly, it is also a full triangu-
lated subcategory of the triangulated categoryD b(RMod).

A theorem of Auslander-Buchsbaum and Serre (see [BH93 , Theorem 2.2.7] or [Sta14,
Tag 066Z]) says that whenR is a regular noetherian ring, ParfR is equal toD b

f t (RMod).

Denote by Parf-isR the subcategory of ParfR consisting of all its objects and morphisms
as isomorphisms. Evidently, the set of morphisms between two objects in this category is
empty if they are not isomorphic in ParfR .

2.1.3. Graded invertible modules. We recall the notion of graded invertible modules
from [KM76 ].

The category of graded invertibleR-modules is denoted byPR . Its objects are pairs
(L; � ) where L is an invertible R-module and� is a continuous function

� : Spec(R) ! Z;

and a morphismh : (L; � ) ! (M; � ) is a homomorphism ofR-modulesh : L ! M such that
for eachp 2 Spec(R) we have

� (p) 6= � (p) ) hp = 0:

The composition of two morphisms is obtained by taking the composition of the maps
between the invertible modules. Note that the composition law indeed gives a map inPR .
Thus a morphismh : (L; � ) ! (M; � ) of graded invertible modules is an isomorphism if and
only if h : L ! M is an isomorphism and� = � .

The subcategory ofPR whose morphisms are isomorphisms is denoted byPisR . The
tensor product of two objects inPR is given by

(L; � ) 
 (M; � ) := ( L 
 M; � + � ):
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For each pair of objects (L; � ); (M; � ) in PR we have an isomorphism

 (L;� );(M;� ) : (L; � ) 
 (M; � ) ��! (M; � ) 
 (L; � )

de�ned by

 (l 
 m) = ( � 1)� (x)� (x)m 
 l for l 2 L x ; m 2 M x :

The object (R; 0) of PR will be denoted by 1. A right inverse of an object (L; � ) in PR will
be an object (L0; � 0) together with an isomorphism

� : (L; � ) 
 (L0; � 0) ��! 1:

A right inverse will be considered as a left inverse via

(2.1.2) (L0; � 0) 
 (L; � )
 ( L 0;� 0) ; ( L;� )
�������!

�
(L; � ) 
 (L0; � 0) ��!

�
1:

2.1.4. Determinant functor.
2.1.4.1. On CisR . For a commutative ring R, let CR denote the category of projective

R-modules of �nite type. Its full subcategory whose maps are isomorphisms will be denoted
by CisR .

For a projective R-moduleM of �nite type, we put

det� (M ) = ( ^ maxM; rkF )

where

(^ maxM )p = ^ rk M p M p

for any prime idealp of R. This de�nes a functor

det� : CisR ! P isR :

Moreover for every short exact sequence

0 ! F1
��! F

�
�! F2 ! 0

in CR , we have an isomorphism

i � (�; � ) : det� F1 
 det� F2
��! det� F

such that locally

i � (�; � ) (( e1 ^ � � � ^ et ) 
 (�f 1 ^ � � � ^ �f s)) = �e 1 ^ � � � ^ �e t ^ f 1 ^ � � � ^ f s

for ei (resp.f j ) in the localization of F 0 (resp.F ) at a multiplicative subset of R.
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2.1.4.2. On C� is. For a commutative ring R, let C�
R denote the category of bounded com-

plexes of objects inCR , morphisms being all maps of complexes. The full subcategory of C�
R

whose maps are quasi-isomorphisms will be denoted byC� isR .

A determinant functor from C� is to Pis, denoted (f; i ), is a collection of data as de�ned
in [KM76 , De�nition 1]. We describe some of its properties.

For each commutative ringR, this data provides a functorf R from C� isR to PisR . For
each short exact sequence

0 ! F �
1

��! F � �
�! F �

2 ! 0

in C�
R , this data provides an isomorphism

iR(�; � ) : f (F �
1 ) 
 f (F �

2 ) ��! f (F � ):

When CisR is considered as a full subcategory ofC� isR by viewing its objects ofCisR as
complexes concentrated in degree zero, we have

f (F ) = det � F

for any object F in CisR and
iR(�; � ) = i � (�; � )

for any short exact sequence

0 ! F1
��! F

�
�! F2 ! 0

in CisR .

By [KM76 , Theorem 1], a determinant functor (as in [KM76 , De�nition 1]) exists and
is unique up to canonical isomorphism. We will denote it by (det; i ).

2.1.4.3. On Parf-is. The extended determinant functor is a collection of data as de�ned
in [KM76 , De�nition 4] and by [KM76 , Theorem 2] it exists and is unique up to canonical
isomorphism. We describe some of its properties. We have

detR(0) = 1 :

For each commutative ringR, this data gives a functor detR from Parf-isR to the category
PisR . When an objectM � of Parf-isR is represented by a bounded complexP � of projective
R-modules of �nite type, i.e., P � is quasi-isomorphic toM � , we have a canonical isomorphism

detR(M � ) �= 
 n2 Z(detR(Pn )) (� 1)n

([KM76 , Rem a), p. 43]). When the cohomology modulesH n (M � ) are perfect (considered
as a complex concentrated in degree zero), there is a canonical isomorphism

(2.1.3) detR(M � ) �= 
 n2 Z(detR(H n (M � ))) (� 1)n

([KM76 , Rem b), p. 43]). If the ring R is reduced, then for a distinguished triangle

M �
1

u�! M �
2

v�! M �
3

w�! M �
1 [1]

in ParfR , we have an isomorphism

(2.1.4) iR(u; v; w) : detRM �
1 
 detRM �

3
��! detRM �

2
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which is functorial with respect to isomorphism of such triangles ([KM76 , Proposition 7]).
On bounded complexes of projectiveR-modules of �nite type, the extended determinant
functor coincides with the determinant functor given inx2.1.4.2. Moreover the extended
determinant functor satis�es the following base change property.

Proposition 2.1.2. Let � : R ! R0 be a ring homomorphism. Then for an objectM � 2
Parf-isR , we have a canonical isomorphism

(detRM � ) 
 R;� R0 �= detR0(M � L

 R;� R0):

Proof. See [KM76 , De�nition 4 II) iii), p. 42]. �

2.1.4.4. Choosing an inverse.Suppose thatR is reduced. For an objectX of ParfR , we
choose detR(X [1]) as a right inverse of detR(X ) via the map

iR(0; 0; � idX [1]) : detRX 
 detRX [1] ��! detR0 = ( R; 0)

obtained by applying [KM76 , Proposition 7] on the exact triangle

X 0�! 0 0�! X [1]
� idX [1]
����! X [1] in ParfR :

This makes detR(X [1]) into a left inverse of detR(X ) via the map in equation (2.1.2). From
now on, we will consider detR(X [1]) as both a right and a left inverse of detR X and we will
denote it by (detR X )� 1.

2.1.4.5. Determinants of perfect complexes of torsion modules.Let R be a domain and
M be a torsionR-module. Suppose thatM is perfect overR. Then

(detRM ) 
 R Frac(R) �= detFrac( R)(M 
 R Frac(R)) (by proposition 2.1.2)

= det Frac( R)(0)

= (Frac( R); 0):

Considering the image of detRM inside Frac(R) under the composite map

detRM � (detRM ) 
 R Frac(R) ' (Frac(R); 0)

and forgetting the second factor of the determinant functor, we obtain anR-submodule of
Frac(R), denoted [detRM ,! Frac(R)]. Suppose thatR is a regular ring. Then

[detRM ,! Frac(R)] = (char RM )� 1;

where
charRM =

Y

ht p=1

plength R p M p

This gives an isomorphism
detRM �= ((charRM )� 1; 0):

Since (charM; 0) is an inverse of ((charM )� 1; 0), the above isomorphism induces an isomor-
phism

(2.1.5) (detRM )� 1 �= (charRM; 0):
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2.2. Selmer complexes

2.2.1. Complex of continuous cochains. Throughout this section,T denotes a �nitely
generated module over a complete local noetherian ringR with residue �eld k and G denotes
a pro�nite group acting continuously onT. Let C �

cont (G; � ) denote the functor of continuous
cochain complex from the category ofR[G]-modules to the category of bounded below com-
plexes ofR-modules. It preserves homotopy, exact sequences and quasi-isomorphisms (see
for instance [Nek06 , Corollary 3.5.6]), and thus de�nes an exact functorR� cont (G; � ) from
the derived category ofR[G]-modules to the derived category of bounded below complexes
of R-modules.

Proposition 2.2.1. Assume thatchar(k) = p > 0. Then the functor R� cont (G; � ) takes
perfect complexes to perfect complexes. LetT be an R[G]-module which is free as anR-
module and� : R ! R0 be a ring homomorphism whereR0 is a complete local noetherian
ring and both the ringsR and R0 have �nite residue �elds. Then we have an isomorphism
between the objects in the derived category of complexes ofR0-modules:

R� cont (G; T)
L

 R;� R0 ��! R� cont (G; T 
 R;� R0):

Proof. See for instance [Nek06 , proof of proposition 4.2.9] or [Kat93 , Theorem 3.1.3] for
the perfectness of the derived functorR� cont (G; � ) and for its base change property we refer
to [SGA72 , Expos�e XVII Th�eor�eme 4.3.1]. �

2.2.2. Local conditions. Fix a rational prime p � 3 (in chapter 3 (resp. 4), we have
p � 3 by x3.2.2 (resp.x4.1.1,x4.1.2)). Let F be a number �eld andS denote a �nite set of its
places containing the places abovep1 . Denote bySf the set of non-archimedean primes in
S. Fix an algebraic closureF of F . Let FS be the maximal subextension ofF=F unrami�ed
outsideS; denoteGF;S := Gal( FS=F). Let X denote an admissible (as in [Nek06 , De�nition
3.2.1]) R[GF;S ]-module (we will consider freeR-modules with a continuous action ofGF;S ,
which are always admissible). Now for each primev 2 S �x an algebraic closureF v of Fv

and an embeddingF ,! F v extending the embeddingF ,! Fv. This de�nes a continuous
homomorphism

� v : Gv := Gal( F v=Fv) � v�! GF = Gal( F=F) ��! GF;S ;

which gives a `restriction' map

resv : C �
cont (GF;S ; X ) ! C �

cont (Gv; X ):

For future use, we recall that cdpGF;S = 2 (as p 6= 2), cdpGv = 2, cdpGv=Iv = 1 for all
�nite place v of F where cdpG denotes the cohomologicalp-dimension of a topological group
G (see for instance [Ser02, Corollary to proposition 12, x4.3], [NSW08 , Theorem 7.1.8,
proposition 8.3.18]).

Local conditionsfor X are given by a collection �(X ) = (� v(X ))v2 Sf , where each �v(X )
is a local condition atv 2 Sf , consisting of a morphism of complexes ofR-modules

i+
v (X ) : U+

v (X ) ! C �
cont (Gv; X ):

The Selmer complexassociated with the local conditions �(X ) is denoted by fR� f (GF;S ; X ; �( X ))
(abbreviated asR� f (X )) and de�ned to be the object in the derived category ofR-modules
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corresponding to the complex

C �
f (X ) := Cone

0

@C �
cont (GF;S ; X ) �

M

v2 Sf

U+
v (X )

resSf � i +
S (X )

�������!
M

v2 Sf

C �
cont (Gv; X )

1

A [� 1];

where resSf = (resv)v2 Sf , i+
S (X ) = ( i+

v (X ))v2 Sf . By equation (2.1.1), we have an exact
sequence of complexes

0 !
M

v2 Sf

C �
cont (Gv; X )

j
�! C �

f (X )[1]
p
�!

0

@C �
cont (GF;S ; X ) �

M

v2 Sf

U+
v (X )

1

A [1] ! 0

where j and p are the canonical inclusion and projection. Thei -th cohomology group of
R� f (X ) is denoted by eH i

f (X ). When X , U+
v (X ) are perfect complexes ofR-modules for all

v 2 Sf , then by x2.1.1.5, [Nek06 , Proposition 4.2.9] and [Sta14, Tag 066R],R� f (X ) is also
perfect.

We will also consider the complexes ofR-modules

C �
c;cont (X ) = Cone

0

@C �
cont (GF;S ; X )

resSf���!
M

v2 Sf

C �
cont (Gv; X )

1

A [� 1];

C �
Gr (X ) = Cone

0

B
B
@C �

cont (GF;S ; X ) �
M

v2 Sf
vjp

U+
v (X )

resSf � ( i +
v (X )) v 2 Sf ;v j p

�������������!
M

v2 Sf

C �
cont (Gv; X )

1

C
C
A [� 1]:

The objects in the derived category ofR-modules corresponding to them are denoted by
R� c;cont (GF;S ; X ), R� Gr (GF;S ; X ) (or R� c;cont (X ), R� Gr (X ), for short) respectively. Their
i -th cohomology groups are denoted byH i

c;cont (X ); H i
Gr (X ) respectively.

We are interested in the following local condition as de�nedin [Nek06 , x7.1].

De�nition 2.2.2 (Greenberg's local condition). Let X be as above. Then forv 2 Sf , the
Greenberg's local conditionfor X is given by

U+
v (X ) =

(
C �

cont (Gv=Iv; X I v ) if v - p
C �

cont (Gv; X +
v ) if v j p;

with

i+
v (X ) =

(
U+

v (X ) inf�! C �
cont (Gv; X ) if v - p

U+
v (X ) ! C �

cont (Gv; X ) if v j p;

whereX +
v denotes a choice of aGv-stableR-submodule ofX for v j p.

Proposition 2.2.3. Let X be as above. Then for a �nite placev of F not dividing p, the
complexU+

v (X ) is quasi-isomorphic to[X I v Fr v � 1���! X I v ] where Frv denotes the geometric
Frobenius element atv.

Proof. See [Nek06 , x7.2.2]. �
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CHAPTER 3

Algebraic p-adic L-functions for the Hida family for GL2(Q)

In this chapter, we construct algebraicp-adic L-functions Lalg
p;Kato (� ); Lalg

p;Gr (� ); Lalg
p0;Gr (� )

along branches of the Hida family for GL2(Q) and prove that they satisfy a perfect control
theorem at arithmetic specializations (theorem 3.3.7). The crucial step of their proof is
the recognition of the role of purity in understanding the variation of inertia invariants in
families. Since the modular Galois representations are known to be pure, this variation is
well-understood by theorem 1.2.4. In this chapter, fromx3.3, we assume throughout that
the condition 3.2.4 holds.

The local conditions used inLalg
p;Gr (� ); Lalg

p0;Gr (� ) at places` 6= p is a modi�cation U0
` (� )

of the unrami�ed condition U+
` (� ) of Greenberg (as de�ned in [Nek06 , x0.8.1] following

[Gre89, Gre91 ]). We use the local conditionU0
` (� ) in stead of U+

` (� ) as it is pointed out
in [FO12 , Remark 2.17] that the inertia invariants of a big Galois representation� may not
specialize perfectly to the inertia invariants of a specialization of � . The local condition at
p used in Lalg

p;Gr (� ) is the Greenberg's local conditionU+
p (� ) and the control theorem for

Lalg
p;Gr (� ) is obtained under thep-distinguishedness assumption 3.3.1. This assumption is

relaxed while proving the control theorem forLalg
p0;Gr (� ), whose construction uses a modi�ca-

tion U0
p(� ) of the condition U+

p (� ) as its local condition atp. The construction ofLalg
p;Kato (� )

uses no condition atp and uses the conditionU0
` (� ) at places` 6= p.

For any arithmetic specialization� of R(a) whose image is a DVR and associated ordi-
nary form is of good ordinary reduction, we show in theorem 3.4.5 that there is a canonical
isomorphism (depending only on the isomorphism in equation(3.4.3)) betweenLalg

p;Gr (T�; Iw )
and the characteristic ideal of the Pontrjagin dual of the Greenberg's Selmer group Selstr

A �; Iw

(together with a grade). This theorem is a consequence of [Kat04 , Theorem 17.4].

Using theorem 3.4.5, we prove in proposition 3.5.6 that all the cohomologies ofR� Gr (T (a)Iw )
are zero except possibly the second cohomology, which is torsion overR(a)Iw . This yields a
purely algebraic construction of an elementL alg

p (a), called the two-variable algebraicp-adic
L-function, using the \factors" of Lalg

p;Gr (T (a)Iw ) coming from R� Gr (T (a)Iw ) and the local
Euler factors. As a consequence of proposition 3.5.6, we prove in theorem 3.5.11 that the
mod p reduction of L alg

p (a) generates the characteristic ideal ofeH 2
f (T� p ;Iw ) for p varying in

a dense subset of Specarith (R(a)). In conjecture 3.5.16, we predict thatL alg
p (a) is an inte-

gral element and is an associate of the analyticp-adic L-function constructed in [EPW06 ].
When Greenberg's conjecture on vanishing of� -invariants of modular forms (with absolutely
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irreducible and p-distinguished residual Galois representation) holds, weprove this conjec-
ture in theorem 3.5.22.

The organization of this chapter is as follows. In the �rst section, we review cusp forms
and associated Galois representations. The second sectionis about Hida family of ordinary
cusp forms. In the third section, we construct algebraicp-adicL-functions and show that they
satisfy perfect control theorems. In the fourth section, werelate our construction with the
Greenberg's Selmer group. In the �nal section, we formulatea conjecture relating the two-
variable algebraicp-adic L-function L alg

p (a) with the analytic p-adic L-function constructed
in [EPW06 ]. Under Greenberg's conjecture and assumption 3.5.15, we prove it in theorem
3.5.22.

3.1. Cusp forms and associated representations

In this section, we briey recall how from a cusp formf , de�ned as a complex valued
function on the upper half plane, one obtains an automorphicrepresentation� (f ) of GL2 of
the adeles and we describe how the restriction of the Deligne's representation� f to decom-
position groups at �nite places` 6= p can be understood from the local factors of� (f ). In
the end, we describe the action of the Frobenius elements (away from p) under � f .

