Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Calvi, Valentina (2014) Searching for High-redshift Galaxies in Hubble Space Telescope Deep Data. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
22Mb

Abstract (inglese)

The history of our Universe spans 13.7 billions of years and could be divided into several stages from the Big Bang up to now.
Around 370 000 years after the Big Bang (z~1100) the temperature of the Universe low- ered enough for the first simple atoms to form. Matter and radiation decoupled, and the Universe became transparent to radiation. Cosmic microwave background (CMB) photons that we detect nowadays were last scattered at z~1100 and, since then, have been traveling in straight line. This is the reason why CMB is usually defined as the picture of the Universe at that redshift. Right after the CMB was emitted, the Universe entered the so called Dark Ages when no sources of light exist. Studying the early Universe, one of the most important phases is the subsequent phase-transition named reionization, i.e. the process that reionized the matter in the Universe after the formation of the first sources of light, namely the first stars and galaxies. Consequently, the detection and study of these objects are the key to unveil the early stages of the history of the Universe.
Imaging plays a more important role than spectroscopy in searching for high-redshift galaxies because it permits to observe more objects at the same time, better managing the telescope time. Deep surveys, obtained by observing the same sky area for several days, are the answer to the need for detections of high-redshift galaxies.
This thesis is focused on the study of the galaxy population existing when the Universe was less than 1.5 Gyr old. When studying the early Universe, the detection of high-redshift sources depends strongly on the detection limit of the survey and the surface brightness of the objects themselves. Taking this into account, we made use of the deepest datasets currently available obtained with the Hubble Space Telescope (HST) in both the optical and near-infrared (NIR) domain to carefully study how these two issues affect the identification and photometry of high-redshift galaxies.
The important role played by high-redshift galaxies in cosmic reionization is no longer debated and, lately, most of studies agreed on the key relevance of galaxies that are below the current detection limit. While we are waiting for the James Webb Space Telescope (JWST) to directly observe these faint galaxies, finding an alternative way to estimate their overall light contribution is mandatory. To this aim we developed a technique based on the power spectrum to analyze background fluctuations. Relying on a Lyman break-like approach we compared the power spectra of background signal derived from observations obtained in two adjacent bands to identify the light contribution from a population of galaxies lying within a specific redshift range. Then, Monte Carlo simulations permitted us to disentangle the information embedded in the light excess identified via power spectra, in particular deriving a constraint on the faint-end slope of the luminosity function.
The UDF05 dataset, follow-up of the original Hubble Ultra Deep Field (HUDF), consists in observations in the optical bands obtained with the Advanced Camera for Survey (ACS). It permitted us to constrain the slope of the luminosity function at z~6 (0.95 Gyr after the Big Bang), which turned out the be steep enough to allow bright and faint galaxies at that redshift to account for the ionizing photon budget required for cosmic reionization.
The subsequent analysis aimed at deriving similar constraints on the faint-end slope of the luminosity function at z~7-8 (between 0.64 and 0.77 Gyr after the Big Bang) using deep observations in the near-infrared obtained with the infrared channel of the Wide Field Camera 3 (WFC3-IR) during the HUDF09 program.
Regarding z ∼ 8, the quality of the NIR dataset did not permit to disentangle any light produced by the faint galaxy population from the background noise and spurious signals. On the basis of the drop in the star formation rate density from z~6 to z~7 and beyond, there should be a more relevant contribution in terms of photoionizing photons at z~7 than at z~8 and we expected to be able to detect it. Unfortunately, the analysis at z~7 implied dealing with different detectors that are characterized by systematics that can not be erased by simply considering the ratio of the power spectra. Up to now the understanding of all WFC3/IR related problems is not as good as for ACS and a fur- ther analysis is needed before being able to use the IR dataset for the analysis of surface brightness fluctuations.
Since a perfect reduction procedure of the images turned out to be an essential requirement to study any background signal, we performed an advanced data reduction to get an improved version of the deepest image of the Universe currently available, the so called eXtreme Deep Field (XDF). The goal was to create an image that allows to verify our findings on the faint-end slope of the luminosity function at z~6 since the XDF did not permit us to get any constraint on background fluctuations. We started from raw frames obtained from several proposals over 10 years and created hyperbiases and hyperdarks taking into account all the issues affecting ACS data, including the minor ones such as the herringbone effect. Then, we masked the satellite trails, aligned all the frames, and corrected for the chip-to-chip jump. We are still working on the dataset, in particular we are focused on modelling and correcting for the electronic ghost. Anyway, the preliminary check on photometry suggests a promising, even though small, achievement in term of signal to noise of the sources.
The effect of surface brightness on the detection of primordial galaxies in deep surveys is directly depending on the cosmological surface brightness dimming that can be express in the form (1 + z)−4 and that affects all the sources. The strong dependence of surface brightness dimming with increasing redshift suggests the presence of a selection bias when searching for high-redshift galaxies, i.e. we tend to detect only those galaxies with a high surface brightness. Unresolved knots of emission are not affected by surface brightness dimming, thus allowing, in principle, to test clumpiness within high-redshift galaxies. We followed an empirical approach based on HST legacy datasets characterized by different depth to study the surface brightness dimming of galaxies. We selected a sample of Lyman-break galaxies at z~4 (1.5 Gyr after the Big Bang) detected in the XDF, HUDF, and the Great Observatories Origins Deep Survey (GOODS) datasets and found no significant trend when comparing the total magnitudes measured from images with different depth. Then, we compared our results to the prediction for mock sources derived from Monte Carlo simulations. In particular, considering different surface brightness profiles for the mock galaxies we were able to rule out all the extended profiles as fit for our data, getting a confirmation on the clumpy distribution of the light in high-redshift galaxies.
The study of cosmological surface brightness dimming is also important since it could affect our prediction of what the upcoming JWST can observe at higher redshifts, where younger galaxies may exhibit a larger fraction of clumpiness. Our direct comparison showing that galaxies detected in GOODS do not become significantly brighter in the HUDF suggests that most of their light is compact and hints to the fact that JWST will likely not find diffuse star forming components.
Finally, to complete the study on high-redshift galaxies we also focused on lower-redshift galaxies that could enter the high-redshift sample due to photometric scatter. In general
interlopers are galaxies at z~1-2 showing colors similar to those of real dropout galaxies due to the 4000 A break. Even though their colors are likely to include them in the dropout sample, contaminants have a non negligible detection in the bands blueward of the Lyman-break.
The preliminary study we performed using the multi-wavelength catalog obtained from CANDELS GOODS-South shows that the number counts of contaminants are significantly different from those of dropout galaxies at z~5-6 suggesting a clear difference in the luminosity functions of the two populations and little or no evolution in the population of interlopers entering the sample at different redshifts. Finally, we used the 3D-HST catalogs for the GOODS-South field that provided us with photometric data in ground based, HST, and Spitzer/IRAC bands as well as with photometric redshfits. This catalog allowed a study on the interlopers at z~4-5.

Abstract (italiano)

