Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Benato, Francesca (2008) Analisi in vivo dello sviluppo del pancreas di zebrafish. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The vertebrate pancreas is an endoderm-derived organ composed by an endocrine portion with cells secreting hormones, such as insulin, glucagon somatostatin, pancreatic polipeptide and ghrelin in the blood flow, and an exocrine one that releases digestive enzimes in the gut lumen.
One of the first decisions in the pancreatic differentiation is between endocrine and exocrine cell fates. The transcription factor ptf1a is an essential gene involved in the exocrine differentiation. In these years zebrafish has been widely employed as a model to study genes involved in endoderm and endoderm-derived organs specification and differentiation. This study is possible because genes and molecular mechanism implicated in embryonic development are highly conserved between this animal model and higher vertebrates. Despite several works done in the last years, the knowledge of molecular mechanisms underlying pancreatic development and differentiation in zebrafish is incomplete and many factors involved in this process are still unknown.
During these three years I produced a zebrafish transgenic line in which the GFP is directed in the exocrine pancreas by 5,5 kbp of ptf1a upstream regulatory region. This work gave us a new useful "tool" to clarify pancreatic organogenesis and to understand how ptf1a itself is regulated. The same ptf1a promotorial region was cloned upstream the DsRed gene with a new system called Tol2 that is able to increase the transgene integration rate in the zebrafish germinal cells genome. This strategy allowed us to obtain a transgenic zebrafish line that can be crossed to many transgenic lines where GFP is under the control of different tissue-specific promoters.
In order to determine what is the minimum ptf1a promoter region necessary to drive GFP expression in the zebrafish exocrine pancreas, 2,6 kbp of that region were also cloned. In this case I observed a ubiquitous GFP expression. With the aim to better clarify the genetics of pancreatic development in zebrafish I undertook a large-scale genetic screen, which took place at the Max Planck Institute in Tuebingen (Germany), using zebrafish larvae obtained from lines mutagenized with the chimical ENU. During that period I screened for the presence of defects in the insulin expression, detected by in situ hybridization; more than 1200 families were analyzed. One of the mutants identified, in which insulin was absent, was characterized and mapped, in collaboration with Prof. Dirk Meyer. Candidate gene analysis detected a new mutation in the raldh2 (ald1a2) gene, causing a phenotipe similar to the zebrafish mutant neckless. During that period, the astrocytes marker gfap was also used, to detect astroglial cell defects in the screened embryos. For two out of nine mutant families with defects in gfap expression I determined, in collaboration with Prof. Robert Geisler, the linkage group bearing the mutation responsible of the observed phenotype.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Bortolussi, Marino
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:zebrafish, pancreas, ptf1a, ibridazione in situ, GFP
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:696
Depositato il:25 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Alexander,J, and Stainier, D.Y. (1999). A molecular pathway leading to endoderm formation in zebrafish. Curr Biol. 9(20):1147-57. Cerca con Google

2. Amsterdam, A, Lin, S, Hopkins, N. (1995). The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev Biol. 171(1):123-9. Cerca con Google

3. Argenton, F, Zecchin, E, Bortolussi, M. (1999). Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech Dev. 87(1-2):217-21. Cerca con Google

4. Bastien, J, Rochette-Egly, C. (2004). Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 328:1-16. Cerca con Google

5. Begemann G, Schilling TF, Rauch GJ, Geisler R, Ingham PW. (2001). The zebrafish neckless mutation reveals a requirement for raldh2 in mesodermal signals that pattern the hindbrain. Development. 128(16):3081-94. Cerca con Google

6. Berggren, K, McCaffery, P, Dräger, U, Forehand, C.J. (1999). Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. Dev Biol. 210(2):288-304. Cerca con Google

7. Biemar, F, Argenton, F, Schmidtke, R, Epperlein, S, Peers, B, Driever, W. (2001). Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol. 230(2):189-203. Cerca con Google

8. Bort,R, Martinez-Barbera, J.P., Beddington, R.S., Zaret, K.S. (2004). Hex homeobox gene-dependent tissue positioning is required for organogenesis of the ventral pancreas. Development. 131(4):797-806. Cerca con Google

9. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J.R., Cumano, A., Roux, P., Black, R.A., Israel, A. (2000). A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol Cell 5: 207-16. Cerca con Google