3.1.1. Automorphic representation attached to a cusp form. Let f be a non-
zero cusp form of levelN and weight k � 1 with nebentype character . Suppose that it
is an eigenform for everyTp with primes p - N . Let �  denote the grossencharacter de�ned
on Q� nA �

Q by restricting  to the appropriate factors of the decompositionA �
Q = Q� �

R+ �
Q

p< 1 Z �
p . Using the analogous decomposition GL2(AQ) = GL 2(Q) GL2(R)

Q
p< 1 K N

p ,
de�ne the complex valued function' f on GL2(AQ) by

' f (g) = f (g1 (i )) j (g1 ; i )� k �  (k0)

for g = g 1 k0 with  2 GL2(Q); g1 2 GL2(R); k0 2
Y

p< 1

K N
p ;

where K N
p = f ( a b

c d ) 2 GL2(Zp) : c � 0 ( mod N )g, �  on
Q

p< 1 K N
p is de�ned by ( a b

c d ) 7!

�  (a) and j (g1 ; z) = ( cz+ d)(det g1 )� 1
2 if g1 = ( a b

c d ). This function ' f is well-de�ned and
belongs to the space of functionsL2

0(GL2(Q)nGL2(AQ); �  ) ([Gel75 , x3.A]). Its translates
under the right regular action of GL2(AQ) generates an irreducible unitary representation
� (f ) = 
 0

`�1 � (f )` of GL2(AQ) ([Gel75 , Theorem 5.19]). For each prime number̀, the local
representation� ` = � (f )` of GL2(Q` ) is one of the following types ([Gel75 , Remark 5.8,
Theorem 4.21]) :

(1) Principal series. It is the irreducible representation� ` = � (�; � 0), in which GL2(Q` )
acts by right translation on the spaceB(�; � 0) of locally constant functions f :
GL2(Q` ) ! C satisfying

f
��

a b
0 a0

�
g
�

= � (a)� 0(a0)ja=a0j1=2f (g);
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where �; � 0 : Q�
` ! C� denote characters satisfying�=� 0 6= j � j � 1 and j � j =

j � j ` : Q�
` ! R�

+ is the normalized valuation (i.e., j$ ` j` = ` � 1 for any uniformizer
$ ` 2 Z` ).

(2) Twisted Steinberg representation(= special representation).

St(� ) = St 
 � � B (� j � j 1=2; � j � j � 1=2)

where� : Q�
` ! C� is a character.

(3) Supercuspidal representation.
We call them the automorphic type of� ` .

3.1.2. Galois representation attached to a cusp form. Let f be as above with
weight k � 2 andK f denote a �nite extension ofQp containing the Fourier coe�cients a` of f
for primes` - N (via i 1 and i p). Then by [Eic54, Shi58 ] (for k = 2), [ Del69, Car86 ], Ohta
et. al. (for k > 2), there exists a continuous two-dimensionalp-adic Galois representation
(with respect to i 1 and i p) V(f ) = Vp(f ) of GQ = Gal( Q=Q) over K f which is unrami�ed
outside Np and satis�es

(3.1.1) det(1� Fr `X jV(f )) = 1 � a` (f )X +  (`)`k� 1X 2

for each prime` - Np. Moreover, this representation is absolutely irreducible, by [Rib77 ,
Theorem 2.3].

Proposition 3.1.1. Let f be a cusp form as above. For a rational primè 6= p, the re-
striction V(f )` of V(f ) to the decomposition groupG` can be described in terms of the local
factor � ` of � (f ) using the local Langlands correspondence as follows.

(1) If � ` = � (�; � 0), then I ` acts on V(f )` through a �nite quotient and the semi-
simpli�cation V(f )` is isomorphic to

V(f )ss
`

��! K f 
 � j � j (1� k)=2 � K f 
 � 0j � j (1� k)=2;

thus I ` acts onV(f )` by � jZ�
`

� � 0jZ�
`

.
(2) If � ` = St( � ), then the representationV(f )` is reducible andI ` acts onV(f )` through

an in�nite quotient. There is an exact sequence ofK f [G` ]-modules

0 ! K f 
 � j � j 1� k=2 ! V (f )` ! K f 
 � j � j � k=2 ! 0:

In particular, if � is unrami�ed, then I ` acts on V(f )` through its tame quotient
I t

` = I `=I w
` , and any topological generator ofI t

` acts onV(f )` by an endomorphism
A satisfying (A � 1)2 = 0 6= A � 1. 1

(3) If � ` is supercuspidal, thenG` acts onV(f )` irreducibly and I ` acts through a �nite
quotient.

In addition, the eigenvalues of any liftg 2 G` of the FrobeniusFr ` 2 G`=I` acting of V(f )
are Weil numbers of weights

(
k � 1; k � 1 if � (f )` 6= St( � );
k � 2; k if � (f )` = St( � ):

1In (1) and (2) above, K f is assumed to contain the values of�; � 0. If this is not the case, then the
coe�cient ring of V (f ) can be extended to contain these values and then the above description of V (f )`

holds.
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Proof. For the proof see [Car86 ]. �

3.2. Hida Theory

In the late 1980's, Hida ([Hid86a, Hid86b ]) introduced the notion of universal ordinary
Hecke algebra to study ordinary cusp forms and their associated Galois representations in
p-adic families. In this section we review the necessary results of Hida theory following the
presentation of [Hid87 ] and [Nek06 , x12.7].

3.2.1. Ordinary Hecke algebras. Let p be a rational prime andO be a discrete val-
uation ring �nite and at over Zp. In other words, O is the p-adic integer ring of a �nite
extensionK of Qp in Qp.

For positive integersN and k, let Sk(� 1(N )) denote the space of cusp forms of weightk
and levelN . An element f 2 Sk(� 1(N )) has the following type of Fourier expansion:

f =
1X

n=1

an (f )qn (q = e2�i� ; � 2 H)

which allows to embedSk(� 1(N )) into the power series ringC[[q]]. De�ne Sk(� 1(N ); Z) as
the intersection ofSk(� 1(N )) with Z[[q]] insideC[[q]]. For each integerd prime to N , we can
let d act on Sk(� 1(N )) by

(3.2.1) hdi f = dk� 2f j[� ]k for any � =
�

a b
c �

�
2 � 0(N ) with � � d( mod N ):

The Hecke operatorsTn for n � 1 are endomorphisms ofSk(� 1(N )) and their e�ect on the
Fourier coe�cients can be expressed as

(3.2.2) am (Tn f ) =
X

dj(m;n )
(d;N )=1

damn=d 2 (hdi f ):

The Hecke algebrahk(� 1(N ); Z) is the subalgebra of EndC(Sk(� 1(N ))) generated overZ by
Tn for all n. De�ne a pairing

h; i : hk(� 1(N ); Z) � S k(� 1(N ); Z) ! Z by hh; f i = a1(f jh)

The following facts are known (eg. Section 1, [Hid86a ])

(1) Sk(� 1(N ); Z) is stable under the action ofhk(� 1(N ); Z),
(2) hk(� 1(N ); Z) is a commutative algebra andT1 gives the identity,
(3) the diamond operatorhni belongs tohk(� 1(N ); Z),
(4) the pairing h; i is perfect overZ,
(5) Sk(� 1(N ); Z) 
 Z C �= Sk(� 1(N )) naturally.

We put hk(� 1(N ); O) = hk(� 1(N ); Z) 
 Z O. By (4), (5) above, the algebrahk(� 1(N ); O)
is free of �nite rank over O and its rank is equal to the dimension ofSk(� 1(N )). Since
hk(� 1(N ); O) is of �nite rank over O, it is a product of �nitely many complete local ringsR
(for instance from [Eis95, Corollary 7.6, p. 188]) in a unique way. For such a local ringR,
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let 1R denote the idempotent ofR and de�ne an idempotenteN 2 hk(� 1(N ); O) by the sum
of 1R over the local ringsR on which the image ofTp is invertible. Then

hord
k (� 1(N ); O) := eN hk(� 1(N ); O)

is the product of all the local rings ofhk(� 1(N ); O) on which the image ofTp is a unit. Thus
hord

k (� 1(N ); O) is the maximal algebra direct summand ofhk(� 1(N ); O) on which the image
of Tp is a unit.

Now the pairing h; i induces bijections :

HomO-alg(hk(� 1(N ); O); Qp) $ f normalized eigenforms inSk(� 1(N ))g;(3.2.3)

HomO-alg(hord
k (� 1(N ); O); Qp) $ f normalized eigenforms inSk(� 1(N )) with i p(i � 1

1 (ap)) 2 Z
�
p g:

(3.2.4)

3.2.1.1. Ordinary forms. From now on we call a normalized eigenformf =
P

n� 1 anqn

in Sk(� 1(N );  ) to be p-ordinary (depending oni 1 and i p) if its p-th Fourier coe�cient ap

is a p-adic unit (i.e., i p(i � 1
1 (ap)) 2 Z

�
p ). According to [Wil88 , Theorem 2.2.2, p. 562], for an

ordinary form f with k � 2, there is an exact sequence ofK f [Gp]-modules

0 ! V(f )+ ! V (f ) ! V(f )� ! 0

where dimK f V(f )� = 1, V(f )+ is unrami�ed and Fr` acts on it via the uniquep-adic unit
root of X 2 � apX +  (p)pk� 1, which is ap if p j N .

We remark that the notion of ordinariness depends on the embeddings i 1 and i p. For
example, consider the newform

f = q+ �q 2 � �q 3 + ( � 2 � 2)q4 + ( � � 2 + 1) q5 � � 2q6 + � � �

in S2(� 0(389)) where� is a root ofX 3 � 4X � 2 (see [RS11, x26.1.1]). The coe�cient of q5,
(� � 2 + 1) satis�es y3 + 5y2 + 3y � 5. By Hensel's lemma, we see that it has a non-unit root
in Z5 and two conjugate roots in a quadratic extensionK of Q5 which are units in OK .

Note that the notion of ordinariness for a form inSk(� 1(Npr )) with r � 1 is independent
of r by the commutative diagram (3.2.5) below.

3.2.2. The universal ordinary Hecke algebra. From now on we suppose thatp -
N; p 6= 2 and Np � 4. For integersr � s � 1, we have the following commutative diagram
for all n � 1 (by (3.2.2)):

(3.2.5) Sk(� 1(Nps); O) //

Tn

��

Sk(� 1(Npr ); O)

Tn

��
Sk(� 1(Nps); O) //Sk(� 1(Npr ); O)

where the horizontal arrows are the natural inclusion and the left (resp., right) vertical arrow
is the Hecke operatorTn of level Nps (resp., Npr ). Then the restriction of each operator in
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hk(� 1(Npr ); O) to the subspaceSk(� 1(Nps); O) is again contained inhk(� 1(Nps); O); thus,
we have a surjectiveO-algebra homomorphism:

(3.2.6) hk(� 1(Npr ); O) ! hk(� 1(Nps); O) for each pair r � s � 1:

SinceTp goes toTp under the above map, the image ofeNp r under this map coincides with
eNps , and thus the above map induces a map

hord
k (� 1(Npr ); O) ! hord

k (� 1(Nps); O):

Taking projective limits we obtain the universal p-ordinary Hecke algebra of tame levelN ,

hord
k (Np1 ; O) = lim �

r

hord
k (� 1(Npr ); O):

Now the diamond operators areO-algebra homomorphisms

h ik;r : O[(Z=Npr Z)� ] ! hk(� 1(Npr ); O) ! hord
k (� 1(Npr ); O) for r � 1;

which upon taking limit gives the O-algebra homomorphism

h ik : O[[ZN ]] ! hord
k (Np1 ; O)

whereZN = lim �
r

(Z=Npr Z)� = (1 + pZp) � (Z=NpZ)� and O[[ZN ]] = lim �
r

O[(Z=Npr Z)� ].

Put � r = 1 + pr Zp for r � 1, � = � 1 and de�ne � = � O = O[[�]] = lim � r
O[� =� r ]. Let

� � : � ,! � � denote the canonical inclusion. The above implies thathord
k (Np1 ; O) has a

canonical �-algebra structure.

Fix a topological generator of �. For an integer k0 � 2 and a �nite order charac-
ter "0 : � ! Q

�
p with values in the ring of integersO0 of a �nite extension K 0 of K , put

Pk0;" 0 = � � ( ) � "0( ) k0� 2 2 � 0 := O0[[�]]. Note that Pk0;" 0� 0 is a prime ideal of �0 and thus
induces a prime idealPk0;" 0� 0 \ � of �.

An arithmetic prime of a �nite �-algebra A is a prime } 2 Spec(A) whose contraction
to � is of the form Pk0;" 0� 0 \ � and an arithmetic specializationof A is an O-algebra homo-
morphism A ! Qp whose kernel is an arithmetic prime. The set of arithmetic primes ofA
is denoted by Specarith (A).

Let R be a quotient ofhord
k (Np1 ; O) by a minimal prime ideal. Then Specarith (R) is an

in�nite set since R is of �nite type over �. Moreover, any in�nite subset of Specarith (R) is
dense in Spec(R) since each �bre of Spec(R) ! Spec(�) is �nite due to the integrality of R
over �.

Theorem 3.2.1.
(1) ( [Hid86a , Theorem 1.1, p. 551]) For each k � 2, we have canonicalO[[ZN ]]-algebra

isomorphism
hord

k (Np1 ; O) �= hord
2 (Np1 ; O);

which takesTm of weightk to Tm of weight 2 for allm. We use the above isomor-
phisms to identify allhord

k (Np1 ; O) (k � 2) with hord
1 := hord

2 (Np1 ; O).
(2) ( [Hid86b , Theorem 3.1]) hord

1 is free of �nite rank over � .
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(3) ( [Hid86a , Theorem 1.2]) For each k � 2 and r � 1, the surjective � -algebra ho-
momorphismshord

1
� � hord

k (Np1 ; O) ! hord
k (� 1(Npr ); O) induce � -algebra isomor-

phisms
hord

1 =(� � ( )pr � 1
�  pr � 1 (k� 2)) �= hord

k (� 1(Npr ); O)

which sendsTm to Tm for all m.

We have the following corollary of the above theorem.

Corollary 3.2.2 ([Hid88a , Corollary 3.5]). Through equation (3.2.4) and theorem 3.2.1
(3), the arithmetic primes of hord

1 of weight k � 2 are in one-to-one correspondence with
the GK -conjugacy classes ofp-ordinary forms (de�ned over Qp) in Sk(� 1(Npr )) for weight
k � 2 and r � 1 and the arithmetic specializations ofhord

1 of weightk � 2 are in one-to-one
correspondence with thep-ordinary forms in Sk(� 1(Npr )) for weight k � 2 and r � 1.

For such an eigenformf , we denote the corresponding arithmetic specialization by� f

and for such a specialization� we denote the corresponding ordinary form byf � .

3.2.3. Galois representations. Let f 2 Sk(Npr ; � ) be an ordinary normalized Hecke
eigenform of weightk � 2 such that K = Frac( O) contains all Hecke eigenvalues off and
all values of� . Assume, in addition, that f is a p-stabilized newformin the sense of [Wil88 ,
p. 538]. This means thatr � 1 and that the (necessarily ordinary) normalized newformf 0

associated withf has level divisible byN . Let } denote the arithmetic prime associated with
the GK -conjugacy class off (which is the setf f g). Then } strictly contains a prime ideala
of hord

1 , necessarily minimal. PutR(a) = hord
1 =a. Then R(a) is a domain and �nite over �.

Note that R(a) is local and denote its maximal ideal bym. Let  denote the composite map

hord
1 � hord

1 =a = R(a) ,! K ; K := Frac( R(a))

which is minimal in the sense of [Hid88a , p. 317], sincef = f } is a p-stabilized new-
form. This implies, by [Hid88a , Corollary 3.5, theorem 3.6] that the form associated
with an arithmetic specialization � whose kernel containsPk0;" 0 is a p-stabilized newform
f } 0 2 Sk0(Npr 0

; "0 0! � (k0� 2)) where r 0 denotes the smallest positive integer for which"0 fac-
tors through � =� r 0, ! denotes the Teichmuller characterZ �

p ! (Z �
p )tors ,! Q and  0 denotes

the restriction of  to (Z=NpZ)� .

Let S0 denote the set of all prime ofQ dividing Np1 . Then according to [Wil88 ,
Theorem 2.2.1], there is a unique (up to equivalence) continuous Galois representation

� : GQ;S0 ! GL2(K)

satisfying
det(1 � � (Fr ` )X ) = 1 �  (T` )X +  (h̀ i )`X 2

for all prime ` - Np whereh̀ i denotes the image of̀ under the composite map

ZN ! O [[ZN ]]
h i2��! hord

2 (Np1 ; O) = hord
1

(more precisely,� is the dual of the representation constructed in [Wil88 ], as we use the
geometric Frobenius instead of the arithmetic Frobenius).This representation is continuous
in the sense that its representation spaceV( ) is an admissibleR(a)[GQ;S0 ]-module (as in
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[Nek06 , De�nition 3.2.1]). According to [Wil88 , Theorem 2.2.2], there is an exact sequence
of K[Gp]-modules

0 ! V( )+ ! V ( ) ! V( )� ! 0;
such that eachV( )� is one dimensional overK, I p acts trivially on V( )+ and Frp acts on
V( )+ by  (Tp).

For an arithmetic specialization� of R(a), the � -specialization of the representation�
exists and is equivalent to the Deligne's representation attached to the ordinary form f �

corresponding to� (see for instance [Hid87 , p. 440]).

Proposition 3.2.3. There is a semi-simple representation� : GQ ! GL2(R(a)=m), uniquely
determined by the properties:

(1) � is unrami�ed away from Np.
(2) If ` is a prime not dividing Np then

det(1 � � (Fr ` )X ) = 1 �  (T` )X +  (h̀ i )`X 2 mod m 2 (R(a)=m)[X ]:

Proof. To construct the representation� , we choose an integral model for� over the normal-
ization of [R(a), then reduce modulo its maximal idealbm of m, take semi-simpli�cation and

descend (if necessary) from[R(a) to R(a). It has the required properties since it is obtained
from � . �

Henceforth we make the following assumption on the above residual representation.

Assumption 3.2.4. The residual representation� is absolutely irreducible.

Then by [Nys96 ], we obtain a uniquely determined representation (denotedby the same
symbol � )

(3.2.7) � : GQ;S0 ! GL2(R(a))

characterized by the following property: if` is a prime not dividing Np, then � (Fr ` ) has
trace equal toT` 2 R(a).