I 13.7 miliardi di anni di storia dell’Universo possono essere suddivisi in diverse fasi a partire dal Big Bang fino ad arrivare al giorno d’oggi. Dopo l’emissione della radiazione cosmica di fondo (CMB) avvenuta 370 000 anni dopo il Big Bang (z~1100), in seguito al disaccoppiamento fra materia e radiazione l’Universo e' divenuto trasparente a quest’ultima dando inizio alla fase chiamata eta' oscura (“Dark Ages”), durante cui non era presente alcuna sorgente di luce. Nello studio dell’Universo primordiale riveste un ruolo chiave lo studio della transizione di fase, nota come reionizzazione, avvenuta in seguito alla nascita delle prime stelle e galassie. Lo studio delle prime sorgenti di luce che hanno popolato l’Universo e', quindi, la chiave per scoprire l’Universo primordiale e capirne l’evoluzione.
La ricerca di galassie ad alto redshift ha ottenuto una spinta fondamentale grazie alla fotometria e alle tecniche basate sull’acquisizione di immagini che, a differenza della spettroscopia, permettono lo studio simultaneo di piu` oggetti, ottimizzando il tempo di osservazione con i telescopi. In particolare le survey profonde, ottenute osservando la medesima regione di cielo per piu' giorni, sono la risposta alla necessita' di identificare il maggior numero possibile di oggetti.
Questa tesi e' focalizzata sullo studio delle prime galassie, gia' formate a meno di 1.5 miliardi di anni dal Big Bang. Lo studio dell’Universo primordiale dipende fortemente sia dal limite in magnitudine delle survey che dalla brillanza superficiale delle galassie che vogliamo osservare. Per caratterizzare l’effetto di entrambi questi fattori, in questa tesi abbiamo analizzato dati ottenuti con il telescopio spaziale Hubble (HST) sia nelle bande ottiche, che in quelle del vicino infrarosso (IR). L’obiettivo del nostro studio e' stato capire come questi effetti influiscano e limitino l’identificazione e la caratterizzazione fotometrica delle galassie ad alto redshift.
Il ruolo chiave giocato dalle prime galassie nell’ambito del processo di reionizzazione e' ormai assodato, ma studi recenti hanno mostrato come le galassie meno brillanti, e dunque al di sotto dell’attuale limite di osservabilita', possano aver avuto un’importanza maggiore rispetto alle galassie brillanti che sono state identificate fino ad ora. In attesa che il telescopio spaziale James Webb (JWST) possa osservare direttamente queste galassie poco brillanti, e' fondamentale trovare un modo alternativo per stimare quale sia il con- tributo di luce totale proveniente da questi oggetti. Proprio a tale scopo abbiamo sviluppato una tecnica, basata sull’utilizzo dello spettro di potenza, per analizzare le fluttuazioni del segnale di background. Basandoci su un approccio simile al tecnica del Lyman-break, utilizzata comunemente per l’identificazione di galassie ad alto redshift, abbiamo confrontato lo spettro di potenza del segnale di fondo in due bande adiacenti per isolare la luce prodotta da una popolazione di galassie deboli entro un ristretto intervallo di redshift. Grazie ad una serie di simulazioni di tipo Monte Carlo siamo riusciti a ricavare dall’eccesso di segnale nella banda piu' rossa un vincolo sulla pendenza α della funzione di luminosita' alle magnitudini piu' deboli.
In particolare, utilizzando i dati del progetto UDF05, continuazione del programma Hubble Ultra Deep Field (HUDF), siamo riusciti ad ottenere un valore della pendenza α della funzione di luminosita' a magnitudini deboli a z~6 (corrispondente a 0.95 miliardi di anni dopo il Big Bang). I valori di α = −1.8 e α = −1.9 che abbiamo ottenuto tenendo o meno conto del clustering sono tali da permetterci di dire che la quantita' di fotoni ionizzanti prodotti da tutte le galassie a z~6 e' sufficiente a giustificare il processo di reionizzazione dell’idrogeno nell’Universo.
L’analisi che abbiamo condotto successivamente e' indirizzata ad ottenere un valore di α a redshift piu' alto, nello specifico z~7-8 (corrispondenti, rispettivamente, a 0.64 e 0.77 miliardi di anni dopo il Big Bang). Con questo obiettivo abbiamo fatto uso delle osservazioni profonde ottenute nell’ambito del programma HUDF09 nel vicino infrarosso.
Per quanto riguarda z~8, la qualita' delle immagini infrarosse non ci ha permesso di isolare alcun segnale prodotto dalle galassie deboli dal rumore di fondo e da segnali spuri. Sulla base del crollo della densita' del tasso di formazione stellare andando da z ~6 a redshift piu' alti il contributo, in termini di fotoni ionizzanti, delle galassie a z~7 dovrebbe essere maggiore rispetto a quello della popolazione a z~8 e quindi ci aspettavamo che isolare un segnale prodotto da quelle galassie fosse piu' facile che a z~8. In realta', pero', l’analisi a z~7 prevede il confronto di dati ottenuti con strumenti diversi, caratterizzati da problemi diversi ed effetti sistematici che non vengono eliminati semplicemente con- siderando il rapporto fra gli spettri di potenza, come accade, invece, nel caso di immagini ottenute con la stessa camera. Inoltre, al momento, la nostra conoscenza dei problemi della camera infrarossa Wide Field Camera 3 (WFC3/IR) di HST non e' ancora allo stesso livello di quella relativa alla camera Advanced Camera for Survey (ACS) ed e', quindi, necessario un ulteriore e piu' approfondito studio sugli effetti legati allo strumento prima di poter usare i dati infrarossi per lo studio delle fluttuazioni di background.
Avendo constatato che una perfetta procedura di riduzione dei dati costituisce un requisito essenziale per poter studiare le fluttuazioni di background e, quindi, il segnale proveniente dalle galassie meno brillanti, il passo successivo e' stato ottenere una versione migliorata dell’immagine piu' profonda dell’Universo attualmente disponibile ottenuta nell’ambito del progetto eXtreme Deep Field (XDF). Il nostro obiettivo era di ottenere un’immagine tale da permetterci di verificare i nostri risultati sulla pendenza della funzione di luminosita' a z~6 dato che l’XDF non ci ha permesso di individuare alcuna fluttuazione nel segnale di fondo.
Il nostro lavoro e' iniziato acquisendo dall’archivio le immagini non ridotte ottenute in di- versi progetti durante un arco temporale di 10 anni e creando i nostri hyperbias e hyperdark. In questo abbiamo potuto tenere in considerazione tutte le problematiche legate alla camera ACS, anche quelle minori, come l’herringbone effect, che spesso non vengono corrette dalla normale pipeline di riduzione dati. Successivamente abbiamo mascherato le tracce dei satelliti, allineato tutte le immagini e corretto per la differenze di livello di fondo esistenti fra un chip e l’altro.
Al momento stiamo ancora lavorando su queste immagini, nello specifico con l’idea di modellare i ghost elettronici e correggere le immagini per questo problema. I test preliminari sulla fotometria delle nostre immagini sono promettenti e suggeriscono che ci sia un leggero guadagno in termini di rapporto segnale-rumore rispetto alla versione originale dell’XDF, ma solo un ulteriore lavoro ci permettera' di ottenere le immagini finali.
La brillanza superficiale incide direttamente sull’identificazione di galassie primordiali in immagini profonde sulla base dall’effetto noto come dimming cosmologico. Questo consiste in una diminuzione della brillanza superficiale di tutti gli oggetti astronomici e- stesi che scala con il redshift stesso di un fattore (1+z)^4. La forte dipendenza dell’effetto dal redshift suggerisce un effetto di selezione per il quale si individuerebbero più' facilmente le galassie primordiali con un’alta brillanza superficiale rispetto a quelle piu' deboli. Va notato che, siccome l’effetto del dimming si ha soltanto su oggetti estesi, essendo legato alla brillanza superficiale, la ricerca di tracce di questo effetto puo' essere utilizzata per testare quale sia la distribuzione di luce nelle sorgenti ad alto redshift. Nello specifico il dimming puo' aiutare a capire se l’emissione di luce sia concentrata in strutture compatte o meno.
Nel nostro studio abbiamo adottato un approccio empirico, confrontando dati provenienti da survey con profondita' diversa, ma ottenute tutte con lo stesso strumento, in particolare HST/ACS. Abbiamo concentrato la nostra attenzione su un campione di galassie a z~4 (corrispondente a 1.5 miliardi di anni dopo il Big Bang) identificate nelle immagini XDF, HUDF e GOODS e, confrontando le magnitudini totali derivate dalle diverse survey, non e' emerso alcun andamento nei dati che fosse imputabile al dimming cosmologico. Per completare il lavoro abbiamo, poi, effettuato delle simulazioni Monte Carlo per ricavare quale sarebbe il riscontro sui dati se il dimming fosse in atto a secondo del tipo di dis- tribuzione di luce nelle galassie ad alto redshift. Confrontando i risultati delle simulazioni con quelli ricavati dai dati e' stato possibile escludere i profili di brillanza superficiale caratteristici delle sorgenti estese. I nostri dati sono, quindi, in accordo con una distribuzione della formazione stellare ad alto redshift in strutture compatte, come sostenuto anche da altri gruppi di ricerca.
In generale lo studio degli effetti del dimming cosmologico riveste un ruolo molto importante nella determinazione del tipo di oggetti che JWST potra' osservare. Essendo in grado di spingere il nostro orizzonte verso fasi della storia dell’Universo ancora piu' vicine al Big Bang, JWST permettera' di verificare in maniera piu' accurata sia la distribuzione della luce nelle galassie primordiali sia il contributo proveniente dalle sorgenti che al momento non riusciamo a vedere singolamente.
Infine, per completare il nostro studio sulle galassie ad alto redshift abbiamo preso in considerazione gli oggetti a z~1-2 che possono contaminare i cataloghi di galassie primordiali. Lo spettro di questi oggetti mostra un break a 4000 A che puo' portarli ad avere dei colori molto simili a quelli delle vere galassie ad alto redshift. Cio' che distingue i contaminanti dalle vere galassie primordiali e' l’essere chiaramente identificabili nelle bande piu' blu del Lyman-break.
Lo studio preliminare che e' stato condotto sulla base di due cataloghi pubblici multi- banda di tutte le sorgenti presenti nel campo GOODS-South mostra che la distribuzione del numero di contaminanti e delle vere galassie primordiali e' diversa nell’intervallo di redshift che abbiamo analizzato (z~4-5-6). Questo suggerisce che la popolazione contaminante abbia una funzione di luminosita' differente rispetto alle galassie ad alto redshift. Inoltre, si ricava dai dati che la distribuzione dei conteggi di contaminanti a basso red- shift mostra solo una leggera, se non assente, evoluzione. La popolazione contaminante e', quindi, sempre all’incirca la stessa, e questo e' confermato dal leggero spostamento del break a 4000 A richiesto perche' questi oggetti soddisfino i criteri di selezione in colore delle galassie a z ≥ 4. Anche i redshift fotometrici sono in accordo con l’ipotesi che i contaminanti siano oggetti a redshift piu' basso.
Una piu' completa caratterizzazione della popolazione delle galassie che hanno colori simili a quelle primordiali sara' possibile quando nuovi cataloghi saranno resi disponibili.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Pizzella, Alessandro
Correlatore:Stiavelli, Massimo
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > ASTRONOMIA
Data di deposito della tesi:24 Luglio 2014
Anno di Pubblicazione:24 Luglio 2014
Parole chiave (italiano / inglese):Early Universe, Reionization, First Galaxies, High-redshift, Photometry, Hubble Space Telescope Data
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:6990
Depositato il:04 Ago 2015 12:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Abazajian, K. N., Adelman-McCarthy, J. K., Agu ̈eros, M. A., Allam, S. S., Allende Prieto, C., An, D., Anderson, K. S. J., Anderson, S. F., Annis, J., Bahcall, N. A., and et al. (2009). The Seventh Data Release of the Sloan Digital Sky Survey. ApJS, 182:543–558. Cerca con Google

Adelman-McCarthy, J. K., Agu ̈eros, M. A., Allam, S. S., Allende Prieto, C., Anderson, K. S. J., Anderson, S. F., Annis, and et al. (2008). The Sixth Data Release of the Sloan Digital Sky Survey. ApJS, 175:297–313. Cerca con Google

Adelman-McCarthy, J. K., Agu ̈eros, M. A., Allam, S. S., Anderson, K. S. J., Anderson, S. F., Annis, J., Bahcall, and et al. (2006). The Fourth Data Release of the Sloan Digital Sky Survey. ApJS, 162:38–48. Cerca con Google

Arendt, R. G., Kashlinsky, A., Moseley, S. H., and Mather, J. (2010). Cosmic Infrared Background Fluctuations in Deep Spitzer Infrared Array Camera Images: Data Processing and Analysis. ApJS, 186:10–47. Cerca con Google

Ashby, M. L. N., Stanford, S. A., Brodwin, M., Gonzalez, A. H., Martinez-Manso, J., Bartlett, J. G., Benson, B. A., Bleem, L. E., Crawford, T. M., Dey, A., Dressler, A., Eisenhardt, P. R. M., Galametz, A., Jannuzi, B. T., Marrone, D. P., Mei, S., Muzzin, A., Pacaud, F., Pierre, M., Stern, D., and Vieira, J. D. (2013). The Spitzer South Pole Telescope Deep Field: Survey Design and Infrared Array Camera Catalogs. ApJS, 209:22. Cerca con Google

Barkana, R. and Loeb, A. (2001). In the beginning: the first sources of light and the reionization of the universe. Phys. Rep., 349:125–238. Cerca con Google

Barthelmy, S. D. (2004). Burst Alert Telescope (BAT) on the Swift MIDEX mission. In Flanagan, K. A. and Siegmund, O. H. W., editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 5165 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pages 175–189. Cerca con Google

Baum, W. A. (1962). Photoelectric Magnitudes and Red-Shifts. In McVittie, G. C., editor, Problems of Extra- Galactic Research, volume 15 of IAU Symposium, page 390. Cerca con Google

Becker, G. D., Bolton, J. S., Haehnelt, M. G., and Sargent, W. L. W. (2011). Detection of extended He II reioniza- tion in the temperature evolution of the intergalactic medium. MNRAS, 410:1096–1112. Cerca con Google

Becker, R. H., Fan, X., White, R. L., Strauss, M. A., Narayanan, V. K., Lupton, R. H., Gunn, J. E., Annis, and et al. (2001). Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar. AJ, 122:2850–2857. Cerca con Google

Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., Caldwell, J. A. R., Ferguson, H. C., Hook, R., Lucas, R. A., Bergeron, and et al. (2006). The Hubble Ultra Deep Field. AJ, 132:1729–1755. Cerca con Google

Beifiori, A., Maraston, C., Thomas, D., and Johansson, J. (2011). On the spectral resolution of the MILES stellar library. A&A, 531:A109. Cerca con Google

Benson, A. J., Bower, R. G., Frenk, C. S., Lacey, C. G., Baugh, C. M., and Cole, S. (2003). What Shapes the Luminosity Function of Galaxies? ApJ, 599:38–49. Cerca con Google

Bertin, E. and Arnouts, S. (1996). SExtractor: Software for source extraction. A&AS, 117:393–404. Cerca con Google

Bird, A. J., Bazzano, A., Bassani, L., Capitanio, F., Fiocchi, M., Hill, A. B., Malizia, A., McBride, and et al. (2010). Cerca con Google

The Fourth IBIS/ISGRI Soft Gamma-ray Survey Catalog. ApJS, 186:1–9. Cerca con Google

Blakeslee, J. P., Anderson, K. R., Meurer, G. R., Ben ́ıtez, N., and Magee, D. (2003). An Automatic Image Reduc- Cerca con Google

tion Pipeline for the Advanced Camera for Surveys. In Payne, H. E., Jedrzejewski, R. I., and Hook, R. N., editors, Astronomical Data Analysis Software and Systems XII, volume 295 of Astronomical Society of the Pacific Conference Series, page 257. Cerca con Google

Bluck, A. F. L., Conselice, C. J., Almaini, O., Laird, E. S., Nandra, K., and Gru ̈tzbauch, R. (2011). On the co- evolution of supermassive black holes and their host galaxies since z = 3. MNRAS, 410:1174–1196. Cerca con Google

Bolton, J. S., Becker, G. D., Raskutti, S., Wyithe, J. S. B., Haehnelt, M. G., and Sargent, W. L. W. (2012). Improved measurements of the intergalactic medium temperature around quasars: possible evidence for the initial stages of He II reionization at z ∼ 6. MNRAS, 419:2880–2892. Cerca con Google