10. Chalfie, M, Tu, Y, Euskirchen, G, Ward, W.W, Prasher, D.C. (1994). Green fluorescent protein as a marker for gene expression. Science. 263(5148):802-5. Cerca con Google

11. Chen, Y, and Schier, A.F., (2001). The zebrafish Nodal signal Squint functions as a morphogen. Nature. 411(6837): 607-10. Cerca con Google

12. Chen, Y, Pan, F.C., Brandes, N, Afelik, S, Sölter, M, Pieler, T. (2004). Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Dev Biol. 271(1):144-60. Cerca con Google

13. Clément-Lacroix, P, Ai, M, Morvan, F, Roman-Roman, S, Vayssière, B, Belleville C, Estrera K, Warman ML, Baron R, Rawadi G. (2005). Lrp5- independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A. 102(48):17406-11. Cerca con Google

14. Cockell, M, Stevenson, B.J., Strubin, M, Hagenbüchle, O, Wellauer, P.K. (1989). Identification of a cell-specific DNA-binding activity that interacts with a transcriptional activator of genes expressed in the acinar pancreas. Mol Cell Biol. 9(6):2464-76. Cerca con Google

15. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398: 518-22. Cerca con Google

16. Dick, A, Mayr, T, Bauer, H, Meier, A, Hammerschmidt, M. (2000). Cloning and characterization of zebrafish smad2, smad3 and smad4. Gene. 246(1- 2):69-80. Cerca con Google

17. DiIorio, P.J., Moss, J.B., Sbrogna, J.L., Karlstrom, R.O., Moss L.G. (2002). Sonic hedgehog is required early in pancreatic islet development. Dev Biol. 1;244(1):75-84 Cerca con Google

18. Dougan, S.T., Warga R.M., Kane D.A., Schier, A.F., Talbot, W.S. (2003). The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development. 130(9):1837-51. Cerca con Google

19. Esni, F, Ghosh, B, Biankin, A.V., Lin, J.W., Albert, M.A., Yu, X., MacDonald, R.J., Civin, C.I., Real, F.X., Pack, M.A., Ball, D.W., Leach, S.D. (2004). Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas. Development. 131(17):4213-24. Cerca con Google

20. Field, H.A, Dong, P.D., Beis, D, Stainier, D.Y. (2003). Formation of the digestive system in zebrafish. II. Pancreas morphogenesis. Dev Biol. 261(1):197-208. Cerca con Google

21. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L., Haass, C. (2002). A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3, 688-94. Cerca con Google

22. Grandel, H, Lun, K, Rauch, G.J., Rhinn, M, Piotrowski, T, Houart, C,Sordino, P, Küchler, A.M., Schulte-Merker,S, Geisler, R, Holder, N, Wilson, S.W., Brand, M, (2002). Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anteriorposterior Cerca con Google

23. axis of the CNS and to induce a pectoral fin bud. Development. 129(12):2851-65. Cerca con Google

24. Grunwald, D.J., Streisinger, G. (1992). Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea. Genet Res. 59(2):103-16. Cerca con Google

25. Haffter, P, Granato, M, Brand, M, Mullins, M.C., Hammerschmidt, M, Kane, D.A., Odenthal, J, van Eeden, F.J., Jiang, Y.J., Heisenberg, C.P., Kelsh, R.N., Furutani-Seiki, M, Vogelsang, E, Beuchle, D, Schach, U, Fabian, C, Nüsslein- Volhard, C. (1996). The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 123:1-36. Cerca con Google

26. Harrison, C. A., Gray, P.C.,Vale, W.W., Robertson, D. M. (2005). Antagonists of activin signaling: mechanisms and potential biological applications. Trends Endocrin Metab. 16(2): 73-8 Cerca con Google

27. Hebrok, M, Kim, S.K., Melton, D.A. (1998). Notochord repression of endodermal Sonic hedgehog permits pancreas development. Genes Dev. 12(11):1705-13. Cerca con Google

28. Heldin, C.H., Miyazono, K., ten Dijke, P. (1997). TGF-b signaling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-71. Cerca con Google

29. Heller RS, Dichmann DS, Jensen J, Miller C, Wong G, Madsen OD, Serup P. (2002). Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Dev Dyn. 225(3):260-70. Cerca con Google

30. Higashijima, S, Hotta, Y, Okamoto, H. (2000) Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the islet-1 promoter/enhancer. J Neurosci. 20(1):206- 18. Cerca con Google