3.3. Algebraic p-adic L-function along branches

In this section, we construct algebraicp-adic L-functions Lalg
p;Gr , Lalg

p0;Gr , Lalg
p;Kato along ir-

reducible components of the Hida family and show that it satis�es a control theorem at
arithmetic primes.

Recall that under the assumption 3.2.4, we obtained a uniquely determined representation
� : GQ;S0 ! GL2(R(a)) in equation (3.2.7). From theorem 3.2.1, it follows thatR(a) is a
complete local domain and a �nite type �-module (using [Eis95, Corollary 7.6, p. 188] for
instance). Let m denote its maximal ideal andk denote the residue �eld. Now we de�ne
T (a) := R(a)2 with a GQ;S0 -action on it via � . Let (V; � V) = T (a) 
 R(a) K denote the
associatedGQ;S0 -representation over the fraction �eldK of R(a). Henceforth we make the
following assumption on� .

Assumption 3.3.1 (p-distinguished). The representation� is p-distinguished, i.e., the resid-
ual representation of� jGp is non-scalar.
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For a ring homomorphism� : R(a) ! R0, the � -specializationof T (a) is denoted byT�

and is de�ned to be theGQ;S0 -representationT (a) 
 R(a);� R0 with coe�cients in R0. From
now on we denote the image of an arithmetic specialization� : R(a) ! Qp by O� and
consider such maps as ring homomorphisms onto their images,i.e., as � : R(a) � O� . Thus
for an arithmetic specialization� of R(a), the � -specializationT� of T (a) will denote the
GQ;S0 -representationT (a) 
 R(a);� O� . For such a specialization, we denote byV� (resp. V 0

� )
the GQ;S0 -representationT� 
 O � Qp (resp. T� 
 O � Frac(O� )).

3.3.1. Comparing the inertia invariants.

Proposition 3.3.2. Let ` 6= p be a rational prime. For any arithmetic specialization� of
R(a), we have

rkR(a)T (a)I ` = rk O � T I `
� :

Suppose that the rank of theR(a)-module T (a)I ` is one. Then for any two arithmetic spe-
cializations �; � 0 of R(a), the representations� (� )` ; � (� 0)` are both either singly rami�ed
principal series or unrami�ed Steinberg. Moreover, the ringR(a) contains the eigenvalue�
of Fr ` acting on VI ` and Fr ` acts onT I `

� by the scalar� (� ) for any arithmetic specialization
� of R(a).

Proof. The restriction of the GQ;S0 -representationT (a) to the decomposition groupG` is
continuous and its coe�cient ring R(a) has �nite residue �eld of characteristic p 6= `. So
by theorem 1.1.25, theG` -representationT (a) is monodromic. So theorem 1.2.4 applies to
T (a). By part (5) of this theorem, we have

rkR(a)T (a)I ` = rk O � T I `
�

for any arithmetic specialization� of R(a).

Now suppose that rkR(a)T (a)I ` = 1. So

(3.3.1) rkO � T I `
� = 1

for any arithmetic specialization� of R(a). SinceV I `
� is stable underG` , the G` -representation

V� is reducible. So� (� )` is not supercuspidal by proposition 3.1.1 (3). If the monodromy of
the G` -representationT is zero, then theG` -representationT� has no monodromy and hence
� (� )` is principal series. By equation (3.3.1) and proposition 3.1.1(1), it is singly rami�ed
principal series. Similarly,� (� 0)` is also singly rami�ed principal series. On the other hand,
if the monodromy of theG` -representationT is nonzero, then theG` -representationT� has
nonzero monodromy by theorem 1.2.4(1) and hence� (� )` is Steinberg. By equation (3.3.1)
and proposition 3.1.1(2), it is unrami�ed Steinberg. Similarly, � (� 0)` is also unrami�ed Stein-
berg.

Note that � 2 K is integral over R(a). Let R(a)[� ] denote the subring ofK generated
by � over R(a). We extend each arithmetic specialization� : R(a) ! Qp to R(a)[� ] which
we denote by� by abuse of language. Notice that Fr` acts on V I `

� by � (� ) by theorem
1.2.4(6). First suppose that� (f � )` is Steinberg for any arithmetic specialization� of R(a).
By proposition 3.1.1, this eigenvalue is� � (`)`k=2� 1, and sincef � is new at ` (seex3.2.3), this
is equal toa` (f � ) by [Nek06 , 12.3.7, 12.3.8.2]. Sincea` (f � ) = � (T` ), we get � (� ) = � (T` ) for
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any arithmetic specialization� of R(a). So � = T` in R(a)[� ], i.e., � 2 R(a). Now suppose
that � (� )` is principal series for any arithmetic specialization� of R(a). Then by a similar
argument as above it follows that� 2 R(a). �

3.3.2. Control theorems. Let S denote a �nite set of rational primes including the
primes dividing Np and the archimedean prime ofQ and Sf denote its subset of �nite places.

Recall that V is reducible as aGp-representation. De�neT (a)+ to be the largestR(a)-
submodule ofT (a) on which Gp acts via the unrami�ed character " which takes Frp to Tp

and put T (a)� := T (a)=T (a)+ . For an arithmetic specialization� of R(a) we de�ne T+
� to

be the largestO� -submodule ofT� on which Gp acts via the unrami�ed character taking Frp
to ap(f � ).

Let Q1 denote the cyclotomicZp-extension ofQ which can be regarded as a union of
sequence of �elds

Q = Q0 � Q1 � � � � � Q1 = [ nQn with � n := Gal( Qn=Q) ' Z=pnZ:

We denote the Galois group Gal(Q1 =Q) by � and let  0 denote a topological generator
of �. Denote the Iwasawa algebraO[[�]] by � Iw , which is a GQ;f pg-module via the map
GQ;f pg � � ,! � �

Iw sinceQ1 is unrami�ed at primes ` 6= p. For any �nite type O-subalgebra
A of Zp, we will write � A to denote A 
 O � Iw = A[[�]]. We will consider � A as aGQ;f pg-
module via the mapGQ;f pg � � ,! � �

A . The image of an elementg 2 GQ;f pg under this map
will be denoted by [g]. The completed tensor productR(a) b
 O � Iw will be denoted byR(a)Iw .

De�ne the cyclotomic deformationT (a)Iw of T (a) as theGQ;S-representationT (a) b
 O � Iw

over R(a)Iw obtained by tensoring theGQ;S-representationsT (a) and � Iw . De�ne the Gp-
representation

T (a)+
Iw = T (a)+ b
 O � Iw :

For an arithmetic specialization� of R(a), de�ne the cyclotomic deformationT�; Iw of T�

as theGQ;S-representationT� 
 O � Iw over O� 
 O � Iw = � O � . De�ne the Gp-representation

T+
�; Iw = T+

� 
 O � Iw :

Notice that each arithmetic specialization� : R(a) ! O � of R(a) extends to a � Iw -
algebra homomorphism� b
 O id� Iw : R(a)Iw ! O � 
 O � Iw = � O � , which will be denoted by�
by abuse of language.

De�nition 3.3.3. For a complete local noetherian domainR of residue characteristicp > 0,
let GQ;S act continuously onT = R2 via a representationGQ;S ! GL2(R). Suppose that
G`=I` acts on T I ` 
 R Frac(R) by an R-valued character� ` wheneverrkRT I ` = 1 for some
` 6= p. For any prime ` 6= p, let U0

` (T) denote the object in the derived category ofR-modules
corresponding to

(
C �

cont (G`=I` ; T I ` ) if rkRT I ` 6= 1;

[R
Fr ` � 1
���! R] concentrated in degree 0,1 ifrkRT I ` = 1

whereFr ` acts onR via the character� ` .
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De�nition 3.3.4. Let � denote an arithmetic specialization ofR(a). Put

U0
p(T (a)Iw ) = R� cont (Gp; R(a)Iw )

U0
p(T�; Iw ) = R� cont (Gp; � O � )

whereGFw acts onR(a)Iw (resp. � O � ) by the character through which it acts onT (a)+
Iw (resp.

T+
�; Iw ). For T = T (a)Iw ; T�; Iw , de�ne the algebraicp-adic L-functions Lalg

p;Kato (T), Lalg
p0;Gr (T),

Lalg
p;Gr (T) as the object ofParf-isR (R = R(a)Iw ; � O � respectively) given by

Lalg
p;Kato (T) := det R(R� c;cont (GQ;S; T)[1]) 
 detR

0

B
B
@

M

`2 Sf
`6= p

U0
` (T)[1]

1

C
C
A ;

Lalg
p0;Gr (T) := det R(R� c;cont (GQ;S; T)[1]) 
 detR

0

@
M

`2 Sf

U0
` (T)[1]

1

A ;

Lalg
p;Gr (T) := det R(R� Gr (GQ;S; T)[1]) 
 detR

0

B
B
@

M

`2 Sf
`6= p

U0
` (T)[1]

1

C
C
A

respectively. In the de�nition of Lalg
p;Gr (T), we assume thatR� cont (Gp; T+ ) is a perfect com-

plex.

Before showing that the above objects are well-de�ned, we prove the lemma below.

Lemma 3.3.5. For an arithmetic specialization � of R(a), the inclusion T (a)+ ,! T (a)
induces an isomorphism between

(T (a)+ )� := T (a)+ 
 O O�

and T+
� under the assumption 3.3.1.

Proof. Note that Gp acts on T (a)+ by " and on T (a)� by (� � � � ) 0� cycl" � 1. Since �
is p-distinguished, we have dimk T (a)� =m = 1. Also dimK T (a)� 
 R K = 1. Hence by
Nakayama's lemma,T (a)� is free of rank 1, which impliesT (a)+ is also free of rank 1.
Similarly it follows that T �

� is free of rank 1. Now consider the commutative diagram below
with exact rows (the exactness of the �rst row follows from the freeness ofT (a)� and the
existence of the �rst vertical arrow follows sinceap(f � ) is equal to the image ofTp under the

composite maphord
1 ! R(a) ��! Qp).

0 //(T (a)+ )�

��

//T (a)�

o
��

//(T (a)� )�

��

//0

0 //T+
�

//T�
//T �

�
//0

Since the last vertical arrow is a surjection (by snake lemma) between free modules of rank
1 over the domainO� , it is an isomorphism. So (T (a)+ )�

��! T+
� . �
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Lemma 3.3.6. Let � denote an arithmetic specialization ofR(a). Then for T = T (a)Iw ; T�; Iw ,
the modulesLalg

p0;Gr (T) and Lalg
p;Kato (T) are well-de�ned. Moreover, when� satis�es assumption

3.3.1, Lalg
p;Gr (T) is well-de�ned for T = T (a)Iw ; T�; Iw .

Proof. Note that the rings R(a) and O� are complete local rings (by [Eis95, Corollary 7.6,
p. 188] for instance). SoR(a)Iw and � O � are complete local rings. By proposition 3.3.2, the
group G`=I` acts on T (a)I `

Iw (resp.T I `
�; Iw ) by an R(a)Iw -valued (resp. �O � -valued) character

if rkT (a)I ` = rk T (a)I `
Iw = 1 (resp. rkT I `

� = rk T I `
�; Iw = 1). So U0

` (T) is well-de�ned and by
proposition 2.2.3, it is a perfect complex for̀ 2 Sf ; ` 6= p. Then by proposition 2.2.1,
Lp;Kato (T) is well-de�ned.

The action of Gp on T (a)+ and T+
� are unrami�ed and Frp acts on them byTp 2 R(a)

and ap(f � ) = � (Tp) 2 O � respectively. So the groupGp acts onT (a)+
Iw (resp. T+

�; Iw ) by an
R(a)Iw -valued (resp. �O � -valued) character. SoU0

p(T) is well-de�ned and henceLalg
p0;Gr (T) is

well-de�ned.
Under assumption 3.3.1,R� cont (Gp; T+ ) is perfect by proposition 2.2.1 asT+ is free (by

lemma 3.3.5). SoLalg
p;Gr (T) is well-de�ned under this assumption. �

Now we prove that Lalg
p;Gr (T (a)Iw ), Lalg

p0;Gr (T (a)Iw ); Lalg
p;Kato (T (a)Iw ) satisfy perfect control

theorems at arithmetic specializations.

Theorem 3.3.7. Let � be an arithmetic specialization ofR(a). Then the isomorphisms in
propositions 2.1.2, 2.2.1, 2.2.3 induce an isomorphism

(3.3.2) Lalg
p;Gr (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p;Gr (T�; Iw )

under the assumptions 3.2.4 and 3.3.1. They also induce isomorphisms

(3.3.3) Lalg
p0;Gr (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p0;Gr (T�; Iw );

(3.3.4) Lalg
p;Kato (T (a)Iw ) 
 R(a) Iw ; � � O �

�= Lalg
p;Kato (T�; Iw )

under the assumption 3.2.4.

Proof. By proposition 2.1.2 and proposition 2.2.1, it remains to prove the control theorem
for the factors coming from \local conditions". Notice that lemma 3.3.5 gives the control of
U+

p (T (a)Iw ) and U0
p(T (a)Iw ).

So it remains to prove the control theorem at̀ 6= p, i.e., the � -specialization of detU0
` (T (a)Iw )

is detU0
` (T�; Iw ). By proposition 2.1.2, it su�ces to prove the control theorem for U0

` (T (a)Iw ).
We need to do so only when rkR(a) Iw T (a)I `

Iw = rk R(a)T (a)I ` = 1 by proposition 2.2.1 and
proposition 3.3.2. So assume thatT (a)I ` is of rank one and let Fr̀ act on it by � 2 R(a)
(by proposition 3.3.2). SinceU0

` (T (a)Iw ) is K -at by [ Sta14, Tag 064K], its derived tensor
product over R(a)Iw with � O � (through � ) is equal to the tensor product by [Sta14, Tag

06Y6], i.e., [� O �

� (� ) b
 O [Fr ` ]� 1
��������! � O � ] and this is U0

` (T�; Iw ) by proposition 3.3.2. �

Remark 3.3.8. In the �rst part of theorem 3.3.7, the assumption 3.3.1 is used only to
deduce thatT (a)+ is free which is not true in general by [Kil02 ]. When T (a)+ is not free,
the algebraicp-adic L-function Lalg

p0;Gr de�ned using the local conditionU0
p at p satis�es a

control theorem as proved in theorem 3.3.7.
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3.4. Relation with Greenberg's Selmer group

Let � be an arithmetic specialization ofR(a) such that O� is a DVR. Denote its associated
ordinary form by f .

Lemma 3.4.1. The inclusion mapT I `
� ,! T� tensored withid� Iw over O induces an isomor-

phism
T I `

� 
 O � Iw
��! T I `

�; Iw :

Thus T I `
�; Iw is free over � O � and R� cont (G`=I` ; T I `

�; Iw ) is a perfect complex over� O � . The
moduleT+

�; Iw is also free over� O � and R� cont (Gp; T+
�; Iw ) is a perfect complex over� O � .

Proof. SinceO� is a DVR, T� has a free set of generators overO� and for any such set
f e1; e2g of free generators,f e1 
 1� Iw ; e2 
 1� Iw g is a free set of generators forT�; Iw over � Iw .
Since � Iw is unrami�ed at ` 6= p, the matrices of theI ` action on T� and on T�; Iw are the
same. Thus the �rst isomorphism follows. SoT I `

�; Iw is free over � Iw and R� cont (G`=I` ; T I `
�; Iw )

is a perfect complex by proposition 2.2.3.

SinceO� is a DVR, T+
� is a freeO-module and henceT+

�; Iw is free over � Iw . The perfectness
of R� cont (Gp; T+

�; Iw ) follows by proposition 2.2.1. �

Let I denote an injective hull of the residue �eldF of � O � and DM denote the Matlis
duality functor DM (� ) = Hom � O �

(� ; I ). Since F is �nite, by [ Nek06 , x2.9] we have the
lemma below.

Lemma 3.4.2. The Pontrjagin duality functor DP (� ) = Hom cont (� ; Qp=Zp) and the Matlis
duality functor DM coincide on the category of� O � -modules.

We put

A �; Iw = DM (T�; Iw )(1); A+
�; Iw = DM (T �

�; Iw )(1); A �
�; Iw = A �; Iw =A+

�; Iw :

Greenberg [Gre89, Gre91 ] de�ned the strict Selmer group Selstr
A �; Iw

by the exact sequence

0 ! Selstr
A �; Iw

! H 1
cont (GQ;S; A �; Iw ) ! H 1

cont (Gp; A �
�; Iw ) �

M

`2 Sf ;`6= p

H 1
cont (I ` ; A �; Iw )

By [Nek06 , 8.9.6.1], we have the lemma below.

Lemma 3.4.3. Matlis duality induces an isomorphism of complexes

R� f (T�; Iw ) ��! DM (R� f (A �; Iw ))[ � 3];

which induces isomorphisms in cohomology

(3.4.1) eH i
f (T�; Iw ) ��! DM

�
eH 3� i

f (A �; Iw )
�

:

The next lemma follows from [Nek06 , Lemma 9.6.3].

Lemma 3.4.4. The following sequence is exact.

0 ! eH 0
f (A �; Iw ) ! H 0

cont (GQ;S; A �; Iw ) ! H 0
cont (Gp; A �

�; Iw ) ! eH 1
f (A �; Iw ) ! Selstr

A �; Iw
! 0
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Note that lemma 3.4.1 combined with proposition 2.2.1 and thefact that T+
�; Iw is free

of rank one over �O � shows that the algebraicp-adic L-function Lalg
p;Gr (T�; Iw ) for the GQ;S-

representationT�; Iw is well-de�ned. The following theorem describes the determinant of the
Selmer complex ofT�; Iw and its relation with the algebraicp-adic L-function Lalg

p;Gr (T�; Iw ).

Theorem 3.4.5. The Selmer complexR� f (T�; Iw ) de�ned with respect to Greenberg's lo-
cal condition 2.2.2 is a perfect complex of� O � -modules and the mapi � O �

(� ; � ; � ) (as in
equation (2.1.4)) induces an isomorphism

Lalg
p;Gr (T�; Iw ) �=

�
det� O �

R� f (T�; Iw )
� � 1

:

Suppose that the assumption 3.2.4 holds. TheneH 1
f (T�; Iw ) is a free � O � -module and

eH i
f (T�; Iw ) = 0

for any integer i < 1 and i > 2. Suppose thatp does not divide the level off . Then eH 2
f (T�; Iw )

is a torsion � O � -module and eH 1
f (T�; Iw ) is zero. The surjective map

eH 1
f (A �; Iw ) � Selstr

A �; Iw

as in Lemma 3.4.4 induces an injective map

(3.4.2) DP

�
Selstr

A �; Iw

�
,! eH 2

f (T�; Iw )

with �nite cokernel. Consequently we get a canonical isomorphism

Lalg
p;Gr (T�; Iw ) �= (char� O �

DP (Selstr
A �; Iw

); 0)

using equations(2.1.3), (2.1.5) and (3.4.2).