Bolton, J. S. and Haehnelt, M. G. (2007). The observed ionization rate of the intergalactic medium and the ionizing emissivity at z ≥ 5: evidence for a photon-starved and extended epoch of reionization. MNRAS, 382:325–341. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Blakeslee, J. P., Broadhurst, T. J., and Franx, M. (2004a). Galaxy Size Evolution at High Redshift and Surface Brightness Selection Effects: Constraints from the Hubble Ultra Deep Field. ApJ, 611:L1–L4. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Franx, M., and Ford, H. (2007). UV Luminosity Functions at z ∼ 4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History. ApJ, 670:928–958. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Franx, M., Labbe, I., Trenti, M., van Dokkum, P., Carollo, C. M., Gonzalez, V., and Magee, D. (2012a). UV-continuum slopes at z ∼ 4 − 7 from the HUDF09+ERS+CANDELS observations: Discovery of a well-defined UV-color magnitude relationship for z ≥ 4 star-forming galaxies. ApJ, 754:83. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Labbe ́, I., Trenti, M., van Dokkum, P., Franx, M., Stiavelli, M., Carollo, C. M., Magee, D., and Gonzalez, V. (2011). Ultraviolet Luminosity Functions from 132 z ∼ 7 and z ∼ 8 Lyman-break Galaxies in the Ultra-deep HUDF09 and Wide-area Early Release Science WFC3/IR Observations. ApJ, 737:90. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Stiavelli, M., van Dokkum, P., Trenti, M., Magee, D., Labbe ́, and et al. (2010). Discovery of z ∼ 8 Galaxies in the Hubble Ultra Deep Field from Ultra-Deep WFC3/IR Observations. ApJ, 709:L133–L137. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Trenti, M., Labbe’, I., Bradley, L., Carollo, M., van Dokkum, P. G., Gonzalez, V., Holwerda, B., Franx, M., Spitler, L., Smit, R., and Magee, D. (2014). UV Luminosity Functions at redshifts z~4 to z~10: 11000 Galaxies from HST Legacy Fields. ArXiv e-prints. Cerca con Google

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., Trenti, M., Labbe, I., Franx, M., Stiavelli, M., Carollo, C. M., van Dokkum, P., and Magee, D. (2012b). Lower-Luminosity Galaxies could reionize the Universe: Very Steep Faint-End Slopes to the UV Luminosity Functions at z ≥ 5 − 8 from the HUDF09 WFC3/IR Observations. ApJ, 752:L5. Cerca con Google

Bouwens, R. J., Thompson, R. I., Illingworth, G. D., Franx, M., van Dokkum, P. G., Fan, X., Dickinson, M. E., Eisenstein, D. J., and Rieke, M. J. (2004b). Galaxies at z~7-8: z850-Dropouts in the Hubble Ultra Deep Field. ApJ, 616:L79–L82. Cerca con Google

Bradley, L. D., Trenti, M., Oesch, P. A., Stiavelli, M., Treu, T., Bouwens, R. J., Shull, J. M., Holwerda, B. W., and Pirzkal, N. (2012). The Brightest of Reionizing Galaxies Survey: Constraints on the Bright End of the ∼ 8 Luminosity Function. ApJ, 760:108. Cerca con Google

Bradley, L. D., Zitrin, A., Coe, D., Bouwens, R., Postman, M., Balestra, I., Grillo, C., Monna, A., Rosati, P., Seitz, and et al. (2013). CLASH: A Census of Magnified Star-Forming Galaxies at z ∼ 6 − 8. ArXiv e-prints. Cerca con Google

Brammer, G. B., van Dokkum, P. G., and Coppi, P. (2008). EAZY: A Fast, Public Photometric Redshift Code. ApJ, 686:1503–1513. Cerca con Google

Brandt, W. N. and Hasinger, G. (2005). Deep Extragalactic X-Ray Surveys. ARA&A, 43:827–859. Cerca con Google

Bunker, A. J., Wilkins, S., Ellis, R. S., Stark, D. P., Lorenzoni, S., Chiu, K., Lacy, M., Jarvis, M. J., and Hickey, S. (2010). The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3imaging of the Hubble Ultra Deep Field. MNRAS, 409:855–866. Cerca con Google

Bushouse, H. (2008). WFC3 IR Ground P-Flats. Technical report. Cerca con Google

Calvi, V., Pizzella, A., Stiavelli, M., Morelli, L., Corsini, E. M., Dalla Bonta`, E., Bradley, L., and Koekemoer, A. M. (2013). Constraining the luminosity function of faint undetected i-dropout galaxies. MNRAS, 432:3474–3484. Cerca con Google

Capak, P., Mobasher, B., Scoville, N. Z., McCracken, H., Ilbert, O., Salvato, M., Mene ́ndez-Delmestre, K., Aussel, and et al. (2011). Spectroscopy of Luminous z > 7 Galaxy Candidates and Sources of Contamination in z > 7 Galaxy Searches. ApJ, 730:68. Cerca con Google

Cappellari, M. and Emsellem, E. (2004). Parametric Recovery of Line-of-Sight Velocity Distributions from Absorption-Line Spectra of Galaxies via Penalized Likelihood. PASP, 116:138–147. Cerca con Google

Carollo, C. M. and Lilly, S. J. (2001). The Metallicity of 0.5 < z < 1 Field Galaxies. ApJ, 548:L153–L157. Casertano, S., de Mello, D., Dickinson, M., Ferguson, H. C., Fruchter, A. S., Gonzalez-Lopezlira, R. A., Heyer, I., Hook, and et al. (2000). WFPC2 Observations of the Hubble Deep Field South. AJ, 120:2747–2824. Cassinelli, J. P., Cohen, D. H., Macfarlane, J. J., Drew, J. E., Lynas-Gray, A. E., Hoare, M. G., Vallerga, J. V., Welsh, B. Y., and et al. (1995). EUVE spectroscopy of epsilon Canis Majoris (B2 II) from 70 to 730 A. ApJ, 438:932–949. Cerca con Google

Castellano, M., Fontana, A., Paris, D., Grazian, A., Pentericci, L., Boutsia, K., Santini, P., Testa, and et al. (2010). Cerca con Google

The bright end of the z~7 UV luminosity function from a wide and deep HAWK-I survey. A&A, 524:A28. Cen, R. (2003). The Universe Was Reionized Twice. ApJ, 591:12–37. Cerca con Google

Chen, X. Y., Liang, Y. C., Hammer, F., Zhao, Y. H., and Zhong, G. H. (2009). Stellar population analysis on local infrared-selected galaxies. A&A, 495:457–469. Cerca con Google

Chonis, T. S. and Gaskell, C. M. (2008). Setting UBVRI Photometric Zero-Points Using Sloan Digital Sky Survey ugriz Magnitudes. AJ, 135:264–267. Cerca con Google

Ciardi, B., Bianchi, S., and Ferrara, A. (2002). Lyman continuum escape from an inhomogeneous interstellar medium. MNRAS, 331:463–473. Cerca con Google

Ciardi, B., Ferrara, A., Governato, F., and Jenkins, A. (2000). Inhomogeneous reionization of the intergalactic Cerca con Google

medium regulated by radiative and stellar feedbacks. MNRAS, 314:611–629. Cerca con Google

Cid Fernandes, R., Gonza ́lez Delgado, R. M., Storchi-Bergmann, T., Martins, L. P., and Schmitt, H. (2005). The stellar populations of low-luminosity active galactic nuclei - III. Spatially resolved spectral properties. MNRAS, 356:270–294. Cerca con Google

Cid Fernandes, R., Gu, Q., Melnick, J., Terlevich, E., Terlevich, R., Kunth, D., Rodrigues Lacerda, R., and Joguet, B. (2004). The star formation history of Seyfert 2 nuclei. MNRAS, 355:273–296. Cerca con Google

Ciotti, L., Ostriker, J. P., and Proga, D. (2010). Feedback from Central Black Holes in Elliptical Galaxies. III. Models with Both Radiative and Mechanical Feedback. ApJ, 717:708–723. Cerca con Google

Coe, D., Zitrin, A., Carrasco, M., Shu, X., Zheng, W., Postman, M., Bradley, L., Koekemoer, A., Bouwens, R., Broadhurst, T., and et al.. (2013). CLASH: Three Strongly Lensed Images of a Candidate z ∼ 11 Galaxy. ApJ, 762:32. Cerca con Google

Cole, S. (1991). Modeling galaxy formation in evolving dark matter halos. ApJ, 367:45–53. Cerca con Google

Cooray, A. (2005). A brighter past: galaxy luminosity function at high redshifts. MNRAS, 364:303–318. Cerca con Google

Cooray, A., Amblard, A., Beichman, C., Benford, D., Bernstein, R., Bock, J. J., Brodwin, and et al. (2009). A New Era in Extragalactic Background Light Measurements: The Cosmic History of Accretion, Nucleosynthesis and Reionization. In astro2010: The Astronomy and Astrophysics Decadal Survey, volume 2010 of Astronomy, page 54. Cerca con Google

Cooray, A., Sullivan, I., Chary, R.-R., Bock, J. J., Dickinson, M., Ferguson, H. C., Keating, B., Lange, A., and Wright, E. L. (2007). IR Background Anisotropies in Spitzer GOODS Images and Constraints on First Galax- ies. ApJ, 659:L91–L94. Cerca con Google

Cracco, V., Ciroi, S., di Mille, F., Vaona, L., Frassati, A., Smirnova, A. A., La Mura, G., Moiseev, A. V., and Rafanelli, P. (2011). The origin of gas in extended narrow-line regions of nearby Seyfert galaxies - I. NGC 7212. MNRAS, 418:2630–2641. Cerca con Google

Cresci, G., Mannucci, F., Sommariva, V., Maiolino, R., Marconi, A., and Brusa, M. (2012). The metallicity prop- erties of zCOSMOS galaxies at 0.2 < z < 0.8. MNRAS, 421:262–269. Cerca con Google

Cusumano, G., La Parola, V., Segreto, A., Ferrigno, C., Maselli, A., Sbarufatti, B., Romano, P., Chincarini, and et al. (2010). The Palermo Swift-BAT hard X-ray catalogue. III. Results after 54 months of sky survey. A&A, 524:A64. Cerca con Google

Dahlen, T., Mobasher, B., Dickinson, M., Ferguson, H. C., Giavalisco, M., Grogin, N. A., Guo, Y., Koekemoer, and et al. (2010). A Detailed Study of Photometric Redshifts for GOODS-South Galaxies. ApJ, 724:425–447. Cerca con Google

Dalcanton, J. J. (2007). The Metallicity of Galaxy Disks: Infall versus Outflow. ApJ, 658:941–959. Cerca con Google

Davies, R. I., Mu ̈ller Sa ́nchez, F., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., and Sternberg, A. (2007). Cerca con Google

A Close Look at Star Formation around Active Galactic Nuclei. ApJ, 671:1388–1412. Cerca con Google

Davis, T. A., Krajnovic ́, D., McDermid, R. M., Bureau, M., Sarzi, M., Nyland, K., Alatalo, K., Bayet, and et al. (2012). Gemini GMOS and WHT SAURON integral-field spectrograph observations of the AGN-driven outflow in NGC 1266. MNRAS, 426:1574–1590. Cerca con Google

de Marchi, G., Sirianni, M., Gilliland, R., Bohlin, R., Pavlovsky, C., Jee, M., Mack, J., van der Marel, R., and Boffi, F. (2004). Detector Quantum Efficiency and Photometric Zero Points of the ACS. Technical report. Cerca con Google

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, Jr., H. G., Buta, R. J., Paturel, G., and Fouque, P. (1991). Third Reference Catalogue of Bright Galaxies. Cerca con Google

Di Matteo, T., Springel, V., and Hernquist, L. (2005). Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature, 433:604–607. Cerca con Google

Dickinson, M. (1998). Color-Selected High Redshift Galaxies and the HDF. In Livio, M., Fall, S. M., and Madau, P., editors, The Hubble Deep Field, page 219. Cerca con Google

Dijkstra, M., Haiman, Z., Rees, M. J., and Weinberg, D. H. (2004). Photoionization Feedback in Low-Mass Galaxies at High Redshift. ApJ, 601:666–675. Cerca con Google

Disney, M. J. and Lang, R. H. (2012). The galaxy ancestor problem. MNRAS, 426:1731–1749. Cerca con Google