31. Horb, M.E., Slack, J.M. (2001). Endoderm specification and differentiation in Xenopus embryos. Dev Biol. 15;236(2):330-43 Cerca con Google

32. Itoh, Y, Kawamata, Y, Harada, M, Kobayashi, M, Fujii, R, Fukusumi, S, Ogi, K, Hosoya, M, Tanaka, Y, Uejima, H, Tanaka, H, Maruyama, M, Satoh, R, Okubo, S, Kizawa, H, Komatsu, H, Matsumura, F, Noguchi, Y, Shinohara, T, Hinuma, S, Fujisawa, Y, Fujino, M. (2003). Free fatty acids regulate insulin Cerca con Google

33. secretion from pancreatic beta cells through GPR40. Nature. 422(6928):173-6. Cerca con Google

34. Joore, J, van der Lans, G.B., Lanser, P.H., Vervaart, J.M., Zivkovic, D,Speksnijder, J.E., Kruijer,W. (1994). Effects of retinoic acid on the expression of retinoic acid receptors during zebrafish embryogenesis. Mech Dev. 46(2):137-50. Cerca con Google

35. Kawaguchi, Y, Cooper, B, Gannon, M, Ray, M, MacDonald, R.J, Wright, C.V. (2002). The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 32(1):128-34. Cerca con Google

36. Kawakami, K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8 Suppl 1:S7. Cerca con Google

37. Kawakami, K, Takeda, H, Kawakami, N, Kobayashi, M, Matsuda, N, Mishina, M. (2004). A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell. 7(1):133-44. Cerca con Google

38. Kikuchi, Y, Verkade, H, Reiter, J.F., Kim, C.H., Chitnis, A.B., Kuroiwa, A, Stainier, D.Y. (2004). Notch signaling can regulate endoderm formation in zebrafish. Dev Dyn. 229(4):756-62.9 Cerca con Google

39. Kim, H.J, Schleiffarth, J.R, Jessurun, J, Sumanas, S, Petryk, A, Lin, S, Ekker, S.C. (2005). Wnt5 signaling in vertebrate pancreas development. BMC Biol. 24 (3):23. Cerca con Google

40. Kim, S.K., Melton, D.A. (1998). Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proc Natl Acad Sci USA. 95(22):13036-41. Cerca con Google

41. Krapp, A, Knöfler, M, Frutiger, S, Hughes, G.J., Hagenbüchle, O, Wellauer, P.K. (1996). The p48 DNA-binding subunit of transcription factor PTF1 is a new exocrine pancreas-specific basic helix-loop-helix protein. EMBO J. 15(16):4317-29. Cerca con Google

42. Krapp, A, Knöfler, M, Ledermann, B, Bürki, K, Berney, C, Zoerkler, N, Hagenbüchle, O, Wellauer, P.K. (1998). The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 12(23):3752-63 Cerca con Google

43. Kumar, M, Jordan, N, Melton, D, Grapin-Botton, A. (2003). Signals from lateral plate mesoderm instruct endoderm toward a pancreatic fate. Dev Biol. 259(1):109-22. Cerca con Google

44. Kunwar, P.S., Zimmerman, S, Bennett, J.T., Chen, Y, Whitman, M, Schier, A.F. (2003). Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development. 130(23):5589-99. Cerca con Google

45. Lai, E.C. (2004). Notch signaling: control of cell communication and cell fate. Development 131, 965-73. Cerca con Google

46. Lin JW, Biankin AV, Horb ME, Ghosh B, Prasad NB, Yee NS, Pack MA, Leach SD. (2004). Differential requirement for ptf1a in endocrine and exocrine lineages of developing zebrafish pancreas. Dev Biol. 270(2):474-86. Cerca con Google

47. Manfroid, I, Delporte, F, Baudhuin, A, Motte, P, Neumann, C.J, Voz, M.L, Martial, J.A, Peers, B. (2007). Reciprocal endoderm-mesoderm interactions mediated by fgf24 and fgf10 govern pancreas development. Development. 134(22):4011-21. Cerca con Google

48. Martin, P.J., Lardeux, V, Lefebvre, P. (2005). The proliferating cell nuclear antigen regulates retinoic acid receptor transcriptional activity through direct protein-protein interaction. Nucleic Acids Res. 33(13):4311-21. Cerca con Google