Proof. By lemma 3.4.1, proposition 2.2.1 and [Sta14, Tag 066R], it follows that R� f (T�; Iw )
is a perfect complex of �O � -modules.

Since � O � is reduced, by equation (2.1.4) we have an isomorphism

i � O �
(j; p; (resSf � i+

S (T�; Iw ))[1]) : Lalg
p;Gr (T�; Iw ) ��! det� O �

(R� f (T�; Iw )[1]) =
�

det� O �
R� f (T�; Iw )

� � 1
;

(this isomorphism depends on the choice of an isomorphism

(3.4.3) T I `
�; Iw

��! � O �

if rk � O �
T I `

�; Iw = 1 for some` 6= p).
As assumption 3.2.4 holds, by [FO12 , Proposition 2.25],

(3.4.4) eH i
f (T�; Iw ) = 0

for i < 0 and i > 2.
Let x denote the element 0 � 1 2 � O � and y denote an uniformizer ofO� . We now prove

that eH 1
f (T�; Iw ) is free by �rst showing that it does not have anyx-torsion and then showing

that eH 1
f (T�; Iw )=x does not have anyy-torsion.
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SinceT I `
� ; T+

� are free overO� , they are at over O. So by [Nek06 , Proposition 3.4.2],
[Wei94 , Ex 1.2.4], we have an exact sequence

(3.4.5) 0! C �
f (T�; Iw ) x�! C �

f (T�; Iw ) ! C �
f (T� ) ! 0

obtained from the exact sequence 0! � Iw
x�! � Iw ! O ! 0. Hence eH 0

f (T� ) surjects to
eH 1

f (T�; Iw )[x]. On the other hand, sinceT� is irreducible as aGQ;S-representation, we �nd
eH 0

f (T� ) = 0. So eH 1
f (T�; Iw ) does not have anyx-torsion.

Now we will show that eH 1
f (T� ) does not have anyy-torsion wherey denotes an uniformizer

of O� . By [Nek06 , 6.1.3.2], we obtain an exact sequence ofO� -modules

0 ! H 0
cont (Gp; T �

� ) ! eH 1
f (T� ) ! H 1

cont (GQ;S; T� );

which gives the exact sequence

0 ! H 0
cont (Gp; T �

� )[y] ! eH 1
f (T� )[y] ! H 1

cont (GQ;S; T� )[y]:

As H 0
cont (Gp; T �

� )[y] is zero, the map

eH 1
f (T� )[y] ! H 1

cont (GQ;S; T� )[y]

is injective. Since the assumption 3.2.4 holds, we haveH 0
cont (GQ;S; T� =y) = f 0g. Then the

long exact sequence of cohomologies associated to the exactsequence

0 ! T�
y
�! T� ! T� =y ! 0

gives
H 1

cont (GQ;S; T� )[y] = f 0g:

So eH 1
f (T� )[y] = f 0g.

From the exact sequence 3.4.5 above, we �nd thateH 1
f (T�; Iw )=x injects into eH 1

f (T� ). So
eH 1

f (T�; Iw )=x is y-torsion free. We have also seeneH 1
f (T�; Iw ) does not have anyx-torsion. Thus

x; y is a regular sequence for the �O � -module eH 1
f (T�; Iw ). So depth� O �

eH 1
f (T�; Iw ) = 2. Thus

pd� O �

eH 1
f (T�; Iw ) = 0 (by [ Mat89 , Theorem 19.1] and henceeH 1

f (T�; Iw ) is projective. So it is
free over � O � (by [Mat80 , Proposition 3.G]).

Since DM (� ) is an exact functor (by [Nek06 , x2.3.1]), lemma 3.4.4 gives the exact
sequence of �O � -modules below.

0 ! DM (Selstr
A �; Iw

) ! DM ( eH 1
f (A �; Iw )) ! DM (H 0

cont (Gp; A �
�; Iw )) :

Using lemma 3.4.2 and 3.4.3, we obtain the exact sequence

0 ! DP (Selstr
A �; Iw

) ! eH 2
f (T�; Iw ) ! DP (H 0

cont (Gp; A �
�; Iw ))

of � O � -modules. Now sincef is p-ordinary, ap(f ) is a p-adic unit. Also the level of f
is not divisible by p. So f is of good ordinary reduction. Hence by [Kat04 , Theorem
17.4], the Pontrjagin dual of Selstr

A �; Iw
is a torsion � O � -module. Sincep does not divide the

level of f , � (f )p is principal series by [Nek06 , Lemma 12.5.4]. So the Pontrjagin dual of
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H 0
cont (Gp; A �

�; Iw ) is �nite. Thus by the above exact sequence,eH 2
f (T�; Iw ) is a torsion � O � -

module and the injective map

DP (Selstr
A �; Iw

) ,! eH 2
f (T�; Iw )

has �nite cokernel.
Since eH 2

f (T�; Iw ) is a torsion � O � -module, by [Nek06 , Theorem 7.8.6,x4.6.5.6], the �O � -

module eH 1
f (T�; Iw ) has rank zero and hence zero (as it is free). So we have

Lalg
p;Gr (T�; Iw ) �= (det� O �

R� f (T�; Iw )) � 1 (using theorem 3.4.5)

�= 
 n2 Z(det� O �
( eH n

f (T�; Iw ))) (� 1)n � 1
(by equation (2.1.3))

�= (det� O �
( eH 2

f (T�; Iw ))) � 1 (using theorem 3.4.5)

�= (char� O �
eH 2

f (T�; Iw ); 0) (from equation (2.1.5))

= (char � O �
DP (Selstr

A �; Iw
); 0) (using equation (3.4.2)):

In the above, the last equality follows as the map in equation(3.4.2) has �nite cokernel
and

length(� O � )p
M p = 0

for any height one primep of � O � and a � O � -module M of �nite cardinality. The �rst
isomorphism above depends only on the choice of the isomorphisms in equation (3.4.3), the
rest of the above isomorphisms are canonical. �

3.5. Cohomologies of R� Gr (� ), R� f (� ) and L alg
p (a)

In this section we assume throughout that the assumptions 3.2.4, 3.3.1 hold. For a
domain R, its integral closure in its fraction �eld is denoted byRint . Until the end of this
chapter, the symbol� (resp. � ) will be used to denote arithmetic specializations (resp.Zp-
specializations,i.e., O-algebra maps fromR(a) to Zp) of R(a). We de�ne O� ; T� in the same
way O� ; T� was de�ned. Put

T+
� := T (a)+ 
 O O� ; T �

� := T (a)� 
 O O� ;

(cf. lemma 3.3.5). We de�neT�; Iw ; T+
�; Iw in the same wayT�; Iw ; T+

�; Iw was de�ned. Put

T� int = T� 
 O � O int
� ;

T+
� int = T+

� 
 O � O int
� ;

T� int ;Iw = T� int b
 O � Iw ;

T+
� int ;Iw = T+

� int
b
 O � Iw :

Note that � extends to anOK -algebra homomorphismR(a) int ! Zp, which we denote
by � again by abuse of notation. Denote a uniformizer ofO int

� by $ int and let k� denote the
residue �eld O int

� =$ � .
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3.5.1. Some preliminary results. We begin with a general fact about group repre-
sentations.

Proposition 3.5.1. Let A be a ring,m be a maximal ideal ofA, G be a group andM be an
A[G]-module such thatM=mM is a semi-simpleA[G]-module. ThenM G 6= 0 only if M G is
contained in mnM for all n � 0 or the trivial representation is a sub-object ofM=mM .

Proof. Denote by k the residue �eld A=m. If M G is contained inmnM for all n � 0, then
there is nothing to prove. Suppose that this not true. So there is an elementx 2 M G

and an integer n � 0 such that x belongs to mnM , but not to mn+1 M . The k-vector
spacems=ms+1 
 A M is, ask[G]-module, a direct sum of copies of thek[G]-module M=m
and thus semi-simple. Hence,msM=ms+1 M is the quotient of a semi-simplek[G]-module
and so semisimple as well. Letx be the (nonzero) image ofx in msM=ms+1 M . The k[G]-
module msM=ms+1 M admits the nonzero submodulek � x as a sub-k[G]-module and so
admits the trivial representation as a submodule. The trivial module occurs in a quotient
of a semi-simplek[G]-moduleN only if it occurs in N . So the trivial k[G]-module occurs in
ms=ms+1 
 A M and thus in M=m. �

Lemma 3.5.2. Let ` 6= p be a rational prime. Then for almost all� ,

rkT (a)I ` = rk T I `
� :

Suppose thatrkT (a)I ` is one. Then Fr ` acts on T (a)I ` by an element� ` of R(a). If the
above equality holds for an� , then Fr ` acts onT I `

� by � (� ` ).

Proof. By proposition 1.2.5, for any� ,

rkT (a)I ` � rkT I `
� :

By theorem 1.2.3, this is an equality for almost all� . Now suppose that rkT (a)I ` is one.
Then � ` is an element ofR(a) by proposition 3.3.2. The rest follows from theorem 1.2.3.�

For each arithmetic primep of R(a), we �x an arithmetic specialization � p of R(a) with
p as its kernel.

Lemma 3.5.3. ReplacingK (as in the beginning ofx3.2.1) by a �nite extension (if neces-
sary), we may assume that the set of arithmetic primesp of R(a) satisfying the conditions
below is dense inSpec(R(a)).

(1) the ordinary form associated with� p has level not divisible byp,
(2) O� p is a DVR.

Proof. Let Specarith
0 (R(a)) denote the set of arithmetic primes ofR(a) which contain ( �

(1 + p)k) for some k � 3 and k � 2 modp � 1. Note that Specarith
0 (R(a)) is dense in

Spec(R(a)) and the ordinary forms associated with the elements of Specarith
0 (R(a)) are of

level N by x3.2.3.
Recall that O denotes the ring of integers ofK . Then extendingK if necessary, it follows

that the elements of Specarith
0 (R(a)) that are kernels ofO-valued arithmetic specializations

of R(a) form a dense subset

D = f kerg \ R(a) j g 2 HomO-alg(R(a) int ; O)g \ Specarith
0 (R(a))

of Spec(R(a)) (the proof is same as the proof of [Hid88b , (3.1b) p. 26]). �
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Henceforth we assume thatK is so chosen that the arithmetic primesp of R(a) satisfying
the conditions of the above lemma form a dense subset of Spec(R(a)).

Let O0 denote a �nite type Zp-subalgebra ofZp. Let T be a freeO0-module of rank two
with a continuous action ofGQ;S. Put

TIw = T b
 O � Iw :

Let T+ be anO0-submodule ofT of rank one which is a direct summand ofT and is stable
under the action ofGp and this action is unrami�ed.

Lemma 3.5.4. Suppose thatO0 is a DVR and the residual representation attached to the
GQ;S-representationT is irreducible. Then eH 1

f (TIw ) is a free � O0-module.

Proof. SinceT is residually irreducible,TGQ;S is zero by proposition 3.5.1. So the proof of
the freeness ofeH 1

f (T�; Iw ) over � O � (as in theorem 3.4.5) withO� , T�; Iw replaced byO0, TIw

respectively proves this lemma.
�

Lemma 3.5.5. Suppose thatO0 is a DVR and eH 1
f (TIw ) is zero. ThenTG`

Iw is zero for any
` 6= p and

char� O 0H
2
Gr (TIw ) =

� Y

`2 Sf ;`6= p;
rk T I ` � 1

Det
�

(Fr ` � id)j
T

I `
Iw

� �
char� O 0

eH 2
f (TIw )

whereDet(� ) denotes the determinant of a linear operator on a free module.

Proof. Since for anỳ 6= p, the image of̀ in 1+ pZp under the projection mapZ �
p ! 1+ pZp

is non-trivial, the group TG`
Iw vanishes for anỳ 6= p. The exact sequence

0 ! C �
Gr (TIw ) ! C �

f (TIw ) !
M

`2 Sf ;`6= p

U+
` (TIw ) ! 0

of complexes of �O0-modules gives the short exact sequence

0 !
M

`2 Sf ; `6= p; rk T
I `
Iw � 1

T I `
Iw =(Fr ` � id) ! H 2

Gr (TIw ) ! eH 2
f (TIw ) ! 0

(by proposition 2.2.3). So the sequence

0 !
M

`2 Sf ; `6= p; rk T I ` � 1

T I `
Iw =(Fr ` � id) ! H 2

Gr (TIw ) ! eH 2
f (TIw ) ! 0

is exact. SinceTG`
Iw = 0 for ` 6= p, the second term in the above sequence is torsion. Since

eH 1
f (TIw ) is zero, by [Nek06 , Theorem 7.8.6,x4.6.5.6], eH 2

f (TIw ) is torsion. SoH 2
Gr (TIw ) is

torsion. Hence the lemma follows. �
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3.5.2. R� Gr (T (a)Iw ) and L alg
p (a). For each arithmetic specialization� of R(a), its

kernel will be denoted byp� . Pick x � 2 R(a) such that it generates the maximal ideal of
R(a)p� . The kernel of the map� = � b
 O id� Iw : R(a)Iw ! � O � will be denoted byq� . We put

V 0
� = T� 
 O � Frac(O� );

(V 0
� )+ = T+

� 
 O � Frac(O� ):

Proposition 3.5.6. The R(a)Iw -modules eH 1
f (T (a)Iw ), eH 2

f (T (a)Iw ), H 2
Gr (T (a)Iw ) are torsion,

eH i
f (T (a)Iw ) = 0

for any integer i < 1 and i > 2 and

H i
Gr (T (a)Iw ) = 0

for any integer i 6= 2.

Proof. By [FO12 , Proposition 2.25],

eH i
f (T (a)Iw ) = 0

for any integer i < 1 and i > 2.
Let � be such that the conditions of lemma 3.5.3 are satis�ed. By theorem 1.2.4(5)

0 ! T (a)I `
p�

x ��! T (a)I `
p�

��! (V 0
� )I ` ! 0

is an exact sequence. The sequence

0 ! T (a)+
p�

x ��! T (a)+
p�

��! (V 0
� )+ ! 0

is also exact by lemma 3.3.5.
Since

0 ! C �
f ((T (a)Iw )q� )

x � b
 1
���! C �

f ((T (a)Iw )q� ) ��! C �
f ((V 0

� )Iw ) ! 0

is an exact sequence of complexes, we get an injection

eH 1
f ((T (a)Iw )q� )=x� b
 1 ,! eH 1

f ((V 0
� )Iw ):

So by theorem 3.4.5
eH 1

f (T (a)Iw )q� =x� b
 1 = 0:

By Nakayama's lemma,
eH 1

f (T (a)Iw )q� = 0

and hence eH 1
f (T (a)Iw ) is a torsion R(a)Iw -module. By [Nek06 , Theorem 7.8.6,x4.6.5.6],

eH 2
f (T (a)Iw ) is also a torsionR(a)Iw -module. This completes the proof of the statements

about the cohomology ofR� f (T (a)Iw ).
We have an exact sequence of complexes ofR(a)Iw -modules

0 ! C �
Gr (T (a)Iw ) ! C �

f (T (a)Iw ) !
M

`2 Sf ;`6= p

U+
` (T (a)Iw ) ! 0

(with maps induced by inclusion and projection). This shows

H i
Gr (T (a)Iw ) = 0
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for any integer i � 0 and i � 3. Also there is an injection

H 1
Gr (T (a)Iw ) ,! eH 1

f (T (a)Iw )

and henceH 1
Gr (T (a)Iw ) is a torsion R(a)Iw -module. By [Nek06 , Theorem 7.8.6,x4.6.5.6],

H 2
Gr (T (a)Iw ) is also a torsionR(a)Iw -module. Now it remains to show thatH 1

Gr (T (a)Iw ) is
torsion free. Letx be an element ofR(a)Iw . De�ne

(T (a)Iw =x)+ = T (a)+
Iw =x:

We have an exact sequence of complexes

0 ! C �
Gr (T (a)Iw ) x�! C �

Gr (T (a)Iw ) ! C �
Gr (T (a)Iw =x) ! 0;

which gives a surjective map

H 0
Gr (T (a)Iw =x) � H 1

Gr (T (a)Iw )[x]:

Since

0 ! H 0
Gr (T (a)Iw =x) ! H 0

cont (GQ;S; T (a)Iw =x)� H 0
cont (Gp; (T (a)Iw =x)+ ) !

M

`2 Sf

H 0
cont (G` ; T (a)Iw =x)

is an exact sequence and
H 0

cont (GQ;S; T (a)Iw =x) = 0
(by proposition 3.5.1), we get

H 0
Gr (T (a)Iw =x) = 0 :

SoH 1
Gr (T (a)Iw ) is torsion free. �

Proposition 3.5.7. There exist non-negative integersnm ; nm+1 ; � � � ; n1; n2 and matricesdi

in M n i � n i � 1 (R(a)Iw ), i = m; m + 1; � � � ; 0; 1 such that there is an isomorphism

R� Gr (T (a)Iw ) ' [R(a)nm
Iw

dm

�! R(a)nm +1
Iw

dm +1

���! � � � d0

�! R(a)n1
Iw

d1

�! R(a)n2
Iw ]

in the categoryParfR(a) Iw (the term R(a)n j
Iw is concentrated in degreej ). The R(a)Iw -module

H 2
Gr (T (a)Iw ) is perfect.