Dodelson, S. and Jubas, J. M. (1992). Reionization and decaying dark matter. Phys. Rev. D, 45:1076–1090. Dodelson, S. and Jubas, J. M. (1994). Cosmological Signatures of Decaying Dark Matter. MNRAS, 266:886. Draper, A. R. and Ballantyne, D. R. (2011). The Young, the Old, and the Dusty: Stellar Populations of Active Galactic Nucleus Hosts. ApJ, 740:57. Cerca con Google

Dressel, L. (2012). Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0. Cerca con Google

Edmunds, M. G. and Pagel, B. E. J. (1984). On the composition of H II regions in southern galaxies. III - NGC 2997 and 7793. MNRAS, 211:507–519. Cerca con Google

Efstathiou, G. (1992). Suppressing the formation of dwarf galaxies via photoionization. MNRAS, 256:43P–47P. Ellis, R. S., McLure, R. J., Dunlop, J. S., Robertson, B. E., Ono, Y., Schenker, M. A., Koekemoer, A., Bowler, R. A. A., Ouchi, M., Rogers, A. B., Curtis-Lake, E., Schneider, E., Charlot, S., Stark, D. P., Furlanetto, S. R., and Cirasuolo, M. (2013). The Abundance of Star-forming Galaxies in the Redshift Range 8.5-12: New Results from the 2012 Hubble Ultra Deep Field Campaign. ApJ, 763:L7. Cerca con Google

Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., and Adelberger, K. L. (2006). The Mass- Metallicity Relation at z >2. ApJ, 644:813–828. Cerca con Google

Faber, S. M., Willmer, C. N. A., Wolf, C., Koo, D. C., Weiner, B. J., Newman, J. A., Im, M., Coil, and et al. (2007). Galaxy Luminosity Functions to z~1 from DEEP2 and COMBO-17: Implications for Red Galaxy Formation. ApJ, 665:265–294. Cerca con Google

Fan, X. (2007). The Highest Redshift Quasars: Early Black Hole Growth and the End of Reionization Epoch. In N. Metcalfe & T. Shanks, editor, Cosmic Frontiers, volume 379 of Astronomical Society of the Pacific Confer- ence Series, pages 35–+. Cerca con Google

Fan, X., Carilli, C. L., and Keating, B. (2006). Observational Constraints on Cosmic Reionization. ARA&A, 44:415–462. Cerca con Google

Fan, X., Narayanan, V. K., Lupton, R. H., Strauss, M. A., Knapp, G. R., Becker, R. H., White, R. L., Pentericci, and et al. (2001). A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z ∼ 6. AJ, 122:2833–2849. Cerca con Google

Fan, X., Narayanan, V. K., Strauss, M. A., White, R. L., Becker, R. H., Pentericci, L., and Rix, H. (2002). Evolution of the Ionizing Background and the Epoch of Reionization from the Spectra of z ∼ 6 Quasars. AJ, 123:1247– 1257. Cerca con Google

Fanidakis, N., Baugh, C. M., Benson, A. J., Bower, R. G., Cole, S., Done, C., and Frenk, C. S. (2011). Grand unification of AGN activity in the ΛCDM cosmology. MNRAS, 410:53–74. Cerca con Google

Faucher-Gigue`re, C.-A., Lidz, A., Zaldarriaga, M., and Hernquist, L. (2009). A New Calculation of the Ionizing Background Spectrum and the Effects of He II Reionization. ApJ, 703:1416–1443. Cerca con Google

Fechner, C., Reimers, D., Kriss, G. A., Baade, R., Blair, W. P., Giroux, M. L., Green, R. F., and et al. (2006). The UV spectrum of HS 1700+6416. II. FUSE observations of the HeII Lyman alpha forest. A&A, 455:91–106. Cerca con Google

Ferguson, H. C., Dickinson, M., Giavalisco, M., Kretchmer, C., Ravindranath, S., Idzi, R., Taylor, E., Conselice, and et al. (2004). The Size Evolution of High-Redshift Galaxies. ApJ, 600:L107–L110. Cerca con Google

Ferguson, H. C., Dickinson, M., and Williams, R. (2000). The Hubble Deep Fields. ARA&A, 38:667–715. Feruglio, C., Maiolino, R., Piconcelli, E., Menci, N., Aussel, H., Lamastra, A., and Fiore, F. (2010). Quasar feedback revealed by giant molecular outflows. A&A, 518:L155. Cerca con Google

Finkelstein, S. L., Papovich, C., Giavalisco, M., Reddy, N. A., Ferguson, H. C., Koekemoer, A. M., and Dickinson, M. (2010). On the Stellar Populations and Evolution of Star-forming Galaxies at 6.3 < z < 8.6. ApJ, 719:1250–1273. Cerca con Google

Fisher, D., Fabricant, D., Franx, M., and van Dokkum, P. (1998). A Spectroscopic Survey of the Galaxy Cluster CL 1358+62 at z = 0.328. ApJ, 498:195. Cerca con Google

Fontanot, F., Cristiani, S., and Vanzella, E. (2012). On the relative contribution of high-redshift galaxies and active galactic nuclei to reionization. MNRAS, 425:1413–1420. Cerca con Google

Fontanot, F., Pasquali, A., De Lucia, G., van den Bosch, F. C., Somerville, R. S., and Kang, X. (2011). The dependence of AGN activity on stellar and halo mass in semi-analytic models. MNRAS, 413:957–970. Cerca con Google

Fruchter, A. S. and Hook, R. N. (2002). Drizzle: A Method for the Linear Reconstruction of Undersampled Images. PASP, 114:144–152. Cerca con Google

Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., and Tremonti, C. A. (2005). The ages and metallicities of galaxies in the local universe. MNRAS, 362:41–58. Cerca con Google

Ganda, K., Peletier, R. F., McDermid, R. M., Falco ́n-Barroso, J., de Zeeuw, P. T., Bacon, R., Cappellari, M., Davies, and et al. (2007). Absorption-line strengths of 18 late-type spiral galaxies observed with SAURON. MNRAS, 380:506–540. Cerca con Google

Garnett, D. R., Kennicutt, Jr., R. C., and Bresolin, F. (2004). The First Measured Electron Temperatures for Metal-rich H II Regions in M51. ApJ, 607:L21–L24. Cerca con Google

Garnett, D. R., Shields, G. A., Skillman, E. D., Sagan, S. P., and Dufour, R. J. (1997). Interstellar Abundance Gradients in NGC 2403: Comparison to M33. ApJ, 489:63. Cerca con Google

Gehrels, N., Chincarini, G., Giommi, P., Mason, K. O., Nousek, J. A., Wells, A. A., White, and et al. (2004). The Swift Gamma-Ray Burst Mission. ApJ, 611:1005–1020. Cerca con Google

Giavalisco, M. (1998). The Properties of Lyman-Break Galaxies at Redshift z ∼ 3. In M. Livio, S. M. Fall, & P. Madau, editor, The Hubble Deep Field, page 121. Cerca con Google

Giavalisco, M. (2002). Lyman-Break Galaxies. ARA&A, 40:579–641. Cerca con Google

Giavalisco, M. (2004). Cross-Talk in the ACS WFC Detectors. II: Using GAIN=2 to Minimize the Effect. Technical report. Cerca con Google

Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., Dickinson, M., Alexander, D. M., Bauer, F. E., Bergeron, J., Biagetti, C., and et al. (2004). The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging. ApJ, 600:L93–L98. Cerca con Google

Gnedin, N. Y. (2000). Effect of Reionization on Structure Formation in the Universe. ApJ, 542:535–541. Gonzaga, S., e. a. (2011). ACS Data Handbook, Version 6.0. Cerca con Google

Gonzaga, S. and et al. (2012). The DrizzlePac Handbook. Cerca con Google

Gonza ́lez, V., Labbe ́, I., Bouwens, R. J., Illingworth, G., Franx, M., Kriek, M., and Brammer, G. B. (2010). The Stellar Mass Density and Specific Star Formation Rate of the Universe at z ∼ 7. ApJ, 713:115–130. Cerca con Google

Gonza ́lez Delgado, R. M., Heckman, T., and Leitherer, C. (2001). The Nuclear and Circumnuclear Stellar Population in Seyfert 2 Galaxies: Implications for the Starburst-Active Galactic Nucleus Connection. ApJ, 546:845–865. Cerca con Google

Gonzalez-Gonzalez, J. D. J. (1993). Line-strength Gradients and Kinematic Profiles in Elliptical Galaxies. PhD thesis, University of California, Santa Cruz. Cerca con Google

Grogin, N. A., Kocevski, D. D., Faber, S. M., Ferguson, H. C., Koekemoer, and et al. (2011). CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. ApJS, 197:35. Cerca con Google

Guhathakurta, P., Tyson, J. A., and Majewski, S. R. (1990). A redshift limit for the faint blue galaxy population from deep U band imaging. ApJ, 357:L9–L12. Cerca con Google

Gunn, J. E. (1966). A mathematical framework for discussing the statistical distribution of galaxies in space and its cosmological implications. PhD thesis, California Institute of Technology. Cerca con Google

Guo, Y., Ferguson, H. C., Giavalisco, M., Barro, G., Willner, S. P., Ashby, M. L. N., Dahlen, T., Donley, J. L., Faber, S. M., Fontana, and et al. (2013). CANDELS Multi-wavelength Catalogs: Source Detection and Photometry in the GOODS-South Field. ApJS, 207:24. Cerca con Google

Guth, A. H. (1981). Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D, 23:347–356. Cerca con Google

Haardt, F. and Madau, P. (2012). Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background. ApJ, 746:125. Cerca con Google

Harrison, E. R. (1970). Fluctuations at the Threshold of Classical Cosmology. Phys. Rev. D, 1:2726–2730. Hauser, M. G. and Dwek, E. (2001). The Cosmic Infrared Background: Measurements and Implications. ARA&A, 39:249–307. Cerca con Google

Hayes, M., Laporte, N., Pello ́, R., Schaerer, D., and Le Borgne, J.-F. (2012). A peculiar galaxy appears at redshift 11: properties of a moderate-redshift interloper. MNRAS, 425:L19–L23. Cerca con Google

Helgason, K., Cappelluti, N., Hasinger, G., Kashlinsky, A., and Ricotti, M. (2014). The Contribution of z ~ 6 Sources to the Spatial Coherence in the Unresolved Cosmic Near-infrared and X-Ray Backgrounds. ApJ, 785:38. Cerca con Google

Helgason, K., Ricotti, M., and Kashlinsky, A. (2012). Reconstructing the Near-infrared Background Fluctuations from Known Galaxy Populations Using Multiband Measurements of Luminosity Functions. ApJ, 752:113. Hinshaw, G., Larson, D., Komatsu, E., Spergel, D. N., Bennett, C. L., Dunkley, J., Nolta, M. R., Halpern, M., Hill, R. S., Odegard, N., and et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observa- Cerca con Google

tions: Cosmological Parameter Results. ApJS, 208:19. Cerca con Google

Ho, L. C., Filippenko, A. V., and Sargent, W. L. W. (2003). A Search for “Dwarf” Seyfert Nuclei. VI. Properties of Emission-Line Nuclei in Nearby Galaxies. ApJ, 583:159–177. Cerca con Google

Hogg, D. W. (1999). Distance measures in cosmology. ArXiv Astrophysics e-prints. Cerca con Google

Hopkins, P. F. and Hernquist, L. (2006). Fueling Low-Level AGN Activity through Stochastic Accretion of Cold Gas. ApJS, 166:1–36. Cerca con Google

Huang, K.-H., Ferguson, H. C., Ravindranath, S., and Su, J. (2013). The Bivariate Size-Luminosity Relations for Cerca con Google

Lyman Break Galaxies at z~4-5. ApJ, 765:68. Cerca con Google

Illingworth, G. D . , Magee , D . , Oesch , P. A. , Bouwens , R. J. , Labbe ́ , I. , Stiavelli , M. , van Dokkum , P. G. , Franx , M. , Cerca con Google