49. Meng, A, Tang, H, Ong, B.A., Farrell, M.J., Lin, S. (1997). Promoter analysis in living zebrafish embryos identifies a cis-acting motif required for neuronal expression of GATA-2. Proc Natl Acad Sci U S A. 94(12):6267-72. Cerca con Google

50. Milewski, W.M., Duguay, S.J., Chan, S.J., Steiner, D.F. (1998). Conservation of PDX-1 structure, function, and expression in zebrafish. Endocrinology. 139(3):1440-9. Cerca con Google

51. Miller, J.R. (2002). The Wnts. Genome Biol. 3. Cerca con Google

52. Mohammadi, M, McMahon, G, Sun, L, Tang, C, Hirth, P, Yeh, B.K., Hubbard, S.R., Schlessinger, J. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science. 276(5314):955-60. Cerca con Google

53. Mollard R, Ghyselinck NB, Wendling O, Chambon P, Mark M. (2000). Stagedependent responses of the developing lung to retinoic acid signaling. Int J Dev Biol. 44(5):457-62. Cerca con Google

54. Molotkov, A, Molotkova, N, Duester, G. (2005). Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 232(4):950-7. Cerca con Google

55. Murtaugh, L.C. (2007). Pancreas and beta-cell development: from the actual to the possible. Development. 134(3):427-38. Review. Cerca con Google

56. Niederreither K, Subbarayan V, Dollé P, Chambon P. (1999). Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet. 21(4):444-8. Cerca con Google

57. Obata, J, Yano, M, Mimura, H, Goto, T, Nakayama, R, Mibu, Y, Oka, C, Kawaichi, M. (2001). p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF- 1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos. Genes Cells. 6(4):345-60. Cerca con Google

58. Odenthal, J,Nüsslein-Volhard, C. (1998). fork head domain genes in zebrafish. Dev Genes Evol. 208(5):245-58. Cerca con Google

59. Ohlsson, H, Karlsson, K, Edlund, T. (1993). IPF1, a homeodomain-containing transactivator of the insulin gene. EMBO J. 12(11):4251-9. Cerca con Google

60. Park, H.C, Kim, C.H, Bae, Y.K, Yeo, S.Y, Kim, S.H, Hong, S.K, Shin, J, Yoo, K.W, Hibi, M, Hirano, T, Miki, N, Chitnis, A.B, Huh, T.L. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev Biol. 2000 Nov Cerca con Google

61. 15;227(2):279-93. Cerca con Google

62. Pauls, S, Zecchin, E, Tiso, N, Bortolussi, M, Argenton, F. (2007). Function and regulation of zebrafish nkx2.2a during development of pancreatic islet and ducts. Dev Biol. 304(2):875-90. Cerca con Google

63. Pogoda, H.M., Solnica-Krezel, L., Driever, W., Meyer, D. (2000). The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr Biol. 10(17):1041-9 Cerca con Google

64. Poulain, M, Lepage, T. (2002). Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development. 129(21):4901-14. Cerca con Google

65. Prado, C.L., Pugh-Bernard, A.E. , Elghazi, L, Sosa-Pineda, B, Sussel, L. (2004). Ghrelin cells replace insulin-producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci U S A. 101(9):2924-9. Cerca con Google

66. Rebay, I., Fleming, R.J., Fehon, R.G., Cherbas, L., Cherbas, P., Artavanis- Tsakonas, S. (1991). Specific EGF repeats of Notch mediate interactions with Delta and Serrate: Implications for Notch as a multifunctional receptor. Cell 67: 687-99. Cerca con Google

67. Reiter JF, Kikuchi Y, Stainier DY. (2001). Multiple roles for Gata5 in zebrafish endoderm formation. Development. 128(1):125-35. Cerca con Google

68. Rohr, K.B., Concha, M.L. (2000) Expression of nk2.1a during early development of the thyroid gland in zebrafish. (2000) Mech Dev. 95(1- 2):267-70. Cerca con Google

69. Ross, S.A., McCaffery, P.J., Drager, U.C., De Luca, L.M. (2000). Retinoids in embryonal development. Physiol Rev. 80(3):1021-54. Review. Cerca con Google

70. Roy, S, Qiao, T, Wolff, C, Ingham, P.W. (2001). Hedgehog signaling pathway is essential for pancreas specification in the zebrafish embryo. Curr Biol. 11(17):1358-63. Cerca con Google

71. Scarpe, C.R. (1992). Two isoforms of retinoic acid receptor alpha expressed during Xenopus development respond to retinoic acid. Mech Dev. 39(1-2):81-93. Cerca con Google