Let � be arbitrary. The isomorphism in proposition 2.2.1 together with the above isomor-
phism induces an isomorphism

R� Gr (T�; Iw ) ' [� nm
O �

� (dm )
���! � nm +1

O �

� (dm +1 )
����! � � �

� (d0 )
���! � n1

O �

� (d1 )
���! � n2

O �
]

in the categoryParf � O �
(the term � n j

O �
is concentrated in degreej ). The composite map

H 2
Gr (T (a)Iw ) 
 R(a) Iw ;� � O �

��!
�
R(a)n2

Iw =Im(d1)
�


 R(a) Iw ;� � O � ' � n2
O �

=Im(� (d1)) � � H 2
Gr (T�; Iw )

is an isomorphism. Moreover the inclusion mapO� ! O int
� induces an isomorphism

H 2
Gr (T�; Iw ) 
 � O �

� O int
�

' H 2
Gr (T� int ;Iw ):

Proof. SinceT (a)+
Iw is a freeR(a)Iw -module, the complexR� cont (Gp; T (a)+

Iw ) is perfect by
proposition 2.2.1. SoR� Gr (T (a)Iw ) is a perfect complex ofR(a)Iw -modules by [Sta14, Tag
066R]. Hence it has perfect amplitude contained in an interval [m; m0], i.e., it is isomorphic
to a bounded complexP � of projective R(a)Iw -modules of �nite type (hence free of �nite
rank by [Mat80 , Proposition 3.G] asR(a)Iw is local) with P i = 0 for every i < m and
i > m 0. If m0 � 2, then automatically R� Gr (T (a)Iw ) has perfect amplitude contained in
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[m; 2]. When m0 > 2, by [Nek06 , x4.2.8],R� Gr (T (a)Iw ) has perfect amplitude contained in
[m; 2] as

H i
Gr (T (a)Iw ) = 0

for all i � 3. So the �rst isomorphism follows. Then proposition 2.2.1 gives

R� Gr (T�; Iw ) ' R� Gr (T (a)Iw )
L

 R(a) Iw ;� � O � :

So

R� Gr (T�; Iw ) ' [R(a)nm
Iw

dm

�! R(a)nm +1
Iw

dm +1

���! � � � d0

�! R(a)n1
Iw

d1

�! R(a)n2
Iw ]

L

 R(a) Iw ;� � O � :

As the complex [R(a)nm
Iw

dm

�! R(a)nm +1
Iw

dm +1

���! � � � d0

�! R(a)n1
Iw

d1

�! R(a)n2
Iw ] is K -at (by [ Sta14,

Tag 064K]), its derived tensor product with � O � is equal to the tensor product by [Sta14,
Tag 06Y6]. Thus we get the second isomorphism. The third isomorphism follows from the
�rst two. Since

R� Gr (T� int ;Iw ) ' R� Gr (T�; Iw )
L

 O � O int

�

(by proposition 2.2.1), the second isomorphism gives the �nal isomorphism. �

Remark 3.5.8. From the above proposition, it is not clear ifH 1
Gr (T�; Iw ) is zero (at least for

some� ) because taking cohomology does not commute with taking derived (or usual) tensor
product in general. For example, the complex

C � = Zp[[X ]]

0

@ p
� X

1

A

�����! Zp[[X ]]2

0

@� pX � p2

X 2 pX

1

A

����������! Zp[[X ]]2

is exact at the middle term (cf.[FO12 , Remark 2.17]). But for each integerk � 2,

C � L

 Zp [[X ]]Zp[[X ]]=(X + 1 � (1 + p)k) = C � 
 Zp [[X ]] Zp[[X ]]=(X + 1 � (1 + p)k)

is not exact at the middle term. However applying the Euler-Poincare characteristic formula
([Nek06 , Theorem 7.8.6,x4.6.5.6]) twice and using the above proposition, we deduce in
theorem 3.5.10 thatH 1

Gr (T�; Iw ) is zero for almost all� . Under Greenberg's conjecture (which
is equivalent to conjecture 3.5.21 by [EPW06 , Theorem 1]),H 1

Gr (T�; Iw ) is zero for any� (by
lemma 3.5.14 and theorem 3.5.22).

By proposition 3.5.6 and 3.5.7,H 2
Gr (T (a)Iw ) is torsion and perfect overR(a)Iw . So

detR(a) Iw H 2
Gr (T (a)Iw ) is well-de�ned. Its image in Frac(R(a)Iw ) (considered without the

grade) under the composite map

detR(a) Iw H 2
Gr (T (a)Iw ) ,!

�
detR(a) Iw H 2

Gr (T (a)Iw )
�


 R(a) Iw Frac(R(a)Iw )
�= detFrac( R(a) Iw )

�
H 2

Gr (T (a)Iw ) 
 R(a) Iw Frac(R(a)Iw )
�

(by proposition 2.1.2)

= det Frac( R(a) Iw )(0)

= (Frac( R(a)Iw ); 0)

is an invertible ideal of Frac(R(a)Iw ). SinceR(a)Iw is local, this image is free (by [Mat80 ,
Proposition 3.G]) and hence equal to (�=� )R(a)Iw for some nonzero elements�; � in R(a)Iw .
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Note that �=� 2 R(a) int
Iw = ( R(a)Iw ) int (this equality holds asR(a) int is �nitely generated as

an R(a)-module by [Ser00, Proposition 11, Chapter III]). Put

� Eul =
Y

`2 Sf ;`6= p;
rk T (a) I ` � 1

Det
�

(Fr ` � id)j
T (a)

I `
Iw 
 Frac( R(a) Iw )

�
2 R(a)Iw n f 0g

where Det(� ) denotes the determinant of a linear operator on a free module.

De�nition 3.5.9. The two-variable algebraicp-adic L-function of T (a)Iw is de�ned to be

L alg
p (a) =

�
�� Eul

2 Frac(R(a)Iw ):

3.5.3. R� f (T�; Iw ); R� Gr (T�; Iw ).

Theorem 3.5.10. For any � ,
TG`

�; Iw = 0
for any ` 6= p,

(3.5.1) rk eH 1
f (T�; Iw ) = rk eH 2

f (T�; Iw ) = rk H 1
Gr (T�; Iw ) = rk H 2

Gr (T�; Iw );

eH i
f (T�; Iw ) = H i

Gr (T�; Iw ) = 0

for any integer i < 1 and i > 2. The � O � -moduleH 1
Gr (T�; Iw ) is torsion free, the� O int

�
-module

H 1
Gr (T� int ;Iw ) is torsion free and

(3.5.2) eH 1
f (T�; Iw ) = 0 = ) H 1

Gr (T�; Iw ) = 0 () H 1
Gr (T� int ;Iw ) = 0 () eH 1

f (T� int ;Iw ) = 0 :

If the group H 1
Gr (T�; Iw ) is zero, then H 2

Gr (T�; Iw ) is perfect. For almost all � , the group
H 1

Gr (T�; Iw ) is zero.

Proof. The �rst equality follows from lemma 3.5.5. Note that

(3.5.3) 0! C �
Gr (T�; Iw ) ! C �

f (T�; Iw ) !
M

`2 Sf ;`6= p

U+
` (T�; Iw ) ! 0

is an exact sequence of complexes of �O � -modules. By [FO12 , Proposition 2.25],

eH i
f (T�; Iw ) = 0

for any integer i < 1 and i > 2. So for any such integeri , H i
Gr (T�; Iw ) is also zero. Then

equation (3.5.3) gives the exact sequence of �O � -modules below.
(3.5.4)

0 ! H 1
Gr (T�; Iw ) ! eH 1

f (T�; Iw ) !
M

`2 Sf ;
`6= p

H 1
cont (Fr ` ; T I `

�; Iw ) ! H 2
Gr (T�; Iw ) ! eH 2

f (T�; Iw ) ! 0

Using [Nek06 , Theorem 7.8.6,x4.6.5.6], we obtain equation (3.5.1).
Now we prove thatH 1

Gr (T�; Iw ) is torsion free. Letx be an element of �O � . De�ne

(T�; Iw =x)+ = T+
�; Iw =x:

We have an exact sequence of complexes

0 ! C �
Gr (T�; Iw ) x�! C �

Gr (T�; Iw ) ! C �
Gr (T�; Iw =x) ! 0;
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which gives a surjective map

H 0
Gr (T�; Iw =x) � H 1

Gr (T�; Iw )[x]:

Since

0 ! H 0
Gr (T�; Iw =x) ! H 0

cont (GQ;S; T�; Iw =x) � H 0
cont (Gp; (T�; Iw =x)+ ) !

M

`2 Sf

H 0
cont (G` ; T�; Iw =x)

is an exact sequence and

H 0
cont (GQ;S; T�; Iw =x) = 0

(by proposition 3.5.1), we get

H 0
Gr (T�; Iw =x) = 0 :

This proves

H 1
Gr (T�; Iw )[x] = 0:

A similar argument also shows that the �O int
�

-moduleH 1
Gr (T� int ;Iw ) is torsion free.

Equation (3.5.4) above gives the �rst implication of equation (3.5.2). The second impli-
cation follows from the �nal isomorphism of proposition 3.5.7 and [Nek06 , Theorem 7.8.6,
x4.6.5.6]. Then lemma 3.5.4 and equation (3.5.4) give the �nal implication of equation
(3.5.2).

If H 1
Gr (T�; Iw ) is zero, thenH 2

Gr (T�; Iw ) is perfect by proposition 3.5.6. For almost all� ,
H 2

Gr (T�; Iw ) is torsion by this proposition. So by [Nek06 , Theorem 7.8.6,x4.6.5.6],H 1
Gr (T�; Iw )

is also torsion. Thus for almost all� , H 1
Gr (T�; Iw ) is zero being torsion free. �

Theorem 3.5.11. Let � be such that the following conditions hold.

(1) � (�=� ) 6= 0,
(2) H 1

Gr (T�; Iw ) is zero,
(3) for all ` 2 Sf ; ` 6= p,

rkT (a)I ` = rk T I `
� :

Then

(3.5.5) char� O int
�

H 2
Gr (T� int ;Iw ) = � (�=� )� O int

�

and

(3.5.6) eH 1
f (T� int ;Iw ) = 0 ; eH 2

f (T� int ;Iw ) 
 � O int
�

Frac(� O int
�

) = 0 :

Consequently

(3.5.7) char� O int
�

eH 2
f (T� int ;Iw ) = � (L alg

p (a))� O int
�

and � (L alg
p (a)) belongs to� O int

�
. For almost all � , the �rst three conditions hold.
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Proof. By theorem 3.5.10, det� O �
H 2

Gr (T�; Iw ) is well-de�ned. Its image in Frac(� O � ) (con-
sidered without the grade) under the composite map

det� O �
H 2

Gr (T�; Iw ) ,!
�

det� O �
H 2

Gr (T�; Iw )
�


 � O �
Frac(� O � )

�= detFrac(� O � )

�
H 2

Gr (T�; Iw ) 
 � O �
Frac(� O � )

�
(by proposition 2.1.2)

= det Frac(� O � )(0)

= (Frac(� O � ); 0)

is equal to � (�=� )� O � (by proposition 3.5.7). Then by proposition A.5.1,

� (�=� )� O int
�

= char � O int
�

�
H 2

Gr (T�; Iw ) 
 � O �
� O int

�

�
:

Using proposition 3.5.7 again, we get equation (3.5.5).

By theorem 3.5.10,H 2
Gr (T�; Iw ) is torsion. So by proposition 3.5.7,H 2

Gr (T� int ;Iw ) is torsion
and hence by [Nek06 , Theorem 7.8.6,x4.6.5.6],H 1

Gr (T� int ;Iw ) is also torsion. Since it is tor-
sion free (by theorem 3.5.10), it is zero. Then theorem 3.5.10 showseH 1

f (T� int ;Iw ) is zero. Then

by [Nek06 , Theorem 7.8.6,x4.6.5.6], eH 2
f (T� int ;Iw ) is torsion over � O int

�
. This proves equation

(3.5.6). Equation (3.5.7) follows from equation (3.5.5), lemma 3.5.2 and lemma 3.5.5.

The �rst condition of the above theorem is immediate for almost all � . The second and
the third condition hold for almost all � by theorem 3.5.10 and lemma 3.5.2 respectively.�

3.5.4. R� Gr (� Iw ). Let S0 denote the set of places ofQ containing p;1 and the places
of rami�cation of � . Put

� + = T (a)+ 
 R(a) k:

Let � Iw denote theGQ;S0 -representation de�ned by

� Iw = � 
 k k[[Gal(Q1 =Q)]]:

De�ne
� +

Iw = � + 
 k k[[Gal(Q1 =Q)]]:

Remark 3.5.12. Let S0denote a �nite set of places ofQ containingS0. The i -th cohomology
of R� Gr (GQ;S0; � Iw ) is denoted byH i

Gr (S
0; � Iw ). When we are interested in the rank or the

triviality of H 1
Gr (S

0; � Iw ), we denote it by H 1
Gr (� Iw ). By lemma 3.5.13, this does not cause

any confusion.

Lemma 3.5.13. Let S0 denote a �nite set of places ofQ containing S0. Then H 1
Gr (S

0; � Iw )
is free overk[[T]] and there exists an exact sequence of complexes

(3.5.8) 0! C �
Gr (GQ;S0; � Iw ) ! C �

Gr (GQ;S0 ; � Iw ) !
M

`2 S0nS0

C �
ur (G` ; � Iw ) ! 0:

Consequently
rkk[[T ]]H 1

Gr (S
0; � Iw ) = rk k[[T ]]H 1

Gr (S0; � Iw ):
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Proof. The �rst exact sequence follows from [Nek06 , Proposition 7.8.8]. Since no power of
Fr ` is one in � Iw , equation (3.5.8) gives the exact sequence

0 ! H 1
Gr (S

0; � Iw ) ! H 1
Gr (S0; � Iw ) ! � I `

Iw =(Fr ` � 1)

whose last term is torsion overk[[T]]. This proves the lemma. �

Lemma 3.5.14. For any � ,

rkk[[T ]]H 1
Gr (� Iw ) = rk k� [[T ]]H 1

Gr (T� int ;Iw )=$ � + rk k� [[T ]]H 2
Gr (T� int ;Iw )[$ � ]:

Proof. This follows from the exact sequence

0 ! C �
Gr (T� int ;Iw )

! ��! C �
Gr (T� int ;Iw ) ! C �

Gr (� Iw 
 k[[T ]] k� [[T]]) ! 0:

�

3.5.5. A main conjecture. By theorem 3.5.11, for almost allp 2 D (D as in the proof
of lemma 3.5.3), we get

char� O � p

eH 2
f (T� p ;Iw ) = � p(L alg

p (a))� O � p
:

On the other hand, by [EPW06 ], there exists an elementLan
p (a) in R(a)Iw which interpolates

the analytic p-adic L-function of f � p (computed with respect to certain period) forp 2
Specarith (R(a)). Suppose that the conditions below hold.

Assumption 3.5.15.

(1) The assumptions 3.2.4 and 3.3.1 hold.
(2) The character  0 (as in x3.2.3) is trivial.
(3) There exists a primeqjjN such that� (as in proposition 3.2.3) is rami�ed at q.
(4) The image of� contains SL2(R(a)=m).

Then this analytic p-adic L-function generates char� O � p
DP (Selstr

A � p ; Iw
) (by [SU14, Theo-

rem 1]), which is equal to char� O � p

eH 2
f (T� p ;Iw ) if p 2 D (by theorem 3.4.5). This shows that

the mod p reduction of L alg
p (a) and Lan

p (a) are associates for almost allp 2 D.

Conjecture 3.5.16. The two-variable algebraicp-adic L-function L alg
p (a) is an element of

R(a) int
Iw and

L alg
p (a)R(a) int

Iw = Lan
p (a)R(a) int

Iw :

Remark 3.5.17. This conjecture does not seem to follow from a straightforward argument
using density of arithmetic points because there are non-associates inZp[[X ]] which become
associates modulo every arithmetic prime. As an example, we may consider the elements
p + X 2 and p + pX + X 2. If we have one-side divisibility, then the above conjecture follows
since an element ofR(a) int

Iw (' R(a) int [[T]]) can become a unit modulo an arithmetic prime
only if its constant term is a unit in R(a) int . Showing one-side divisibility is not immediate
either, as there are elementsf; g in Zp[[X ]] (for instancef = p + X 2 and g = p + pX + X 2)
such that f - g and f mod P j g mod P for each arithmetic primeP.
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De�nition 3.5.18. Let R be a ring. If f (T) 2 R[[T]] is a power series, then itscontent is
denoted byI (f (T)) and is de�ned as the ideal ofR generated by the coe�cients off (T).

If R is a local ring andf (T) 2 R[[T]] has unit content, then the� -invariant � (f (T)) of
f (T) is de�ned to be the smallest degree in whichf (T) has a unit coe�cient.

By choosing a topological generator of � = Gal( Q1 =Q), we identify R b
 O � Iw with
R[[T]] for R = R(a) int ; O int

� . Recall from xA.4 that O[[T]] denotes theZp-subalgebra of
Zp[[T]] spanned by the subsetsOL [[T]] whereL ranges over all �nite extensions ofQp.

De�nition 3.5.19. If L alg
p (a) is an element ofR(a) int

Iw = R(a) int [[T]], then � alg(a) is de�ned
by

� alg(a) = I
�
L alg

p (a)
�

:

If � alg(a) = R(a) int , then the algebraic� -invariant � alg(a) is de�ned to be�
�
L alg

p (a)
�
.

Remark 3.5.20. It would be clear from the context whether� denotes the� -invariant or
an arithmetic specialization.

By [EPW06 , Theorem 1], the� -invariant of (the characteristic ideal of the dual of the
Selmer group of)T� 0 vanishes for one arithmetic specialization� 0 of R(a) if and only if
the � -invariant of (the characteristic ideal of the dual of the Selmer group of) T� vanishes
for any arithmetic specialization� of R(a). If this is the case, followingloc. cit., we write
� alg(� ) = 0. By loc. cit., Greenberg's conjecture on vanishing of� -invariants of modular forms
(with absolutely irreducible andp-distinguished residual Galois representation) is equivalent
to the conjecture below.

Conjecture 3.5.21. If � satis�es assumption 3.2.4 and 3.3.1, then

� alg(� ) = 0 :

Theorem 3.5.22. The two-variable algebraicp-adic L-function L alg
p (a) is an element of

R(a) int
Iw . Under assumptions 3.2.4 and 3.3.1, the following conditions are equivalent.
(1) � alg(� ) = 0 ,
(2) � alg(a) = R(a) int ,
(3) H 1

Gr (� Iw ) = 0 ,
(4) for all � ,

eH 1
f (T� int ;Iw ) = 0

and the � -invariant of the � O int
�

-modulechar� O int
�

eH 2
f (T� int ;Iw ) is zero,

(5) for some � ,
eH 1

f (T� int ;Iw ) = 0

and the � -invariant of the � O int
�

-modulechar� O int
�

eH 2
f (T� int ;Iw ) is zero.