Trenti, M., Carollo, C. M., and Gonzalez, V. (2013). The HST eXtreme Deep Field (XDF): Combining All ACS and WFC3/IR Data on the HUDF Region into the Deepest Field Ever. ApJS, 209:6. Cerca con Google

Inoue, A. K., Iwata, I., Deharveng, J.-M., Buat, V., and Burgarella, D. (2005). VLT narrow-band photometry in the Lyman continuum of two galaxies at z ∼ 3. Limits to the escape of ionizing flux. A&A, 435:471–482. Ivanov, V. D., Rieke, G. H., Groppi, C. E., Alonso-Herrero, A., Rieke, M. J., and Engelbracht, C. W. (2000). Testing the AGN-Starburst Connection in Seyfert Galaxies. ApJ, 545:190–204. Cerca con Google

Iwata, I., Inoue, A. K., Matsuda, Y., Furusawa, H., Hayashino, T., Kousai, K., Akiyama, M., Yamada, and et al. (2009). Detections of Lyman Continuum from Star-Forming Galaxies at z ∼ 3 through Subaru/SuprimeCam Narrow-Band Imaging. ApJ, 692:1287–1293. Cerca con Google

Jansen, R. A., Fabricant, D., Franx, M., and Caldwell, N. (2000). Spectrophotometry of Nearby Field Galaxies: The Data. ApJS, 126:331–397. Cerca con Google

Jarosik, N., Bennett, C. L., Dunkley, J., Gold, B., Greason, M. R., Halpern, M., Hill, R. S., Hinshaw, and et al. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. ApJS, 192:14–+. Cerca con Google

Joguet, B., Kunth, D., Melnick, J., Terlevich, R., and Terlevich, E. (2001). Stellar populations in Seyfert 2 galaxies. I. Atlas of near-UV spectra. A&A, 380:19–30. Cerca con Google

Jones, D. H., Saunders, W., Colless, M., Read, M. A., Parker, Q. A., Watson, F. G., Campbell, L. A., Burkey, and et al. (2004). The 6dF Galaxy Survey: samples, observational techniques and the first data release. MNRAS, 355:747–763. Cerca con Google

Kashlinsky, A., Arendt, R., Gardner, J. P., Mather, J. C., and Moseley, S. H. (2004). Detecting Population III Stars through Observations of Near-Infrared Cosmic Infrared Background Anisotropies. ApJ, 608:1–9. Kashlinsky, A., Arendt, R. G., Ashby, M. L. N., Fazio, G. G., Mather, J., and Moseley, S. H. (2012). New Mea- surements of the Cosmic Infrared Background Fluctuations in Deep Spitzer/IRAC Survey Data and Their Cosmological Implications. ApJ, 753:63. Cerca con Google

Kashlinsky, A., Arendt, R. G., Mather, J., and Moseley, S. H. (2005). Tracing the first stars with fluctuations of the cosmic infrared background. Nature, 438:45–50. Cerca con Google

Kashlinsky, A., Arendt, R. G., Mather, J., and Moseley, S. H. (2007). Demonstrating the Negligible Contribution of Optical HST ACS Galaxies to Source-subtracted Cosmic Infrared Background Fluctuations in Deep Spitzer IRAC Images. ApJ, 666:L1–L4. Cerca con Google

Kennicutt, Jr., R. C., Bresolin, F., and Garnett, D. R. (2003). The Composition Gradient in M101 Revisited. II. Electron Temperatures and Implications for the Nebular Abundance Scale. ApJ, 591:801–820. Cerca con Google

Kewley, L. J. and Dopita, M. A. (2002). Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies. ApJS, 142:35–52. Cerca con Google

Kobulnicky, H. A. and Kewley, L. J. (2004). Metallicities of 0.3¡z¡1.0 Galaxies in the GOODS-North Field. ApJ, 617:240–261. Cerca con Google

Kobulnicky, H. A. and Phillips, A. C. (2003). Measuring Global Galaxy Metallicities Using Emission-Line Equivalent Widths. ApJ, 599:1031–1042. Cerca con Google

Kobulnicky, H. A., Willmer, C. N. A., Phillips, A. C., Koo, D. C., Faber, S. M., Weiner, B. J., Sarajedini, V. L., Simard, L., and Vogt, N. P. (2003). The DEEP Groth Strip Survey. VII. The Metallicity of Field Galaxies at 0.26 Cerca con Google

¡ z 0.82 and the Evolution of the Luminosity-Metallicity Relation. ApJ, 599:1006–1030. Cerca con Google

Kobulnicky, H. A. and Zaritsky, D. (1999). Chemical Properties of Star-forming Emission-Line Galaxies at z=0.1-0.5. ApJ, 511:118–135. Cerca con Google

Koekemoer, A. M., Ellis, R. S., McLure, R. J., Dunlop, J. S., Robertson, B. E., Ono, Y., Schenker, M. A., Ouchi, M., Bowler, R. A. A., Rogers, A. B., Curtis-Lake, E., Schneider, E., Charlot, S., Stark, D. P., Furlanetto, S. R., Cirasuolo, M., Wild, V., and Targett, T. (2013). The 2012 Hubble Ultra Deep Field (UDF12): Observational Overview. ApJS, 209:3. Cerca con Google

Koekemoer, A. M., Faber, S. M., Ferguson, H. C., Grogin, N. A., Kocevski, and et al. (2011). CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey: The Hubble Space Telescope Observations, Imaging Data Products, and Mosaics. ApJS, 197:36. Cerca con Google

Koekemoer, A. M., Fruchter, A. S., Hook, R. N., and Hack, W. (2003). MultiDrizzle: An Integrated Pyraf Script for Registering, Cleaning and Combining Images. In Arribas, S., Koekemoer, A., and Whitmore, B., editors, The 2002 HST Calibration Workshop : Hubble after the Installation of the ACS and the NICMOS Cooling System, Proceedings of a Workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002. Edited by Santiago Arribas, Anton Koekemoer, and Brad Whitmore. Baltimore, MD: Space Telescope Science Institute, 2003., p.337, page 337. Cerca con Google

Koekemoer, A. M., Fruchter, A. S., Hook, R. N., Hack, W., and Hanley, C. (2006). Multidrizzle and Tweakshifts: Overview and Future Plans. In Koekemoer, A. M., Goudfrooij, P., and Dressel, L. L., editors, The 2005 HST Calibration Workshop: Hubble After the Transition to Two-Gyro Mode, page 423. Cerca con Google

Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G., Jarosik, N., Larson, D., Nolta, M. R., Page, L., Spergel, D. N., Halpern, M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., Tucker, G. S., Weiland, J. L., Wollack, E., and Wright, E. L. (2011). Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. ApJS, 192:18–+. Cerca con Google

Kriss, G. A., Shull, J. M., Oegerle, W., Zheng, W., Davidsen, A. F., Songaila, A., Tumlinson, J., Cowie, L. L., De- harveng, J., Friedman, S. D., and et al. (2001). Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer. Science, 293:1112–1116. Cerca con Google

Kuhlen, M. and Faucher-Gigue`re, C.-A. (2012). Concordance models of reionization: implications for faint galaxies and escape fraction evolution. MNRAS, 423:862–876. Cerca con Google

La Mura, G., Bindoni, D., Ciroi, S., Cracco, V., D’Abrusco, R., Rafanelli, P., and Vaona, L. (2012). The relation between nuclear activity and stellar mass in galaxies. MNRAS, 426:1893–1904. Cerca con Google

La Mura, G., Di Mille, F., Ciroi, S., Popovic ́, L. Cˇ ., and Rafanelli, P. (2009). Balmer Emission Line Profiles and Complex Properties of Broad-Line Regions in Active Galactic Nuclei. ApJ, 693:1437–1448. Cerca con Google

Labbe ́, I., Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Magee, D., Gonza ́lez, V., Carollo, C. M., Franx, M., Trenti, M., van Dokkum, P. G., and Stiavelli, M. (2013). The Spectral Energy Distributions of z ̃ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr. ApJ, 777:L19. Cerca con Google

Landi, R., Masetti, N., Morelli, L., Palazzi, E., Bassani, L., Malizia, A., Bazzano, A., Bird, A. J., Dean, A. J., Galaz, G., Minniti, D., and Ubertini, P. (2007). The AGN Nature of 11 out of 12 Swift/RXTE Unidentified Sources through Optical and X-Ray Spectroscopy. ApJ, 669:109–125. Cerca con Google

Lanzetta, K. M., Yahata, N., Pascarelle, S., Chen, H.-W., and Ferna ́ndez-Soto, A. (2002). The Star Formation Rate Intensity Distribution Function: Implications for the Cosmic Star Formation Rate History of the Universe. ApJ, 570:492–501. Cerca con Google

Lara-Lo ́pez, M. A., Bongiovanni, A., Cepa, J., Pe ́rez Garc ́ıa, A. M., Sa ́nchez-Portal, M., Castan ̃eda, H. O., Ferna ́ndez Lorenzo, M., and Povic ́, M. (2010). Study of star-forming galaxies in SDSS up to redshift 0.4. II. Evolution from the fundamental parameters: mass, metallicity and star formation rate. A&A, 519:A31. Cerca con Google

Lawrence, A., Watson, M. G., Pounds, K. A., and Elvis, M. (1987). Low-frequency divergent X-ray variability in the Seyfert galaxy NGC4051. Nature, 325:694–696. Cerca con Google

Lee, K.-S., Giavalisco, M., Gnedin, O. Y., Somerville, R. S., Ferguson, H. C., Dickinson, M., and Ouchi, M. (2006). The Large-Scale and Small-Scale Clustering of Lyman Break Galaxies at 3.5 ≤ z ≤ 5.5 from the GOODS Survey. ApJ, 642:63–80. Cerca con Google

Leitherer, C., Ferguson, H. C., Heckman, T. M., and Lowenthal, J. D. (1995). The Lyman Continuum in Starburst Galaxies Observed with the Hopkins Ultraviolet Telescope. ApJ, 454:L19. Cerca con Google

Lilly, S. J., Carollo, C. M., and Stockton, A. N. (2003). The Metallicities of Star-forming Galaxies at Intermediate Redshifts 0.47< z <0.92. ApJ, 597:730–750. Cerca con Google

Loeb, A. and Barkana, R. (2001). The Reionization of the Universe by the First Stars and Quasars. ARA&A, 39:19–66. Cerca con Google

Lotz, J. M., Madau, P., Giavalisco, M., Primack, J., and Ferguson, H. C. (2006). The Rest-Frame Far-Ultraviolet Morphologies of Star-forming Galaxies at z ∼ 1.5 and 4. ApJ, 636:592–609. Cerca con Google

Lucas, R. A. and Hack, W. J. (2013). Using SExtractor With the Drizzlepac Tweakreg Software for Aligning and Combining Sources in HST/ACS Images. In American Astronomical Society Meeting Abstracts, volume 221 of American Astronomical Society Meeting Abstracts, page 240.17. Cerca con Google

Madau, P., Haardt, F., and Rees, M. J. (1999). Radiative Transfer in a Clumpy Universe. III. The Nature of Cos- mological Ionizing Sources. ApJ, 514:648–659. Cerca con Google

Maier, C., Lilly, S. J., Carollo, C. M., Stockton, A., and Brodwin, M. (2005). Near-Infrared Spectroscopy of 0.4< z <1.0 CFRS Galaxies: Oxygen Abundances, SFRs, and Dust. ApJ, 634:849–860. Cerca con Google

Maiolino, R., Nagao, T., Grazian, A., Cocchia, F., Marconi, A., Mannucci, F., Cimatti, A., Pipino, A., and et al. (2008). AMAZE. I. The evolution of the mass-metallicity relation at z > 3. A&A, 488:463–479. Cerca con Google

Maiorano, E., Landi, R., Stephen, J. B., Bassani, L., Masetti, N., Parisi, P., Palazzi, E., Parma, P., and et al. (2011). Searching for active galactic nuclei among unidentified INTEGRAL sources. MNRAS, 416:531–540. Cerca con Google