72. Shen, C.N., Marguerie, A, Chien, C.Y., Dickson, C, Slack, J.M., Tosh, D. (2007). All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas. Differentiation. 75(1):62-74. Cerca con Google

73. Sirotkin, H.I., Gates, M.A., Kelly, P.D., Schier, A.F., Talbot, W.S. (2000). Fast1 is required for the development of dorsal axial structures in zebrafish. Curr Biol.10(17):1051-4. Cerca con Google

74. Solnica-Krezel, L, Schier, A.F., Driever, W. (1994). Efficient recovery of ENUinduced mutations from the zebrafish germline. Genetics. 136(4):1401-20. Cerca con Google

75. Song, J, Kim, H.J., Gong, Z, Liu, N.A., Lin, S. (2007).Vhnf1 acts downstream of Bmp, Fgf, and RA signals to regulate endocrine beta cell development in zebrafish. Dev Biol. 303(2):561-75. Cerca con Google

76. Stafford, D, Hornbruch, A, Mueller, P.R., Prince, V.E. (2004). A conserved role for retinoid signaling in vertebrate pancreas development. Dev Genes Evol. 214(9):432-41. Cerca con Google

77. Stafford, D, Prince, V.E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Curr Biol. 12(14):1215-20. Cerca con Google

78. Stafford, D, White, R.J., Kinkel, M.D., Linville, A, Schilling, T.F., Prince, V.E. (2006 ). Retinoids signal directly to zebrafish endoderm to specify insulinexpressing beta-cells. Development. 133(5):949-56. Cerca con Google

79. Stainier, D.Y. (2002). A glimpse into the molecular entrails of endoderm formation. Genes Dev. 16(8):893-907. Review. Cerca con Google

80. Tiso, N, Filippi, A, Pauls, S, Bortolussi, M, Argenton, F. (2002).BMP signalling regulates anteroposterior endoderm patterning in zebrafish. Mech Dev. 118(1-2):29-37. Cerca con Google

81. Wallace, K.N., Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol. 255(1):12-29. Cerca con Google

82. Wallace, K.N., Yusuff, S, Sonntag, J.M., Chin, A.J., Pack, M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality.Genesis. 30(3):141-3. Cerca con Google

83. Warga, R.M., Nüsslein-Volhard, C. (1999). Origin and development of the zebrafish endoderm. Development 126: 827-38. Cerca con Google

84. Warga, R.M.,and Stainier, D.Y. (2002). The guts of endoderm formation. Results Probl Cell Differ. 40:28-47. Review. Cerca con Google

85. Wells, J.M., and Melton D.A. (2000). Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development. 127(8): 1563- 72. Cerca con Google

86. Wendik, B, Maier, E, Meyer, D. (2004). Zebrafish mnx genes in endocrine and exocrine pancreas formation. Dev Biol. 268(2):372-83. Cerca con Google

87. Westerfield, M. (1995). The Zebrafish Book-A guide for laboratory use of the zebrafish, University of Oregon Press, Eugene, OR. Cerca con Google

88. Wierup, N, Svensson, H, Mulder, H, Sundler, F. (2002).The ghrelin cell: a novel developmentally regulated islet cell in the human pancreas. Regul Pept. 107(1-3):63-9. Cerca con Google

89. Yee, N.S., Lorent,K, Pack, M. (2005). Exocrine pancreas development in zebrafish. Dev Biol. 284(1):84-101. Cerca con Google

90. Zecchin, E, Filippi, A, Biemar, F, Tiso, N, Pauls, S, Ellertsdottir, E, Gnügge, L, Bortolussi, M, Driever ,W, Argenton, F. (2007). Distinct delta and jagged genes control sequential segregation of pancreatic cell types from precursor pools in zebrafish. Dev Biol. 301(1):192-204. Cerca con Google

91. Zecchin, E, Mavropoulos, A, Devos, N, Filippi, A, Tiso, N, Meyer, D, Peers, B, Bortolussi, M, Argenton, F. (2004). Evolutionary conserved role of ptf1a in the specification of exocrine pancreatic fates. Dev Biol. 268(1):174-84. Cerca con Google

92. Zhao, D, McCaffery, P, Ivins, K.J., Neve, R.L., Hogan, P., Chin, W.W., Dräger, U.C. (1996). Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur J Biochem. 240(1):15-22. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record