Suppose that the assumption 3.5.15 holds. Then the above �ve conditions are equivalent to

� an(a) = R(a) int :

Assume further that� alg(� ) = 0 . Then

� alg(a) = � an(a);

L alg
p (a)R(a) int

Iw = Lan
p (a)R(a) int

Iw :
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Proof. By theorem 3.5.11,
� (L alg

p (a)) 2 � O int
�

� O[[T]]

for almost all � 2 HomOK -alg(R(a); Zp). So by proposition A.4.1,�� Eul divides � in R(a) int
Iw .

Let D0 denote the subset ofD such that for any p in D0, � p satis�es the �rst three
conditions of theorem 3.5.11 (with� replaced by� p). By theorem 3.5.11, the complement of
D0 in D is �nite. Since D is dense in Spec(R(a)), D0 is also dense in it.

Now suppose that the assumptions 3.2.4 and 3.3.1 hold. Then for all p 2 D0,

char� O � p

eH 2
f (T� p ;Iw ) = � p(L alg

p (a))� O � p

char� O � p

eH 2
f (T� p ;Iw ) = char � O � p

DP (Selstr
A � p ; Iw

)

by theorem 3.5.11 and theorem 3.4.5 respectively. SinceD0 is nonempty, by [EPW06 ,
Theorem 1], the �rst two conditions above are equivalent. Fixan elementq in D0. By
lemma 3.5.14,H 1

Gr (� Iw ) is zero if and only ifH 2
Gr (T� q ;Iw )[$ ] is zero, which holds if and only if

the � -invariant of a generator of char� O � q

eH 2
f (T� q ;Iw ) is zero (by lemma 3.5.5 and [EPW06 ,

Lemma 3.7.4]). Since� q(L alg
p (a)) generates char� O � q

eH 2
f (T� q ;Iw ), we get

H 1
Gr (� Iw ) = 0 () � alg(a) = R(a) int :

So the �rst three conditions above are equivalent. By lemma 3.5.14, (3) implies (4) and (5)
implies (3). So conditions (3), (4), (5) are equivalent.

First note that for all p 2 D0,

char� O � p
DP (Selstr

A � p ; Iw
) = � p(Lan

p (a))� O � p

by [SU14, Theorem 1] and hence

� p(L alg
p (a))� O � p

= � p(Lan
p (a))� O � p

:

So the �rst �ve conditions are equivalent to

� alg(a) = R(a) int
Iw :

Suppose that� alg(� ) = 0. Then by [Och05 , Lemma 3.7],

L alg
p (a) = u(T r + ar � 1T r � 1 + � � � + a0); Lan

p (a) = v(Ts + bs� 1Ts� 1 + � � � + b0)

with a0; � � � ; ar � 1; b0; � � � ; bs� 1 2 R(a) int and u; v 2 (R(a) int
Iw )� . Since for all p 2 D0,

� p(L alg
p (a)) and � p(Lan

p (a)) are associates in �O � p
, the elements� p(T r + ar � 1T r � 1 + � � � + a0),

� p(Ts + bs� 1Ts� 1 + � � � + b0) are also associates in �O � p
. Hence

� p(T r + ar � 1T r � 1 + � � � + a0) = � p(Ts + bs� 1Ts� 1 + � � � + b0)

for all p 2 D0. SinceD0 is dense in Spec(R(a)), we get

T r + ar � 1T r � 1 + � � � + a0 = Ts + bs� 1Ts� 1 + � � � + b0:

This proves the result. �
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CHAPTER 4

Algebraic p-adic L-functions for the Hida family for de�nite
unitary groups

In this chapter, we construct algebraicp-adic L-functions Lalg
p;Kato (� ); Lalg

p0;Gr (� ) along
branches of the Hida family for de�nite unitary groups and prove that they satisfy a perfect
control theorem at arithmetic specializations of regular dominant weight whose associated
automorphic representations are stable and associated Galois representations are crystalline
at each place abovep (theorem 4.3.6). The crucial step of their proof is the recognition of
the role of purity in understanding the variation of inertia invariants in families. Though
such Galois representations are not known to be motivic, in [Pin92 , Conjecture 5.4.1], they
are conjectured to satisfy properties similar to motivic representations, for example purity.
By [Car12 ], the Galois representations associated with the automorphic forms (which are
of dominant weight and stable) for de�nite unitary groups are pure. So this variation is
well-understood by theorem 1.2.4. In this chapter, fromx4.3, we assume throughout that
the condition 4.3.1 holds.

The local conditions used inLalg
p0;Gr (� ) at places w - p is a modi�cation U0

w(� ) of
the unrami�ed condition U+

w (� ) of Greenberg (as de�ned in [Nek06 , x0.8.1] following
[Gre89, Gre91 ]). We use the local conditionU0

w(� ) in stead of U+
w (� ) as it is pointed

out in [FO12 , Remark 2.17] that the inertia invariants of a big Galois representation� may
not specialize perfectly to the inertia invariants of a specialization of � . The construction of
Lalg

p;Kato (� ) uses no condition atp and uses the conditionU0
w(� ) at placesw 6= p.

The organization of this chapter is as follows. In the �rst section, we review the notion of
automorphic representations of a de�nite unitary group andits associated Galois represen-
tation. In the second section, we discuss the set up of Hida theory for unitary groups. For
these two sections, we follow [GG12 , p. 264{268]. Howeverloc. cit. often refers to [Ger10 ]
for a more detailed exposition and proofs. So we will refer toappropriate results in [Ger10 ]
(which uses [Hid88a, Hid89, Hid95, Hid98, Mau04, TU99 ] among others). In the
third section, we construct algebraicp-adic L-functions Lalg

p;Kato (� ), Lalg
p0;Gr (� ) along branches

of this Hida family and prove that they satisfy perfect control theorems.

4.1. Automorphic representations and Galois representations

4.1.1. De�nite Unitary Groups. Let F be a CM �eld, F + be its maximal totally real
sub�eld. Denote the non-trivial element of Gal(F=F+ ) by c. Let n � 2 be an integer and
assume that ifn is even, thenn[F + : Q] is divisible by 4. Then by the argument of [HT01 ,
Lemma I.7.1], there exists an involutiony of second kind onB = M n (F ) whose associated
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reductive algebraic groupG over F + de�ned by

G(R) = f g 2 B 
 F + R j gyg = 1g for any F + -algebraR

has the following properties:

(a) G is an outer form of GLn=F + with G=F ' GLn=F ,
(b) for every in�nite place v of F + , G(F +

v ) ' Un (R),
(c) for every �nite place v of F + , G is quasi-split at v.

By [CHT08 , x3.3], we can choose an orderOB in B such that Oy
B = OB and OB;w is

a maximal order in Bw for all placesw of F which are split overF + . This choice gives a
model ofG over OF + , which we �x from now on.

For every �nite place v of F + which splits aswwc in F there is a natural isomorphism

�w : G(F +
v ) ��! GLn (Fw)

which restricts to an isomorphism betweenG(OF +
v

) and GLn (OFw ).

For each embedding� : F + ,! R and ~� : F ,! C an extension of� , choose an isomor-
phism

� ~� : B 
 F + ;� R ��! B 
 F;~� C = M n (F~� )

so that � ~� (xy) = t (� ~� (x)c). Then ~� � � ~� identi�es G(F +
� ) with Un (R).

4.1.2. Algebraic representations. Let p > n be a rational prime and assume (as in
[HT01 , I.7]) that every prime of F + lying abovep splits in F . Let K be a �nite extension
of Qp inside Qp which contains the image of every embeddingF ,! Qp and a primitive p-th
root of unity (as in [GG12 , p. 266]). Let $ denote a uniformizer of the ring of integersOK

of K and F denote the residue �eld.

Let � p denote the set of places ofF + abovep, and I p the set of embeddings ofF + ,! K .
For each placev 2 � p, choose once and for all a place ~v of F lying abovev. Let ~� p denote
the set of these places ~v for v 2 � p. Let ~I p be the set of embeddingsF ,! K which give rise
to an element of~� p. From now on we will identify I p and ~I p. Let p denote the product of
all places in � p. We write

OF + ;p = OF + 
 Z Zp; F +
p = F + 
 Q Qp:

Let Tn � Bn � GLn denote the diagonal torus, the Borel subgroup of upper triangular
matrices in GLn , regarded as algebraic groups overZ. We identify the character group

X � (Tn ) ��! Zn

via the map which sends the character

diag(t1; � � � ; tn ) 7! t � 1
1 � � � t � n

n

to the tuple (� 1; � � � ; � n ). Note that any character ofTn can also be regarded as a character
of Bn via the natural homomorphismBn ! Tn . Let " i denote the character

diag(t1; � � � ; tn ) 7! t i :
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The set of characters
� = f " i � " j j i 6= j g

consists of the roots of GLn with respect to Tn . Our �xed choice of the Borel subgroupBn

gives us a system �+ of positive roots,viz., the roots " i � " j for j > i . The simple roots for
this positive system are the roots" i � " i +1 for i = 1; � � � ; n � 1. There is a partial order on
X � (Tn ) de�ned by

� � � () � � � 2
X

i

N(" i � " i +1 ):

The Weyl group WTn := NGL n (Tn )=Tn acts onTn by

w(t) = wtw � 1

and on X � (Tn ) via the rule
(w� )( t) = � (w� 1tw):

We identify it with Sn via the rule

w(t1; � � � ; tn )w� 1 = ( tw � 1 (1) ; � � � ; tw � 1 (n)):

Let w0 denote the longest element of the Weyl group. It sends the character (� 1; � � � ; � n ) to
the character (� n ; � � � ; � 1).

For a character� of Tn and a ring R, de�ne the induced representation

IndGL n
B n

(w0� )=R := f f 2 R[GLn ] j f (bg) = ( w0� )(b)f (g); 8R ! A; g 2 GLn (A); b2 Bn (A)g

on which GLn acts by right translation. This is a representation of the algebraic group
GLn=R . SinceK is at over OK , we have

IndGL n
B n

(w0� )=K = (Ind GL n
B n

(w0� )=OK 
 OK K

(see [Jan03 , Fact 3, xI.3.5]). When R = OK ; K or F, by the proposition in [Jan03 , xII.2.6],
the induced module IndGL n

B n
(w0� )=R is nonzero if and only if the character� = ( � 1; � � � ; � n )

satis�es
� 1 � � � � � � n :

Such a character� is called adominant characterfor GLn .

De�nition 4.1.1. For a dominant character� for GLn , we de�ne the representation

� � := Ind GL n
B n

(w0� )=OK :

We let M � denote a �nite free OK -module, carrying an action ofGLn (OK ), obtained by
evaluating� � on OK . We let W� = M � 
 OK K . This space carries an action ofGLn (K ).

We remark that the moduleM � is �nite and free overOK as it is torsion free by de�nition
and �nitely generated by [Jan03 , Proposition I.5.12(c)].

If W is an algebraic representation of GLn=R and � 2 X � (Tn ), we denote byW� the sub-
space ofW on whichTn acts via� . The weightsof W are those characters� for which W� 6= 0.

Put
Zn

+ = f (� 1; � � � ; � n ) 2 Zn j � 1 � � � � � � ng
and let G denote the unitary group as inx4.1.1.
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De�nition 4.1.2.
(a) A dominant weight for G is a tuple � = ( � � )� 2 (Zn

+ ) ~I p . If � is a dominant weight for
G, de�ne

M � = 
 � 2 ~I p
M � � ; W� = 
 � 2 ~I p

W� � = M � 
 OK K:

Then de�ne representations

� � : G(OF + ;p) ! GL(M � ) by g 7! 
 � 2 ~I p
� � � (� (� ~v(� )g));

� � : G(F +
p ) ! GL(W� ) by g 7! 
 � 2 ~I p

� � � (� (� ~v(� )g))

where~v(� ) is the place in ~� p induced by� .
(b) If � = ( � � )� 2 (Zn ) ~I p , then we associate to it the character

� : Tn (F +
p ) '

Y

v2 ~I p

Tn (F~v) ! K �

de�ned by
u 7!

Y

� 2 ~I p

� � (� (u)):

(c) If � = ( � � )� 2 (Zn ) ~I p and w 2 WTn , we let w� = ( w� � )� 2 (Zn ) ~I p .
(d) A dominant weight � for G is regular if for each v 2 � p and eachj = 1; � � � ; n � 1, there

exists � 2 ~I p giving rise to ~v with � �;j > � �;j +1 .

4.1.3. Automorphic forms on G. Let � 0 denote a �nite set of �nite places of F +

disjoint from � p and consisting of places which split inF . Choose once and for all a place
~v of F over each placev 2 � 0. For eachv 2 � 0[ � p, we will identify the groups G(F +

v ) and
GLn (F~v) via � ~v (as de�ned in x4.1.1). If v is a place ofF + split over F and ~v is a place ofF
dividing v, then we let

(a) Iw(~v) denote the subgroup of GLn (OF~v ) consisting of matrices which reduce to an upper
triangular matrix modulo ~v,

(b) Iw(~vb;c), for 0 � b � c, denote the subgroup of GLn (OF~v ) consisting of matrices which
reduce to an upper triangular matrix modulo ~vc and to a unipotent matrix modulo ~vb.

Note that if k(~v) denotes the residue �eld of ~v, then we have a natural isomorphism

Iw(~v)=Iw(~v1;1) ' (k(~v)� )n

given by g = ( gij ) 7! (�g11; � � � ; �gnn ) where the bars denote mod ~v reduction. For eachv 2 � 0,
we have a character

� v = � v;1 � � � � � � v;n : Iw(~v)=Iw(~v1;1) ! O �
K :

De�ne
M f � v g := 
 v2 � 0OK (� v):

It has an action of
Q

v2 � 0 Iw(~v). If � is a dominant weight forG, de�ne

M �; f � v g := M � 
 OK M f � v g:

This also carries an action ofG(OF + ;p).
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De�nition 4.1.3. For an OK -moduleA and a dominant weight� for G, we de�neS�; f � v g(A)
to be the space of functionsf : G(F + )nG(A1

F + ) ! M �; f � v g 
 OK A such that there exists a
compact open subgroup

U � G(A1 ;� 0[ � p

F + ) � G(OF + ;p) �
Y

v2 � 0

Iw(~v)

with
(u� 0[ � p )f (gu) = f (g)

for all u 2 U; g 2 G(A1
F + ) whereu� [ � 0 is the projection ofu to

Q
v2 � 0[ � p

G(F +
v ). The group

G(A1 ;� 0[ � p

F + ) � G(OF + ;p) �
Q

v2 � 0 Iw(~v) acts onS�; f � v g(A) via

(g � f )(h) = ( g� 0[ � p )f (hg):

If A is a K -module, then the groupG(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v) acts onS�; f � v g(A) via the same
formula.

If U is a subgroup ofG(A1 ;� 0[ � p

F + ) � G(OF + ;p) �
Q

v2 � 0 Iw(~v), or if U is a subgroup of
G(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v) and A is a K -module, then we de�neS�; f � v g(U; A) by

S�; f � v g(U; A) = S�; f � v g(A)U :

Now we recall the relation between these spaces and the space of automorphic forms on
G as de�ned for example in [BJ79 ]. Let � : Qp

��! C be a �eld isomorphism. Via this
isomorphism,C becomes aK -algebra. For each embedding� : F + ,! R, there is a unique
embedding ~� : F ,! C extending � such that � � 1~� 2 ~I p. There is an induced action of
G(F +

1 ) on W� 
 K;� C via
g 7! 
 � � � � � 1 ~�

(~� (� ~� (g))) :
Denote this representation by� �;� .

Proposition 4.1.4. There is an isomorphism ofG(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v)-modules

S�; f � v g(Qp) ��! HomG(F +
1 )(( 
 v2 � 0C(�� � 1

v )) 
 � _
�;� ; A )

whereA denotes the space of automorphic forms onG(F + )nG(AF + ).

Proof. Follows from the proof of [CHT08 , Proposition 3.3.2]. �

4.1.4. Galois representations. We normalize the local Langlands correspondence as
in [CHT08 , x3.1]. If w is a �nite place of F and � is an irreducible, admissible, representation
of GLn (Fw) de�ned over Qp, we let rp(� ) denote thep-adic representation ofGFw associated
(as in [Tat79 ]) with the Weil-Deligne representation recp(� _ 
 j j (1� n)=2) when it exists (i.e.,
when the eigenvalues of recp(� _ 
 j j (1� n)=2)( � w) are p-adic units for some lift � w of Frw).
Here recp is as in [HT01 ]. We will denote thep-adic cyclotomic character by".

Proposition 4.1.5. Let � be a dominant weight forG and � be an irreducible constituent
of the G(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v)-representation S�; f � v g(Qp). Then there exists a continuous
semi-simple representation

� � : GF ! GLn (Qp);
which is uniquely determined by the following two properties.

(1) � c
� ' � _

� "1� n ,
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(2) if v =2 � 0 [ � p is a �nite place of F + which splits aswwc in F , then

� � jss
GF w

' (rp(� v � � � 1
w )_ (1 � n))ss:

If the weak base change of� to GLn (AF ) is cuspidal, then for any �nite placew of F not
dividing p, the restriction of � � to GFw is pure.

Proof. From [Lab11 , Corollaire 5.3], we get a weak base change WBC(� ) of � to GLn (AF ).
Then [CH , Theorem 3.2.5] associates a Galois representation� to WBC( � ). We de�ne � �

to be � , which satis�es the stated properties byloc. cit. The last part follows from [Car12 ,
Theorem 1.1, 1.2] and proofs of theorem 5.8 and corollary 5.9of loc. cit. �

De�nition 4.1.6. Let � be as in the statement of the above proposition. It is said to be
stable if its weak base changeWBC( � ) to GLn (AF ) is cuspidal.

In the main theorem of this chapter (theorem 4.3.6), we will consider stable automorphic
representations.