Malhotra, S., Rhoads, J. E., Pirzkal, N., Haiman, Z., Xu, C., Daddi, E., Yan, H., Bergeron, L. E., and et al. (2005). An Overdensity of Galaxies at z = 5.9 ± 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism. ApJ, 626:666–679. Cerca con Google

Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., and Gnerucci, A. (2010). A fundamental relation between mass, star formation rate and metallicity in local and high-redshift galaxies. MNRAS, 408:2115–2127. Cerca con Google

Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., Pastorini, G., Pozzetti, L., Gnerucci, A., Risaliti, G., and et al. (2009). LSD: Lyman-break galaxies Stellar populations and Dynamics - I. Mass, metallicity and gas at z ∼ 3.1. MNRAS, 398:1915–1931. Cerca con Google

Maraston, C. (2005). Evolutionary population synthesis: models, analysis of the ingredients and application to high-z galaxies. MNRAS, 362:799–825. Cerca con Google

Martin, C. and Bowyer, S. (1989). Evidence for an extragalactic component of the far-ultraviolet background and constraints on galaxy evolution for Z between 0.1 and 0.6. ApJ, 338:677–706. Cerca con Google

Masetti, N., Bassani, L., Bazzano, A., Bird, A. J., Dean, A. J., Malizia, A., Norci, L., Palazzi, E., and et al. (2006a). Unveiling the nature of INTEGRAL objects through optical spectroscopy. IV. A study of six new hard X-ray sources. A&A, 455:11–19. Cerca con Google

Masetti, N., Mason, E., Bassani, L., Bird, A. J., Maiorano, E., Malizia, A., Palazzi, E., Stephen, J. B., and et al. (2006b). Unveiling the nature of INTEGRAL objects through optical spectroscopy. II. The nature of four unidentified sources. A&A, 448:547–556. Cerca con Google

Masetti, N., Mason, E., Morelli, L., Cellone, S. A., McBride, V. A., Palazzi, E., Bassani, L., Bazzano, A., and et al. (2008). Unveiling the nature of INTEGRAL objects through optical spectroscopy. VI. A multi-observatory identification campaign. A&A, 482:113–132. Cerca con Google

Masetti, N., Morelli, L., Palazzi, E., Galaz, G., Bassani, L., Bazzano, A., Bird, A. J., Dean, A. J., and et al. (2006c). Cerca con Google

Unveiling the nature of INTEGRAL objects through optical spectroscopy. V. Identification and properties of 21 southern hard X-ray sources. A&A, 459:21–30. Cerca con Google

Masetti, N., Palazzi, E., Bassani, L., Malizia, A., and Stephen, J. B. (2004). Unveiling the nature of three INTEGRAL sources through optical spectroscopy. A&A, 426:L41–L44. Cerca con Google

Masetti, N., Parisi, P., Jime ́nez-Bailo ́n, E., Palazzi, E., Chavushyan, V., Bassani, L., Bazzano, A., Bird, A. J., and Cerca con Google

et al. (2012). Unveiling the nature of INTEGRAL objects through optical spectroscopy. IX. Twenty two more identifications, and a glance into the far hard X-ray Universe. A&A, 538:A123. Cerca con Google

Masetti, N., Parisi, P., Palazzi, E., Jime ́nez-Bailo ́n, E., Chavushyan, V., Bassani, L., Bazzano, A., Bird, A. J., and Cerca con Google

et al. (2010). Unveiling the nature of INTEGRAL objects through optical spectroscopy. VIII. Identification of 44 newly detected hard X-ray sources. A&A, 519:A96. Cerca con Google

Masetti, N., Parisi, P., Palazzi, E., Jime ́nez-Bailo ́n, E., Morelli, L., Chavushyan, V., Mason, E., McBride, V. A., and et al. (2009). Unveiling the nature of INTEGRAL objects through optical spectroscopy. VII. Identification of 20 Galactic and extragalactic hard X-ray sources. A&A, 495:121–135. Cerca con Google

Masetti, N., Pretorius, M. L., Palazzi, E., Bassani, L., Bazzano, A., Bird, A. J., Charles, P. A., Dean, A. J., and et al. (2006d). Unveiling the nature of INTEGRAL objects through optical spectroscopy. III. Observations of seven southern sources. A&A, 449:1139–1149. Cerca con Google

Matsumoto, T., Matsuura, S., Murakami, H., Tanaka, M., Freund, M., Lim, M., Cohen, M., Kawada, M., and Noda, M. (2005). Infrared Telescope in Space Observations of the Near-Infrared Extragalactic Background Light. ApJ, 626:31–43. Cerca con Google

McClure, R. D. and van den Bergh, S. (1968). UB V Observations of Field Galaxies. AJ, 73:1008. Cerca con Google

McGaugh, S. S. (1991). H II region abundances - Model oxygen line ratios. ApJ, 380:140–150. Cerca con Google

McKernan, B., Ford, K. E. S., and Reynolds, C. S. (2010). Black hole mass, host galaxy classification and AGN activity. MNRAS, 407:2399–2410. Cerca con Google

McLure, R. J., Cirasuolo, M., Dunlop, J. S., Foucaud, S., and Almaini, O. (2009). The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6. MNRAS, 395:2196–2209. McLure, R. J., Dunlop, J. S., Cirasuolo, M., Koekemoer, A. M., Sabbi, E., Stark, D. P., Targett, T. A., and Ellis, R. S. (2010). Galaxies at z = 6 − 9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. MNRAS, 403:960–983. Cerca con Google

McQuinn, M. (2012). Constraints on X-ray emissions from the reionization era. MNRAS, 426:1349–1360. Meiksin, A. (2005). Constraints on the ionization sources of the high-redshift intergalactic medium. MNRAS, 356:596–606. Cerca con Google

Metcalfe, N., Shanks, T., Fong, R., and Roche, N. (1995). Galaxy number counts - III. Deep CCD observations to B=27.5 mag. MNRAS, 273:257–276. Cerca con Google

Mitra, S., Choudhury, T. R., and Ferrara, A. (2012). Joint quasar-cosmic microwave background constraints on reionization history. MNRAS, 419:1480–1488. Cerca con Google

Morelli, L., Corsini, E. M., Pizzella, A., Dalla Bonta`, E., Coccato, L., Me ́ndez-Abreu, J., and Cesetti, M. (2012). Structure and dynamics of galaxies with a low surface-brightness disc - II. Stellar populations of bulges. Cerca con Google

Morelli, L., Pompei, E., Pizzella, A., Me ́ndez-Abreu, J., Corsini, E. M., Coccato, L., Saglia, R. P., Sarzi, M., and Bertola, F. (2008). Stellar populations of bulges in 14 cluster disc galaxies. MNRAS, 389:341–363. Moustakas, J., Zaritsky, D., Brown, M., Cool, R., Dey, A., Eisenstein, D. J., Gonzalez, A. H., Jannuzi, B., and et al. Cerca con Google

(2011). Evolution of the Stellar Mass-Metallicity Relation Since z=0.75. ArXiv e-prints. Cerca con Google

Mun ̃ oz, J. A. and Loeb, A. (2008). Verifying the identity of high-redshift massive galaxies through the clustering of lower mass galaxies around them. MNRAS, 385:2175–2180. Cerca con Google

Mutchler, M., Sirianni, M., van Orsow, D., and Riess, A. (2004). Bias and dark calibration of ACS data. Technical report. Cerca con Google

Nagao, T., Maiolino, R., and Marconi, A. (2006). Gas metallicity diagnostics in star-forming galaxies. A&A, 459:85–101. Cerca con Google

Novak, G. S., Ostriker, J. P., and Ciotti, L. (2011). Feedback from Central Black Holes in Elliptical Galaxies: Two-dimensional Models Compared to One-dimensional Models. ApJ, 737:26. Cerca con Google

Oesch, P., Bouwens, R. J., Carollo, M., Illingworth, G. D., and HUDF09 Team (2010a). Results from the First Epoch Data of the HUDF09: The Galaxy Population at z~7-8. In Bulletin of the American Astronomical Society, volume 41 of Bulletin of the American Astronomical Society, pages 532–+. Cerca con Google

Oesch, P. A., Bouwens, R. J., Carollo, C. M., Illingworth, G. D., Trenti, M., Stiavelli, M., Magee, D., Labbe ́, I., and Franx, M. (2010b). Structure and Morphologies of z~7-8 Galaxies from Ultra-deep WFC3/IR Imaging of the Hubble Ultra-deep Field. ApJ, 709:L21–L25. Cerca con Google

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Carollo, C. M., Franx, M., Labbe ́, I., Magee, D., Stiavelli, M., and et al. (2010c). z ∼ 7 Galaxies in the HUDF: First Epoch WFC3/IR Results. ApJ, 709:L16–L20. Cerca con Google

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Gonzalez, V., Trenti, M., van Dokkum, P. G., Franx, M., Labbe ́, I., Carollo, C. M., and Magee, D. (2012). The Bright End of the Ultraviolet Luminosity Function at z ̃ 8: New Constraints from CANDELS Data in GOODS-South. ApJ, 759:135. Cerca con Google

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbe ́, I., Franx, M., van Dokkum, P. G., Trenti, M., Stiavelli, M., Gonzalez, V., and Magee, D. (2013). Probing the Dawn of Galaxies at z ̃ 9-12: New Constraints from HUDF12/XDF and CANDELS data. ApJ, 773:75. Cerca con Google

Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbe ́, I., Smit, R., Franx, M., van Dokkum, P. G., Momcheva, I., Ashby, M. L. N., Fazio, G. G., Huang, J.-S., Willner, S. P., Gonzalez, V., Magee, D., Trenti, M., Brammer, G. B., Skelton, R. E., and Spitler, L. R. (2014). The Most Luminous z ̃ 9-10 Galaxy Candidates Yet Found: The Luminosity Function, Cosmic Star-formation Rate, and the First Mass Density Estimate at 500 Myr. ApJ, 786:108. Cerca con Google

Oesch, P. A., Carollo, C. M., Stiavelli, M., Trenti, M., Bergeron, L. E., Koekemoer, A. M., Lucas, R. A., Pavlovsky, C. M., and et al. (2009). The UDF05 Follow-Up of the Hubble Ultra Deep Field. II. Constraints on Reioniza- tion from z-Dropout Galaxies. ApJ, 690:1350–1357. Cerca con Google

Oesch, P. A., Stiavelli, M., Carollo, C. M., Bergeron, L. E., Koekemoer, A. M., Lucas, R. A., Pavlovsky, C. M., Trenti, M., and et al. (2007). The UDF05 Follow-up of the Hubble Ultra Deep Field. I. The Faint-End Slope of the Lyman Break Galaxy Population at z ∼ 5. ApJ, 671:1212–1226. Cerca con Google

Oke, J. B. and Gunn, J. E. (1983). Secondary standard stars for absolute spectrophotometry. ApJ, 266:713–717. Onodera, M., Renzini, A., Carollo, M., Cappellari, M., Mancini, C., Strazzullo, V., Daddi, E., Arimoto, N., and Cerca con Google

et al. (2012). Deep Near-infrared Spectroscopy of Passively Evolving Galaxies at z > 1.4. ApJ, 755:26. Osterbrock, D. E. (1989). Astrophysics of gaseous nebulae and active galactic nuclei. Cerca con Google

Ouchi, M., Shimasaku, K., Furusawa, H., Saito, T., Yoshida, M., Akiyama, M., Ono, Y., Yamada, T., and et al.(2010). Statistics of 207 Lyα Emitters at a Redshift Near 7: Constraints on Reionization and Galaxy Formation Models. ApJ, 723:869–894. Cerca con Google

Overzier, R. A., Bouwens, R. J., Illingworth, G. D., and Franx, M. (2006). Clustering of i775 Dropout Galaxies at z ∼ 6 in GOODS and the UDF. ApJ, 648:L5–L8. Cerca con Google

Pagel, B. E. J., Edmunds, M. G., Blackwell, D. E., Chun, M. S., and Smith, G. (1979). On the composition of H II regions in southern galaxies. I - NGC 300 and 1365. MNRAS, 189:95–113. Cerca con Google