4.2. Hida Theory

4.2.1. Hecke algebras. Let � denote a �nite set of �nite places of F + containing � 0[ � p

and such that every place in � splits in F . Recall that for everyv 2 � 0 [ � p, we have �xed
a place ~v of F lying abovev. Now for every placev 2 � n (� 0[ � p), �x a place ~v of F above
v. For v 2 �, we will henceforth identify G(F +

v ) with GL n (F~v) via � ~v.

Let U =
Q

v Uv be a compact open subgroup ofG(A1
F + ) where Uv � G(F +

v ) for each
�nite place v of F + and

(a) if v =2 � splits in F , then Uv = G(OF +
v

),
(b) if v 2 � 0, then Uv = Iw(~v),
(c) if v 2 � p, then Uv = G(OF +

v
).

We do not specifyUv for v 2 � n (� 0 [ � p) or for v =2 � not split in F . For 0 � b � c,
de�ne

U(pb;c) = Up �
Y

v2 � p

Iw(~vb;c):

4.2.1.1. Hecke operators.Let V; V0 � G(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v) be compact open sub-
groups ofG(A1

F + ). Let � be a dominant weight forG.

Let A be aK -module. Then for everyg 2 G(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v) there is an operator

[V 0gV] : S�; f � v g(V; A) ! S�; f � v g(V 0; A)

de�ned by

[V 0gV]f =
X

i

x i � f; f 2 S�; f � v g(V; A)

using a decompositionV 0gV =
`

i x i V. This de�nition is independent of the choice ofx i .
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If A is an OK -module, but not a K -module, then assume thatvp; v0
p 2 G(OF + ;p) for all

v 2 V; v0 2 V 0. In this case, for everyg 2 G(A1 ;� 0[ � p

F + ) � G(OF + ;p) �
Q

v2 � 0 Iw(~v), there is
an operator

[V 0gV] : S�; f � v g(V; A) ! S�; f � v g(V 0; A)
de�ned as above.

Hecke operators at unrami�ed places. Let w be a place ofF , split over over F + and
lying over a place ofF + outside �. Let � be a dominant weight forG and A be an OK -
module. Let $ w be a uniformizer in OFw . For each j = 1; � � � ; n, we let T (j )

w denote the
endomorphism

�
� � 1
w

�
GLn (OFw )

�
$ w1j 0

0 1n� j

�
GLn (OFw )

�
� U(pb;c)v

�

of S�; f � v g(U(pb;c); A)). It is independent of the choice of the uniformizer. The operatorsT (j )
w ,

for varying w and j , all commute with each other. Also note that

T (j )
wc = ( T (n)

w )� 1T (n� j )
w :

Hecke operators at places dividing p. For each 0� b � c with c � 1, and eachv 2 � p,
the algebra

OK [Iw(~vb;c)nGLn (F~v)=Iw(~vb;c)]
is non-commutative and acts onS�; f � v g(U(pb;c); A) only when A is a K -module. Following
Hida, we consider a commutative subalgebra of this algebra and modify the usual action of
the Hecke operators to de�ne an action of this commutative subalgebra onS�; f � v g(U(pb;c); A)
for any OK -moduleA. This modi�ed action depends on the weight� .

Let A be an OK -module and� be a dominant weight forG. Suppose that 0� b � c
with c � 1. For eachv 2 � p and j = 1; � � � ; n, put

� (j )
$ ~v

=
�

$ ~v1j 0
0 1n� j

�
2 GLn (F~v):

We will also regard� (j )
$ ~v as an element ofG(F +

v ) and G(A1
F + ) via � ~v. If v 2 � p then we let

U(j )
�;$ ~v

be the operator which acts onS�; f � v g(U(pb;c); A) via

(w0� )( � (j )
$ ~v

)� 1[U(pb;c)� (j )
$ ~v

U(pb;c)]:

Explicitly, if we write U(pb;c)� (j )
$ ~v U(pb;c) as a disjoint union

`
i x i �

(j )
$ ~v U(pb;c), then for any

f 2 S�; f � v g(U(pb;c); A) we de�ne

U(j )
�;$ ~v

f = ( w0� )( � (j )
$ ~v

)� 1
X

i

(x i � (j )
$ ~v

) � f

where w0� is considered as a characterTn (F +
v ) ! K � as in De�nition 4.1.2. This is an

element ofS�; f � v g(U(pb;c); A) and is independent of the choice ofx i .

Now for v 2 � p and u 2 Tn (OF~v ), let hui denote the operator

[U(pb;c)uU(pb;c)]
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acting on S�; f � v g(U(pb;c); A). For

u 2 Tn (OF + ;p) =
Y

v2 � p

Tn (OF +
v

) �=
Y

v2 � p

Tn (OF~v );

we de�ne
hui :=

Y

v2 � p

huv i :

4.2.1.2. Unitary Group Hecke algebras.

Lemma 4.2.1. For 0 � b � c with c � 1, a dominant weight� for G and an OK -module
A, the operatorsT (j )

w , U(j )
�;$ ~v

and hui on S�; f � v g(U(pb;c); A) de�ned above commute with each
other. Moreover, if b � b0 and c � c0, then the inclusion

S�; f � v g(U(pb;c); A) ,! S�; f � v g(U(pb0;c0
); A)

is equivariant for all of the operatorsT (j )
w , U(j )

�;$ ~v
and hui .

Proof. Follows from the proof of [Hid95 , Proposition 2.2] (cf. [Ger10 , Lemma 2.3.3]). �

De�nition 4.2.2. For 0 � b � c with c � 1, a dominant weight� for G and an OK -algebra
A, let

h�
�; f � v g(U(pb;c); A) � ~h�

�; f � v g(U(pb;c); A) � End(S�; f � v g(U(pb;c); A))

be theA-subalgebras generated by the operatorsT (j )
w ; (T (n)

w )� 1 and hui in the �rst case and
the operatorsT (j )

w , (T (n)
w )� 1, U(j )

�;$ ~v
and hui in the second case.

Note that the map u 7! hui de�nes a homomorphism

(4.2.1) Tn (OF + ;p=pb) ! h�
�; f � v g(U(pb;c); A)� :

4.2.2. Ordinary Hecke algebras. Let A be an OK -algebra of �nite type. Since
~h�

�; f � v g(U(pb;c); A) is a �nite type OK -algebra, it decomposes as a direct product

~h�
�; f � v g(U(pb;c); A) =

Y

m

~h�
�; f � v g(U(pb;c); A)m

wherem runs over the set of maximal ideals of~h�
�; f � v g(U(pb;c); A) (by [Eis95, Corollary 7.6,

p. 188] for instance).

De�nition 4.2.3. A maximal ideal m of ~h�
�; f � v g(U(pb;c); A) is called ordinary if for each

v 2 � p and for eachj = 1; � � � ; n, the image ofU(j )
�;$ ~v

is nonzero in ~h�
�; f � v g(U(pb;c); A)=m.

We de�ne the ordinary Hecke algebra

~h� ;ord
�; f � v g(U(pb;c); A) =

Y

m

~h�
�; f � v g(U(pb;c); A)m

where m runs over the ordinary maximal ideals. We leth� ;ord
�; f � v g(U(pb;c); A) denote the im-

age ofh�
�; f � v g(U(pb;c); A) in ~h� ;ord

�; f � v g(U(pb;c); A). Since~h� ;ord
�; f � v g(U(pb;c); A) is a direct factor of

~h�
�; f � v g(U(pb;c); A), it corresponds to an idempotente 2 ~h�

�; f � v g(U(pb;c); A) with the property
that

~h� ;ord
�; f � v g(U(pb;c); A) = e~h�

�; f � v g(U(pb;c); A):
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If we let U(p) denote the product

U(p) :=
Y

v2 � p

nY

j =1

U(j )
�;$ ~v

2 ~h�
�; f � v g(U(pb;c); A);

then one can check that

e = lim
r !1

U(p)r ! 2 ~h�
�; f � v g(U(pb;c); A):

Now de�ne the ordinary parts of S�; f � v g(U(pb;c); A) by

Sord
�; f � v g(U(pb;c); A) = eS�; f � v g(U(pb;c); A) =

M

mord

S�; f � v g(U(pb;c); A)m;

wherem runs over the ordinary maximal ideals of~h�
�; f � v g(U(pb;c); A). The algebrash� ;ord

�; f � v g(U(pb;c); A)

and ~h� ;ord
�; f � v g(U(pb;c); A) act faithfully on Sord

�; f � v g(U(pb;c); A). The lemma below guarantees that
ordinary forms exist.

Recall that an open compact subgroup ofG(A1
F + ) is said to besu�ciently small if for

some placev of F + , its projection to G(F +
v ) contains no element of �nite order other than

the identity.

Lemma 4.2.4. Suppose thatU is su�ciently small and c � n� 1. Then Sord
�; f � v g(U(pb;c); OK ) 6=

0.

Proof. This lemma can be deduced from [Hid95 , Proposition 2.2] (see [Ger10 , Lemma
2.4.3] for details). �

Remark 4.2.5. Each OK -algebra homomorphism fromh�
�; f � v g(U(pb;c); OK ) to Qp deter-

mines an irreducible constituent� of the G(A1 ;� 0

F + ) �
Q

v2 � 0 Iw(~v)-representationS�; f � v g(Qp)
such that

� U(pb;c ) \ S�; f � v g(U(pb;c); Qp) 6= 0:

Such representations� are calledordinary automorphic representations(of weight � ).

4.2.3. Universal ordinary Hecke algebras.
4.2.3.1. Vertical control theorem.

Lemma 4.2.6. For 1 � b � c, the natural inclusion

Sord
�; f � v g(U(pb;b); OK ) ! Sord

�; f � v g(U(pb;c); OK )

is an isomorphism.

Proof. This follows from [Ger10 , Lemma 2.5.2]. �

For each b � 1, we let Tn (pb) denote the subgroup ofTn (OF + ;p) de�ned by the exact
sequence

0 ! Tn (pb) ! Tn (OF + ;p) ! Tn (OF + =pb) ! 0:
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We let Tn (p) = Tn (p1) and we de�ne the completed group algebras

� b = OK [[Tn (pb)]] = lim �
b0� b

OK [Tn (pb)=Tn (pb0
)] for b � 1; � = � 1;

� + = OK [[Tn (OF + ;p)]] = lim �
b� 1

OK [Tn (OF + ;p)=Tn (pb)] ' �[ Tn (OF + =p)]:

Note that � + is automatically a � b algebra forb � 1. Let

h� ;ord
�; f � v g(U(p1 ); OK ) := lim �

c� 1

h� ;ord
�; f � v g(U(pc;c); OK )

and note that it naturally has a � + -algebra structure by equation (4.2.1).

Lemma 4.2.7. The Hecke algebrah� ;ord
�; f � v g(U(p1 ); OK ) is a �nite faithful � b0 -algebra where

b0 � 1 is large enough so thatU(pb0 ;b0 ) is su�ciently small.

Proof. It follows from [Ger10 , Corollary 2.5.4]. �

4.2.3.2. Weight independence.

Theorem 4.2.8. There is an OK -algebra isomorphism

' � : h� ;ord
0;f � v g(U(p1 ); OK ) ��! h� ;ord

�; f � v g(U(p1 ); OK )

which satis�es

(a) ' � (T (j )
w ) = T (j )

w and ' � (U(j )
0;$ ~v

) = U(j )
�;$ ~v

,
(b) ' � (hui ) = ( w0� )(u� 1)hui for all u 2 Tn (OF + ;p).

Proof. Follows from [Ger10 , Proposition 2.6.1, Corollary 2.5.4]. �

Now we renormalize the �-algebra structure onh� ;ord
0;f � v g(U(p1 ); OK ).

De�nition 4.2.9. Let � = ( � � )� 2 (Zn
+ ) ~I p be the element with� � = ( n � 1; n � 2; � � � ; 0) for

all � . De�ne a homomorphism

Tn (p) ! h� ;ord
0;f � v g(U(p1 ); OK )�

by

u 7! (w0� )� 1(u)hui :

This gives rise to anOK -algebra homomorphism� ! h� ;ord
0;f � v g(U(p1 ); OK ). We de�ne the

universal ordinary Hecke algebrah� ;ord
f � v g (U(p1 ); OK ) to be h� ;ord

0;f � v g(U(p1 ); OK ) equipped with
this new � -algebra structure.

We give it the structure of a� + = � 
 OK OK [Tn (OF + =p)]-algebra using the new� -algebra
structure and the originalOK [Tn (OF + =p)]-structure.
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4.2.3.3. Control theorem. Let A be a �nite type OK -subalgebra ofZp,

� : Tn (p) ! A �

be a �nite order character. Suppose thatr � 1 is large enough so that

Tn (pr ) � ker(� ):

Denote bySord
�; f � v g(U(pr;r ); �; A ) the maximal subspace ofSord

�; f � v g(U(pr;r ); A) on which hui =

� (u) for all u 2 Tn (p). Let h� ;ord
�; f � v g(U(pr;r ); �; A ) denote the quotient ofh� ;ord

�; f � v g(U(pr;r ); A)
obtained by restricting operators toSord

�; f � v g(U(pr;r ); �; A ). These algebras are independent
of the choice ofr .

For a �nite order character � : Tn (p) ! Q
�
p and a dominant weight� for G, de�ne } �;�

to be the kernel of theOK -algebra homomorphism � ! Qp induced by the character

� (w0� )� 1(w0� )� 1 : Tn (p) ! Q
�
p :

Theorem 4.2.10. Let � be a dominant weight forG and � : Tn (p) ! Q
�
p be a �nite order

character with Tn (pr ) � ker(� ) for some integerr � 1. Let K 0 denote the fraction �eld of
� =} �;� . Then the map' � induces surjection of �nite K 0-algebras

h� ;ord
f � v g (U(p1 ); OK ) 
 � � } �;� =} �;� � h� ;ord

�; f � v g(U(pr;r ); �; K 0)

whose kernel is nilpotent.

4.2.3.4. Arithmetic primes. An arithmetic prime of a �nite �-algebra R is a prime } 2
Spec(R) whose contraction to � is of the form } �;� . In this case,� is said to be theweightof
} . An arithmetic specializationof R is an OK -algebra homomorphismR ! Qp whose kernel
is an arithmetic prime. Theweightof an arithmetic specialization is the weight of its kernel.
The set of arithmetic primes ofR is denoted by Specarith (R).

Sinceh� ;ord
f � v g (U(p1 ); OK ) is a �nite type �-algebra and Specarith (�) is dense in Spec(�)

by [Hid88a , Lemma 10.2, p. 371], it follows that Specarith (h� ;ord
f � v g (U(p1 ); OK )) is dense in

Spec(h� ;ord
f � v g (U(p1 ); OK )).

By the above theorem and remark 4.2.5, an arithmetic specialization of h� ;ord
f � v g (U(p1 ); OK )

of weight � determines an ordinary automorphic representation� � of weight � .

4.2.4. Galois representations.

Proposition 4.2.11. Let m be a maximal ideal ofh� ;ord
f � v g (U(p1 ); OK ). Then there is a unique

semisimple representation

r m : GF ! GLn (h� ;ord
f � v g (U(p1 ); OK )=m)

characterized by the following properties:
(a) if v =2 � is a �nite place of F + which splits aswwc in F , then � is unrami�ed at w and

wc,
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(b) if v =2 � is a place ofF + which splits aswwc in F and Frw is the geometric Frobenius
element ofGFw =IFw , then rm(Fr w) has characteristic polynomial

X n � T (1)
w X n� 1 + � � � + ( � 1)j (N w) j ( j � 1)=2T (j )

w X n� j + � � � + ( � 1)n (N w)n(n� 1)=2T (n)
w :

Proof. Follows from [Ger10 , Proposition 2.7.3]. �

A maximal ideal m of h� ;ord
f � v g (U(p1 ); OK ) is said to benon-Eisensteinif r m is absolutely

irreducible.

Proposition 4.2.12. Let m be a non-Eisenstein maximal ideal ofh� ;ord
f � v g (U(p1 ); OK ). Then

there is a continuous lifting

rm : GF ! GLn (h� ;ord
f � v g (U(p1 ); OK )m)

of r m satisfying the following properties. The �rst two properties determine the liftingrm

uniquely up to conjugation by elements ofGLn (h� ;ord
f � v g (U(p1 ); OK )m) which are trivial modulo

m.
(a) If v =2 � is a �nite place of F + which splits aswwc in F , then � is unrami�ed at w and

wc.
(b) If v =2 � is a place ofF + which splits aswwc in F and Frw is the geometric Frobenius

element ofGFw =IFw , then rm(Fr w) has characteristic polynomial

X n � T (1)
w X n� 1 + � � � + ( � 1)j (N w) j ( j � 1)=2T (j )

w X n� j + � � � + ( � 1)n (N w)n(n� 1)=2T (n)
w :

(c) For each placew of F lying abovep, there exists ann-tuple of characters(� w1; � � � ; � wn )
such thatrmjGF w

is conjugate to an upper triangular representation with the ordered tuple
(� w1; � � � ; � wn ) along the diagonal. In particular, for anyOK -algebra homomorphism
� : h� ;ord

f � v g (U(p1 ); OK )m ! Zp, the representation(� � rm)jGF w
is conjugate to an upper

triangular representation with the ordered tuple(� � � w1; � � � ; � � � wn ) along the diagonal.

Proof. It follows from [GG12 , p. 267{268] (which relies on [Ger10 , Proposition 2.7.4] for
part (a), (b), and on [Ger10 , Corollary 3.1.4, Prop 2.7.2(2)] for part (c)). �

If m is a non-Eisenstein ideal ofh� ;ord
f � v g (U(p1 ); OK ), then the representationrm inter-

polates the Galois representations attached to the ordinary automorphic representations
corresponding to the arithmetic primes ofh� ;ord

f � v g (U(p1 ); OK )m.

4.3. Algebraic p-adic L-function along branches

In this section, we construct algebraicp-adic L-functions Lalg
p0;Gr , Lalg

p;Kato along irreducible
components of the Hida family and show that it satis�es a control theorem at arithmetic
primes.

Let m be a maximal ideal ofh� ;ord
f � v g (U(p1 ); OK ) satisfying the following.

Assumption 4.3.1. The maximal idealm is non-Eisenstein.