Parisi, P., Masetti, N., Jime ́nez-Bailo ́n, E., Chavushyan, V., Malizia, A., Landi, R., Molina, M., Fiocchi, M., and et al. (2009). Accurate classification of 17 AGNs detected with Swift/BAT. A&A, 507:1345–1358. Cerca con Google

Parisi, P., Masetti, N., Jime ́nez-Bailo ́n, E., Chavushyan, V., Palazzi, E., Landi, R., Malizia, A., Bassani, L., and et al. (2012). Accurate classification of 29 objects detected in the 39 month Palermo Swift/BAT hard X-ray catalogue. A&A, 545:A101. Cerca con Google

Partridge, R. B. and Peebles, P. J. E. (1967). Are Young Galaxies Visible? ApJ, 147:868. Cerca con Google

Pascarelle, S. M., Lanzetta, K. M., and Ferna ́ndez-Soto, A. (1998). The Ultraviolet Luminosity Density of the Universe from Photometric Redshifts of Galaxies in the Hubble Deep Field. ApJ, 508:L1–L4. Cerca con Google

Paturel, G., Petit, C., Prugniel, P., Theureau, G., Rousseau, J., Brouty, M., Dubois, P., and Cambre ́sy, L. (2003). Cerca con Google

HYPERLEDA. I. Identification and designation of galaxies. A&A, 412:45–55. Cerca con Google

Pettini, M., Steidel, C. C., Adelberger, K. L., Kellogg, M., Dickinson, M., and Giavalisco, M. (1998). The Discovery Cerca con Google

of Primeval Galaxies and the Epoch of Galaxy Formation. In Woodward, C. E., Shull, J. M., and Thronson, Jr., H. A., editors, Origins, volume 148 of Astronomical Society of the Pacific Conference Series, page 67. Phillipps, S., Davies, J. I., and Disney, M. J. (1990). The visibility of high-redshift galaxies. MNRAS, 242:235–240. Pirzkal, N., Rothberg, B., Ryan, R., Coe, D., Malhotra, S., Rhoads, J., and Noeske, K. (2013). Real or Interloper? The Redshift Likelihoods of z > 8 Galaxies in the HUDF12. ApJ, 775:11. Cerca con Google

Pirzkal, N., Viana, A., and Rajan, A. (2010). The WFC3 IR ’Blobs”. Technical report. Cerca con Google

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical recipes in FORTRAN. The art of scientific computing. Cerca con Google

Prugniel, P. and Soubiran, C. (2001). A database of high and medium-resolution stellar spectra. A&A, 369:1048– 1057. Cerca con Google

Quinn, T., Katz, N., and Efstathiou, G. (1996). Photoionization and the formation of dwarf galaxies. MNRAS, 278:L49–L54. Cerca con Google

Ravindranath, S., Giavalisco, M., Ferguson, H. C., Conselice, C., Katz, N., Weinberg, M., Lotz, J., Dickinson, M., and et al. (2006). The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey. ApJ, 652:963–980. Cerca con Google

Reach, W. T. (1997). The structured zodiacal light: IRAS, COBE, and ISO observations. In Okuda, H., Mat- sumoto, T., and Rollig, T., editors, Diffuse Infrared Radiation and the IRTS, volume 124 of Astronomical Society of the Pacific Conference Series, page 33. Cerca con Google

Richard, J., Stark, D. P., Ellis, R. S., George, M. R., Egami, E., Kneib, J.-P., and Smith, G. P. (2008). A Hubble and Spitzer Space Telescope Survey for Gravitationally Lensed Galaxies: Further Evidence for a Significant Population of Low-Luminosity Galaxies beyond z=7. ApJ, 685:705–724. Cerca con Google

Richer, M. G. and McCall, M. L. (1995). Oxygen abundances in diffuse ellipticals and the metallicity-luminosity relations for dwarf galaxies. ApJ, 445:642–659. Cerca con Google

Riess, A., Mutchler, M., and van Orsow, D. (2002). A First Look at Hot Pixels on ACS. Technical report. Cerca con Google

Riess, A. G., Strolger, L.-G., Casertano, S., Ferguson, H. C., Mobasher, B., Gold, B., Challis, P. J., Filippenko, A. V., Jha, S., Li, W., Tonry, J., Foley, R., Kirshner, R. P., Dickinson, M., MacDonald, E., Eisenstein, D., Livio, M., Younger, J., Xu, C., Dahle ́n, T., and Stern, D. (2007). New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. ApJ, 659:98–121. Rigopoulou, D., Mainieri, V., Almaini, O., Alonso-Herrero, A., Huang, J.-S., Hasinger, G., Rieke, G., Dunlop, J., and Lehmann, I. (2009). Spectral energy distributions of type 2 quasi-stellar objects: obscured star formation at high redshifts. MNRAS, 400:1199–1207. Cerca con Google

Rodrigues, M., Puech, M., Hammer, F., Rothberg, B., and Flores, H. (2012). A decrease of the gas exchanges between galaxies and the intergalactic medium, from 12 to 6 billion years ago. MNRAS, 421:2888–2903. Ryder, S. D. (1995). The local metallicity-surface brightness relationship in galactic disks. ApJ, 444:610–631. Salpeter, E. E. (1955). The Luminosity Function and Stellar Evolution. ApJ, 121:161. Cerca con Google

Salvaterra, R., Ferrara, A., and Dayal, P. (2011). Simulating high-redshift galaxies. MNRAS, 414:847–859. Sa ́nchez-Bla ́zquez, P., Peletier, R. F., Jime ́nez-Vicente, J., Cardiel, N., Cenarro, A. J., Falco ́n-Barroso, J., Gorgas, J., Selam, S., and Vazdekis, A. (2006). Medium-resolution Isaac Newton Telescope library of empirical spectra. MNRAS, 371:703–718. Cerca con Google

Sarzi, M., Falco ́n-Barroso, J., Davies, R. L., Bacon, R., Bureau, M., Cappellari, M., de Zeeuw, P. T., Emsellem, E., and et al. (2006). The SAURON project - V. Integral-field emission-line kinematics of 48 elliptical and lenticular galaxies. MNRAS, 366:1151–1200. Cerca con Google

Sarzi, M., Rix, H.-W., Shields, J. C., Ho, L. C., Barth, A. J., Rudnick, G., Filippenko, A. V., and Sargent, W. L. W. Cerca con Google

(2005). The Stellar Populations in the Central Parsecs of Galactic Bulges. ApJ, 628:169–186. Cerca con Google

Sasaki, S. and Takahara, F. (1994). Cosmological Reionization Caused by Structure Formation. Progress of Theoretical Physics, 91:699–721. Cerca con Google

Sasaki, S. and Umemura, M. (1996). Reionization of the Universe by Early-formed Massive Black Holes. ApJ, 462:104. Cerca con Google

Savaglio, S., Glazebrook, K., Le Borgne, D., Juneau, S., Abraham, R. G., Chen, H.-W., Crampton, D., McCarthy, Cerca con Google

P. J., and et al. (2005). The Gemini Deep Deep Survey. VII. The Redshift Evolution of the Mass-Metallicity Relation. ApJ, 635:260–279. Cerca con Google

Schawinski, K., Lintott, C. J., Thomas, D., Kaviraj, S., Viti, S., Silk, J., Maraston, C., Sarzi, M., and et al. (2009). Cerca con Google

Destruction of Molecular Gas Reservoirs in Early-Type Galaxies by Active Galactic Nucleus Feedback. ApJ, 690:1672–1680. Cerca con Google

Schawinski, K., Thomas, D., Sarzi, M., Maraston, C., Kaviraj, S., Joo, S.-J., Yi, S. K., and Silk, J. (2007). Observa- Cerca con Google

tional evidence for AGN feedback in early-type galaxies. MNRAS, 382:1415–1431. Cerca con Google

Schmidt, K. B., Treu, T., Trenti, M., Bradley, L. D., Kelly, B. C., Oesch, P. A., Holwerda, B. W., Shull, J. M., and Sti- avelli, M. (2014). The Luminosity Function at z ̃ 8 from 97 Y-band Dropouts: Inferences about Reionization. ApJ, 786:57. Cerca con Google

Sciama, D. W. (1988). Photino decay and the ionization of Lyman alpha clouds at large redshifts. MNRAS, 230:13P. Cerca con Google

Sciama, D. W. (1994). Decaying neutrinos and the abundance of He I in Lyman limit systems and Lyman-Alpha clouds. ApJ, 422:L49–L50. Cerca con Google

Sciama, D. W. (1995). Decaying Neutrinos, the Metagalactic Radiation Field, and the Ionization of Nitrogen in the Interstellar Medium. ApJ, 448:667. Cerca con Google

Sethi, S. K. and Nath, B. B. (1997). On the source of ionization of the intergalactic medium at z ∼ 2.4. MNRAS, 289:634–644. Cerca con Google

Shankar, F. and Mathur, S. (2007). On the Faint End of the High-Redshift Active Galactic Nucleus Luminosity Function. ApJ, 660:1051–1059. Cerca con Google

Shapiro, P. R. and Giroux, M. L. (1987). Cosmological H II regions and the photoionization of the intergalactic medium. ApJ, 321:L107–L112. Cerca con Google

Shapley, A. E., Erb, D. K., Pettini, M., Steidel, C. C., and Adelberger, K. L. (2004). Evidence for Solar Metallicities in Massive Star-forming Galaxies at z > 2. ApJ, 612:108–121. Cerca con Google

Shapley, A. E., Steidel, C. C., Pettini, M., Adelberger, K. L., and Erb, D. K. (2006). The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z ∼ 3. ApJ, 651:688–703. Cerca con Google

Shectman, S. A. (1973). Clusters of Galaxies and the Cosmic Light. ApJ, 179:681–698. Cerca con Google

Shectman, S. A. (1974). The small-scale anisotropy of the cosmic light. ApJ, 188:233–242. Cerca con Google

Siana, B., Polletta, M. d. C., Smith, H. E., Lonsdale, C. J., Gonzalez-Solares, E., Farrah, D., Babbedge, T. S. R., Cerca con Google

Rowan-Robinson, M., and et al. (2008). High-Redshift QSOs in the SWIRE Survey and the z ∼ 3 QSO Luminosity Function. ApJ, 675:49–70. Cerca con Google

Silva, L., Maiolino, R., and Granato, G. L. (2004). Connecting the cosmic infrared background to the X-ray background. MNRAS, 355:973–985. Cerca con Google

Sirianni, M., Martel, A. R., Jee, M. J., van Orsow, D., and Sparks, W. B. (2003). Bias Subtraction and Correction of ACS/WFC Frames. In Arribas, S., Koekemoer, A., and Whitmore, B., editors, HST Calibration Workshop: Hubble after the Installation of the ACS and the NICMOS Cooling System, page 82. Cerca con Google

Skelton, R. E., Whitaker, K. E., Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., Labbe, I., Franx, M., van der Wel, and et al. (2014). 3D-HST WFC3-selected Photometric Catalogs in the Five CANDELS/3D-HST Fields: Photometry, Photometric Redshifts and Stellar Masses. ArXiv e-prints. Cerca con Google

Skillman, E. D., Kennicutt, R. C., and Hodge, P. W. (1989). Oxygen abundances in nearby dwarf irregular galax- Cerca con Google

ies. ApJ, 347:875–882. Cerca con Google

Smette, A., Heap, S. R., Williger, G. M., Tripp, T. M., Jenkins, E. B., and Songaila, A. (2002). Hubble Space Telescope Space Telescope Imaging System Observations of the He II Gunn-Peterson Effect toward HE 2347-4342. ApJ, 564:542–558. Cerca con Google

Smith, R. M., Zavodny, M., Rahmer, G., and Bonati, M. (2008). A theory for image persistence in HgCdTe photodiodes. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 7021 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Cerca con Google

Somerville, R. S., Primack, J. R., and Faber, S. M. (2001). The nature of high-redshift galaxies. MNRAS, 320:504–528. Cerca con Google