Suppose thata is a minimal prime of h� ;ord
f � v g (U(p1 ); OK ) contained in m. Then from

x4.2.4, we obtain a uniquely determined representation� : GF ! GLn (R(a)0) whereR(a)0 =
h� ;ord

f � v g (U(p1 ); OK )m=a. Let R(a) denote the subalgebra ofK := Frac( R(a)0) obtained by ad-
joining to R(a)0 the coe�cients of the characteristic polynomial of Frw on the I Fw -invariants
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of � for the placesw of F at which � is rami�ed and has nonzeroI Fw -invariants. The ring
R(a) is a complete local domain and a �nite type �-module ([Eis95, Corollary 7.6, p. 188]).
Now de�ne T (a) := R(a)n with a GF -action on it via � .

Let S denote a �nite set of places ofF containing the places of rami�cation ofT (a), the
archimedean places ofF and the places ofF abovep. Denote bySf the set of �nite places
in S. We will considerT (a) as a representation ofGF;S .

For a ring homomorphism� : R(a) ! R0, the � -specializationof T (a) is denoted byT�

and is de�ned to be theGF;S -representationT (a) 
 R(a);� R0 with coe�cients in R0. From
now on we denote the image of an arithmetic specialization� : R(a) ! Qp by O� and con-
sider such maps as ring homomorphisms onto their images,i.e., as � : R(a) � O� . Thus
for an arithmetic specialization� of R(a), the � -specializationT� of T (a) will denote the
GF;S -representationT (a) 
 R(a);� O� . For such a specialization, we denote byV� the GF;S -
representationT� 
 O � Qp.

In the following, w will denote a �nite place of F .

For w j p, let T (a)+ (resp. T+
� ) denote the largestR-submodule ofT (a) (resp. T� where

� denotes an arithmetic specialization ofR(a) of regular dominant weight such thatV� jGF w

is crystalline) on whichGFw -acts by the character� w1 (resp. � � � w1).

Let F1 denote the cyclotomicZp-extension ofF . We denote the Galois group Gal(F1 =F)
by �. Denote the Iwasawa algebraOK [[�]] by � Iw , which is a GF;f wjpg-module via the map
GF;f wjpg � � ,! � �

Iw since F1 is unrami�ed at places w - p. For any �nite type OK -
subalgebraA of Zp, we will write � A to denoteA 
 OK � Iw = A[[�]]. We will consider � A as
a GF;f wjpg-module via the mapGF;f wjpg � � ,! � �

A . The image of an elementg 2 GF;f wjpg

under this map will be denoted by [g]. The completed tensor productR(a) b
 OK � Iw will be
denoted byR(a)Iw .

De�ne the cyclotomic deformationT (a)Iw of T (a) as theGF;S -representationT (a) b
 OK � Iw

over R(a)Iw obtained by tensoring theGF;S -representationsT (a) and � Iw . De�ne the Gp-
representation

T (a)+
Iw = T (a)+ b
 OK � Iw :

For an arithmetic specialization� of R(a), de�ne the cyclotomic deformationT�; Iw of T�

as theGF;S -representationT� 
 OK � Iw over O� 
 OK � Iw = � O � . De�ne the Gp-representation

T+
�; Iw = T+

� 
 OK � Iw :

Note that each arithmetic specialization� : R(a) ! O � of R(a) extends to a � Iw -algebra
homomorphism� b
 OK id� Iw : R(a)Iw ! O � 
 OK � Iw = � O � , which will be denoted by� by
abuse of language.
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De�nition 4.3.2. Let T be a free module of rankn 2 Z � 1 over a complete local noetherian
domain R. Let GF;S act continuously onT via a representationGF;S ! Aut R(T). Sup-
pose that the characteristic polynomial ofFrw on T I F w 
 R Frac(R), denotedCPw(X; T ), has
coe�cients in R whenever0 < rkRT I F w < n for w - p.

For any w not dividing p, let U0
w(T) denote the object in the derived category ofR-modules

corresponding to
(

[R
CPw (1;T )
�����! R] concentrated in degree 0,1 if0 < rkRT I F w < n;

C �
cont (GFw =IFw ; T I F w ) otherwise.

De�nition 4.3.3. Let � denote an arithmetic specialization ofR(a) such that V� jGF w
is

crystalline for any w j p. For w j p, put

U0
w(T (a)Iw ) = R� cont (GFw ; R(a)Iw )

U0
w(T�; Iw ) = R� cont (GFw ; � O � )

whereGFw acts onR(a)Iw (resp. � O � ) by the character through which it acts onT (a)+
Iw (resp.

T+
�; Iw ). For T = T (a)Iw ; T�; Iw , de�ne the algebraicp-adic L-functions Lalg

p;Kato (T), Lalg
p0;Gr (T)

as the objects ofParf-isR (R = R(a)Iw ; � O � respectively) given by

Lalg
p;Kato (T) := det R(R� c;cont (GF;S ; T)[1]) 
 detR

0

B
B
@

M

w2 Sf
w-p

U0
w(T)[1]

1

C
C
A ;(4.3.1)

Lalg
p0;Gr (T) := det R(R� c;cont (GF;S ; T)[1]) 
 detR

0

B
B
@

M

wjp

U0
w(T)[1] �

M

w2 Sf
w-p

U0
w(T)[1]

1

C
C
A(4.3.2)

respectively.

Lemma 4.3.4. The above objectsLalg
p;Kato (T) andLalg

p0;Gr (T) are well-de�ned forT = T (a)Iw ; T�; Iw ,
where� is as in the above de�nition.

Proof. The rings R(a) and O� are complete local rings (by [Eis95, Corollary 7.6, p. 188] for
instance). SoR(a)Iw and � O � are complete local rings.

By de�nition of R(a) and O� , the polynomialsCPw(X; T (a)Iw ) and CPw(X; T �; Iw ) have
coe�cients in R(a)Iw and � O � respectively for anyw - p (by theorem 1.2.4(6) and proposition
4.1.5). SoU0

w(T) is well-de�ned and by proposition 2.2.1, it is a perfect complex for w 2
Sf ; w - p. SoLalg

p;Kato (T) is well-de�ned (using the same proposition again).
By proposition 4.2.12, forw j p, the groupGFw acts onT (a)+

Iw (resp. T+
�; Iw ) by an R(a)Iw -

valued (resp. � O � -valued) character. SoU0
w(T) is well-de�ned for w j p and they are perfect

complexes by proposition 2.2.1. Using this proposition again, it follows that Lalg
p0;Gr (T) is

well-de�ned. �

Lemma 4.3.5. The arithmetic primes of R(a) which are kernels of the arithmetic special-
izations � : R(a) ! Zp satisfying
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(1) � is of regular dominant weight,
(2) V� jGF w

is crystalline for any placew of F lying abovep,
form a dense subset ofSpec(R(a)).

Proof. By the comment after the proof of [Ger10 , Lemma 2.6.4], [Ger10 , Lemma 2.7.5(2),
Proposition 2.7.2(2), (4)] and the last paragraph of the proof of [Ger10 , Corollary 3.1.4],
the lemma follows. �

Theorem 4.3.6. Let � be an arithmetic specialization ofR(a) of regular dominant weight
such that � � is stable andV� jGF w

is crystalline for all w j p. Then the isomorphisms in
propositions 2.1.2, 2.2.1, 2.2.3 induce isomorphisms

(4.3.3) Lalg
p0;Gr (T (a)Iw )
 R(a) Iw ;� � O �

�= Lalg
p0;Gr (T�; Iw );

(4.3.4) Lalg
p;Kato (T (a)Iw )
 R(a) Iw ;� � O �

�= Lalg
p;Kato (T�; Iw )

under the assumption 4.3.1.

Proof. By proposition 2.1.2 and proposition 2.2.1, it remains to prove the control theorem
for the factors coming from \local conditions". Forw j p, the complex U0

w(T (a)Iw ) is K -
at by [ Sta14, Tag 064K] and hence the control ofU0

w(T (a)Iw ) follows from [Sta14, Tag
06Y6]. So it remains to prove the control theorem atw - p, i.e., the � -specialization of
detU0

w(T (a)Iw ) is detU0
w(T�; Iw ). Let w - p denote a �nite place ofF . By proposition 2.1.2,

it su�ces to prove the control theorem for U0
w(T (a)Iw ).

The restriction of the GF;S -representationT (a) to the decomposition groupGFw is con-
tinuous and its coe�cient ring R(a) has �nite residue �eld of characteristic p 6= `. So by
theorem 1.1.25, theGFw -representationT (a) is monodromic. MoreoverV� jGF w

is pure for any
arithmetic specialization� of R(a) and w - p (by proposition 4.1.5). So theorem 1.2.4 applies
to T (a) and its arithmetic specializations. By theorem 1.2.4(5) and proposition 2.2.1, we
need to prove the control theorem forU0

w(T (a)Iw ) only when 0< rkR(a)T (a)I F w < n . Assume
that this inequality holds. Then U0

w(T (a)Iw ) is K -at by [ Sta14, Tag 064K]. So its derived
tensor product overR(a)Iw with � O � (through � ) is equal to the tensor product by [Sta14,

Tag 06Y6], i.e., [� O �

� (CPw (1;T (a) Iw )
���������! � O � ] and this is U0

w(T�; Iw ) by theorem 1.2.4(6). �
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APPENDIX A

Divisibility

A.1. Valuations

Let

vp : Qp ! Q [ f1g

denote the valuation normalized so thatvp(p) = 1. If � pr denotes a primitivepr -th root of
unity in Qp (r � 1), then

(A.1.1) vp(� pr � 1) =
1

' (pr )
=

1
pr � 1(p � 1)

by [Neu99 , Proposition 7.13, Chapter II]. For any integerk � 2,

(A.1.2) vp((1 + p)k � 1) � 1:

For any integer k � 2 and 16= � 2 � p1 (Zp),

� (1 + p)k � 1 =
�
(� � 1)(1 + p)k

�
+

�
(1 + p)k � 1

�

gives

(A.1.3) vp(� (1 + p)k � 1) = vp(� � 1)

by equations (A.1.1), (A.1.2).
Let K=Qp denote a �nite extension contained insideQp. Let $ denote a uniformizer of

OK .

Lemma A.1.1. Let f (X ) 2 O K [X ] be a distinguished polynomial of degreed � 1. Let k � 2
denote an integer and� pr denote a primitivepr -th root of unity. Then

vp(f (� pr (1 + p)k � 1)) =
d

pr � 1(p � 1)

for r � 0.

Proof. Write

f (X ) = c0 + c1X + � � � + cd� 1X d� 1 + X d

with c0; � � � ; cd� 1 2 $ OK . Let t denote the least nonnegative integer such thatct 6= 0. Put
cd = 1. So

f (X ) = ctX t + � � � + cdX d:
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If t = m, then

vp(f (� pr (1 + p)k � 1)) = vp

�
cd(� pr (1 + p)k � 1)d

�

= dvp(� pr (1 + p)k � 1)

= dvp(� pr � 1) (by equation (A.1.3))

=
d

pr � 1(p � 1)
(by equation (A.1.1)):

Now let t < d . Note that

vp(ct (� pr (1 + p)k � 1)t ) = vp(ct ) +
t

' (pr )
; � � � ; vp(cd(� pr (1 + p)k � 1)d) = vp(cd) +

d
' (pr )

:

So for anyt � s < d,

vp(cs(� pr (1 + p)k � 1)s) > v p(cd(� pr (1 + p)k � 1)d)

as r � 0. Hence the lemma. �

A.2. Divisibility in OK [[X ]]

Let mZp
denote the maximal ideal ofZp. The symbol � will be used to denote elements

of mZp
. For � 2 mZp

and any �nite extension L=Qp, the map

OL [[X ]] ! Zp; X 7! �

is denoted by� by abuse of notation.

Lemma A.2.1. Let �; � be two elements ofOK [[X ]] with � 6= 0. Suppose that� (� ) divides
� (� ) for almost all � 2 mZp

. Then � divides � in OK [[X ]].

Proof. Suppose that� is zero. By Weierstrass preparation theorem,

� (X ) = $ aP(X )U(X ); � (X ) = $ bQ(X )V(X )

where a; b are nonnegative integers,U(X ); V(X ) are units in OK [[X ]] and P(X ); Q(X ) 2
OK [X ] are distinguished polynomials. Without loss of generality, we assume thatU(X ); V(X )
are equal to 1. Put

P(X ) = a0 + a1X + � � � + am� 1X m� 1 + X m ;

Q(X ) = b0 + b1X + � � � + bn� 1X n� 1 + X n

with ai ; bj 2 $ OK , m; n 2 Z � 0. When m; n are zero, we interpretP(X ); Q(X ) as 1.

We have
vp(� (� pr (1 + p)k � 1)) � vp(� (� pr (1 + p)k � 1))

wheneverk � 0; r � 0. Note that lemma A.1.1 remains valid even whend = 0. So lemma
A.1.1 gives

avp($ ) +
m

pr � 1(p � 1)
� bvp($ ) +

n
pr � 1(p � 1)

for r � 0. Thus a � b. So we may assume thata � 0; b= 0.
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Write

� (X ) = Q(X ) =
IY

i =1

(X � � i )n i

with � i 2 Zp. Note that � 2 mZp
. Let L=K denote a �nite extension containing� 1; � � � ; � I .

So it su�ces to prove that if � (X � � ) divides � ($ aP(X )) in Zp for almost all � 2 mZp
(with

� 2 mZp
\ O L ), then X � � divides $ aP(X ) in OL [X ], which is immediate. �

A.3. Divisibility in R

Let K denote the fraction �eld of OK [[X ]]. For an extensionL=K contained in K, the
integral closure ofOK [[X ]] in L is denoted byOL . Let R denote a �nite type OK [[X ]]-
subalgebra ofOK . Its integral closure in its fraction �eld is denoted byR int .

Lemma A.3.1. Let �; � be two elements ofR with � 6= 0. Suppose that for almost all
� 2 HomOK -alg(R ; Zp), � (� ) divides � (� ) in Zp. Then � divides � in R int .

Proof. Let L=K denote a �nite Galois extension containing�; � . SinceOL is a �nite type
R-algebra,� (� ) divides � (� ) in Zp for almost all � 2 HomOK -alg(OL ; Zp).

For each � 2 HomOK -alg(OK [[X ]]; Zp), we �x a lift e� 2 HomOK -alg(OL ; Zp). Note that
for any � 2 Gal(L=K), e� � � is also an element of HomOK -alg(OL ; Zp). For almost all � 2
HomOK -alg(OK [[X ]]; Zp), the images of the coe�cients of

P(Y) =
Y

� 2 Gal( L =K )

(Y � � (�=� ))

under e� are elements ofZp. SinceP(Y) has coe�cients in K ((X )), the images of its coe�-
cients under� are elements ofZp for almost all � 2 HomOK -alg(OK [[X ]]; Zp). In particular,
the images of the coe�cients ofP(Y) under � are elements ofZp for almost all � 2 mZp

. By
lemma A.2.1,P(Y) has coe�cients in OK [[X ]]. So the element�=� of Frac(R) is integral
over OK [[X ]] and hence is an element ofR int .

�

A.4. Divisibility in R[[T]]

Let O[[T]] denote theZp-subalgebra ofZp[[T]] spanned by the subsetsOL [[T]] whereL
ranges over all �nite extensions ofQp. Note that O[[T]] is smaller than Zp[[T]] and each
element ofO[[T]] lie in OL [[T]] for some �nite extensionL=Qp (depending on the element).

Proposition A.4.1. Let f (T); g(T) be two elements ofR [[T]] whereg(T) 6= 0. Suppose that
� (g(T)) divides � (f (T)) in O[[T]] for almost all � in HomOK -alg(R ; Zp). Then g(T) divides
f (T) in R int [[T]].

Proof. Write
f (T) = a0 + a1T + � � � ; g(T) = b0 + b1T + � � � :

Note that for an integer r � 1, if T r divides g(T), then it also dividesf (T). So without loss
of generality, we may assume thatb0 6= 0. Let

h(T) = c0 + c1T + � � � 2 Frac(R)[[T]]
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be such that
f (T) = h(T)g(T);

i.e., c0; c1; � � � 2 Frac(R) are de�ned by
X

i + j = n

ci bj = an :

Since� (c0) is an element ofZp for almost all � 2 HomOK -alg(R ; Zp), by lemma A.3.1,c0

belongs toR int . Suppose thatc0; � � � ; cn are elements ofR int . Then the image of

cn+1 =
an+1 �

P n
i =0 ci bn+1 � i

b0

under � is an element ofZp for almost all � 2 HomOK -alg(R ; Zp). By lemma A.3.1,cn+1 2 R int .
By induction, ci 2 R int for all i 2 Z � 0.

�

A.5. Integrality of determinants

Let O be a �nite type OK -subalgebra ofZp. Let O int denote the integral closure ofO in
its fraction �eld and M denote a �nitely generated torsionO[[T]]-module. Suppose thatM
is a perfectO[[T]]-module. The image of detO[[T ]]M in Frac(O[[T]]) (considered without the
grade) under the composite map

detO[[T ]]M ,!
�
detO[[T ]]M

�

 O[[T ]] Frac(O[[T]])

�= detFrac( O[[T ]])

�
M 
 O[[T ]] Frac(O[[T]])

�
(by proposition 2.1.2)

= det Frac( O[[T ]]) (0)

= (Frac( O[[T]]); 0)

is free and hence equal to (�=� )O[[T]] for some nonzero elements�; � of O[[T]].

Proposition A.5.1. We have

(A.5.1) charO int [[T ]](M 
 O[[T ]] O int [[T]]) =
�
�

O int [[T]]:

Consequently, the element� divides � in O int [[T]].

Proof. The image of detO[[T ]]M in Frac(O[[T]]) (considered without the grade) under the
composite map

detO int [[T ]]

�
M 
 O[[T ]] O int [[T]]

�
,!

�
detO int [[T ]](M 
 O[[T ]] O int [[T]])

�

 O int [[T ]] Frac(O[[T]])

�= detFrac( O[[T ]])

�
(M 
 O[[T ]] O int [[T]]) 
 O int [[T ]] Frac(O[[T]])

�

= det Frac( O[[T ]]) (0)

= (Frac( O[[T]]); 0)

is
�
charO int [[T ]](M 
 O[[T ]] O int [[T]])

� � 1
. So equation (A.5.1) holds and hence� divides � in

O int [[T]]. �
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