Sommariva, V., Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., Nagao, T., Baroni, A., and Grazian, A. (2012). Cerca con Google

Stellar metallicity of star-forming galaxies at z ∼ 3. A&A, 539:A136. Cerca con Google

Songaila, A., Cowie, L. L., and Lilly, S. J. (1990). Galaxy formation and the origin of the ionizing flux at large Cerca con Google

redshift. ApJ, 348:371–377. Cerca con Google

Springel, V., Di Matteo, T., and Hernquist, L. (2005). Modelling feedback from stars and black holes in galaxy mergers. MNRAS, 361:776–794. Cerca con Google

Stanway, E. R., Bremer, M. N., and Lehnert, M. D. (2008). On contamination and completeness in zgt5 Lyman-break galaxy surveys. MNRAS, 385:493–510. Cerca con Google

Stark, D. P., Ellis, R. S., Bunker, A., Bundy, K., Targett, T., Benson, A., and Lacy, M. (2009). The Evolutionary Cerca con Google

History of Lyman Break Galaxies Between Redshift 4 and 6: Observing Successive Generations of Massive Galaxies in Formation. ApJ, 697:1493–1511. Cerca con Google

Stark, D. P., Ellis, R. S., Chiu, K., Ouchi, M., and Bunker, A. (2010). Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies - I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission. MNRAS, 408:1628–1648. Cerca con Google

Stecker, F. W., Puget, J. L., and Fazio, G. G. (1977). The cosmic far-infrared background at high galactic latitudes. ApJ, 214:L51–L55. Cerca con Google

Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., and Pettini, M. (1999). Lyman-Break Galaxies at z>=4 and the Evolution of the Ultraviolet Luminosity Density at High Redshift. ApJ, 519:1–17. Cerca con Google

Steidel, C. C. and Hamilton, D. (1992). Deep imaging of high redshift QSO fields below the Lyman limit. I - The Cerca con Google

field of Q0000-263 and galaxies at z = 3.4. AJ, 104:941–949. Cerca con Google

Steidel, C. C. and Hamilton, D. (1993). Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies. AJ, 105:2017–2030. Cerca con Google

Stephen, J. B., Bassani, L., Malizia, A., Bazzano, A., Ubertini, P., Bird, A. J., Dean, A. J., Lebrun, F., and Walter, R. (2006). Using the ROSAT catalogues to find counterparts for the second IBIS/ISGRI survey sources. A&A, 445:869–873. Cerca con Google

Stiavelli, M. (2009). From First Light to Reionization: The End of the Dark Ages. Cerca con Google

Stiavelli, M., Fall, S. M., and Panagia, N. (2004a). Observable Properties of Cosmological Reionization Sources. ApJ, 600:508–519. Cerca con Google

Stiavelli, M., Fall, S. M., and Panagia, N. (2004b). The Possible Detection of Cosmological Reionization Sources. ApJ, 610:L1–L4. Cerca con Google

Storchi-Bergmann, T., Gonza ́lez Delgado, R. M., Schmitt, H. R., Cid Fernandes, R., and Heckman, T. (2001). Cerca con Google

Circumnuclear Stellar Population, Morphology, and Environment of Seyfert 2 Galaxies: An Evolutionary Scenario. ApJ, 559:147–156. Cerca con Google

Sturm, E., Gonza ́lez-Alfonso, E., Veilleux, S., Fischer, J., Gracia ́-Carpio, J., Hailey-Dunsheath, S., Contursi, A., Poglitsch, A., and et al. (2011). Massive Molecular Outflows and Negative Feedback in ULIRGs Observed by Herschel-PACS. ApJ, 733:L16. Cerca con Google

Su, J., Stiavelli, M., Oesch, P., Trenti, M., Bergeron, E., Bradley, L., Carollo, M., Dahlen, T., and et al. (2011). The UDF05 Follow-up of the Hubble Ultra Deep Field. III. The Luminosity Function at z ∼ 6. ApJ, 738:123. Tegmark, M., Silk, J., and Evrard, A. (1993). Late Reionization by Supernova-driven Winds. ApJ, 417:54. Thomas, D. and Davies, R. L. (2006). Rejuvenation of spiral bulges. MNRAS, 366:510–520. Cerca con Google

Tolman, R. C. (1930). On the Estimation of Distances in a Curved Universe with a Non-Static Line Element. Proceedings of the National Academy of Science, 16:511–520. Cerca con Google

Tolman, R. C. (1934). Relativity, Thermodynamics, and Cosmology. Cerca con Google

Tonry, J. and Schneider, D. P. (1988). A new technique for measuring extragalactic distances. AJ, 96:807–815. Treister, E., Schawinski, K., Volonteri, M., Natarajan, P., and Gawiser, E. (2011). Black hole growth in the early Universe is self-regulated and largely hidden from view. Nature, 474:356–358. Cerca con Google

Tremonti, C. A., Heckman, T. M., Kauffmann, G., Brinchmann, J., Charlot, S., White, S. D. M., Seibert, M., Peng, E. W., and et al. (2004). The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey. ApJ, 613:898–913. Cerca con Google

Tremonti, C. A., Moustakas, J., and Diamond-Stanic, A. M. (2007). The Discovery of 1000 km s−1 Outflows in Massive Poststarburst Galaxies at z = 0.6. ApJ, 663:L77–L80. Cerca con Google

Trenti, M., Bradley, L. D., Stiavelli, M., Oesch, P., Treu, T., Bouwens, R. J., Shull, J. M., MacKenty, J. W., and et al. Cerca con Google

(2011). The Brightest of Reionizing Galaxies Survey: Design and Preliminary Results. ApJ, 727:L39. Cerca con Google

Trenti, M., Bradley, L. D., Stiavelli, M., Shull, J. M., Oesch, P., Bouwens, R. J., Mun ̃oz, J. A., Romano-Diaz, E., and et al. (2012). Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ∼ 8. ApJ, 746:55. Cerca con Google

Trenti, M. and Stiavelli, M. (2009). Formation Rates of Population III Stars and Chemical Enrichment of Halos during the Reionization Era. ApJ, 694:879–892. Cerca con Google

Trenti, M., Stiavelli, M., Bouwens, R. J., Oesch, P., Shull, J. M., Illingworth, G. D., Bradley, L. D., and Carollo, C. M. (2010). The Galaxy Luminosity Function During the Reionization Epoch. ApJ, 714:L202–L207. Ubertini, P., Lebrun, F., Di Cocco, G., Bazzano, A., Bird, A. J., Broenstad, K., Goldwurm, and et al. (2003). IBIS: Cerca con Google

The Imager on-board INTEGRAL. A&A, 411:L131–L139. Cerca con Google

Vale, A. and Ostriker, J. P. (2004). Linking halo mass to galaxy luminosity. MNRAS, 353:189–200. Cerca con Google

Vanzella, E., Fontana, A., Zitrin, A., Coe, D., Bradley, L., Postman, M., Grazian, A., Castellano, M., Pentericci, L., Cerca con Google

Giavalisco, M., and et al. (2013). Characterizing faint galaxies in the reionization epoch: LBT confirms two L< 0.2L* sources at z = 6.4 behind the CLASH/Frontier Fields cluster MACS0717.5+3745. ArXiv e-prints. Vanzella, E., Giavalisco, M., Dickinson, M., Cristiani, S., Nonino, M., Kuntschner, H., Popesso, P., Rosati, P., Renzini, A., Stern, D., Cesarsky, C., Ferguson, H. C., and Fosbury, R. A. E. (2009). Spectroscopic Observations Cerca con Google

of Lyman Break Galaxies at Redshifts ~4, 5, and 6 in the Goods-South Field. ApJ, 695:1163–1182. Cerca con Google

Vaona, L., Ciroi, S., Di Mille, F., Cracco, V., La Mura, G., and Rafanelli, P. (2012). Spectral properties of the narrow-line region in Seyfert galaxies selected from the SDSS-DR7. MNRAS, 427:1266–1283. Cerca con Google

Vazdekis, A., Sa ́nchez-Bla ́zquez, P., Falco ́n-Barroso, J., Cenarro, A. J., Beasley, M. A., Cardiel, N., Gorgas, J., and Peletier, R. F. (2010). Evolutionary stellar population synthesis with MILES - I. The base models and a new Cerca con Google

line index system. MNRAS, 404:1639–1671. Cerca con Google

Viero, M. P., Wang, L., Zemcov, M., Addison, G., Amblard, A., Arumugam, V., Aussel, H., Be ́thermin, M., and et al. (2013). HerMES: Cosmic Infrared Background Anisotropies and the Clustering of Dusty Star-forming Galaxies. ApJ, 772:77. Cerca con Google

White, M. (1994). Reconstructing the CMB power spectrum. A&A, 290:L1–L4. Cerca con Google

Williams, C. C., Giavalisco, M., Cassata, P., Tundo, E., Wiklind, T., Guo, Y., Lee, B., Barro, G., Wuyts, S., Bell, E. F., and et al. (2014). The Progenitors of the Compact Early-type Galaxies at High Redshift. ApJ, 780:1. Williams, R. E., Baum, S., Bergeron, L. E., Bernstein, N., Blacker, B. S., Boyle, B. J., M., B. T., Carollo, C. M., and et al. (2000). The Hubble Deep Field South: Formulation of the Observing Campaign. AJ, 120:2735–2746. Williams, R. E., Blacker, B., Dickinson, M., Dixon, W. V. D., Ferguson, H. C., Fruchter, A. S., Giavalisco, M., Gilliland, R. L., and et al. (1996). The Hubble Deep Field: Observations, Data Reduction, and Galaxy Photometry. AJ, 112:1335–+. Cerca con Google

Willott, C. J., McLure, R. J., Hibon, P., Bielby, R., McCracken, H. J., Kneib, J.-P., Ilbert, O., Bonfield, D. G., and et al. (2013). An Exponential Decline at the Bright End of the z = 6 Galaxy Luminosity Function. AJ, 145:4. Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., Gehrels, N., Gime ́nez, A., Grebenev, S., Hermsen, W., Mas-Hesse,J. M., and et al. (2003). The INTEGRAL mission. A&A, 411:L1–L6. Cerca con Google

Yan, H., Finkelstein, S. L., Huang, K.-H., Ryan, R. E., Ferguson, H. C., Koekemoer, A. M., Grogin, N. A., Dickinson, and et al. (2012). Luminous and High Stellar Mass Candidate Galaxies at z ∼ 8 Discovered in the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. ApJ, 761:177. Cerca con Google

Yan, H. and Windhorst, R. A. (2004). The Major Sources of the Cosmic Reionizing Background at z ∼ 6. ApJ, 600:L1–L5. Cerca con Google

Yan, H.-J., Windhorst, R. A., Hathi, N. P., Cohen, S. H., Ryan, R. E., O’Connell, R. W., and McCarthy, P. J. (2010). Cerca con Google

Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field. Research in Astronomy and Astrophysics, Volume 10, Issue 9, pp. 867-904 (2010)., 10:867– 904. Cerca con Google

Yegorova, I. A., Pizzella, A., and Salucci, P. (2011). Probing dark matter haloes of spiral galaxies at poorly ex- plored distances using satellite kinematics. A&A, 532:A105. Cerca con Google

Zahid, H. J., Kewley, L. J., and Bresolin, F. (2011). The Mass-Metallicity and Luminosity-Metallicity Relations from DEEP2 at z ∼ 0.8. ApJ, 730:137. Cerca con Google

Zahn, O., Reichardt, C. L., Shaw, L., Lidz, A., Aird, K. A., Benson, B. A., E., B. L., Carlstrom, J. E., and et al. (2012). Cosmic microwave background constraints on the duration and timing of reionization from the South Pole Telescope. ApJ, 756:65. Cerca con Google

Zaroubi, S. (2013). The Epoch of Reionization. In Wiklind, T., Mobasher, B., and Bromm, V., editors, Astro- physics and Space Science Library, volume 396 of Astrophysics and Space Science Library, page 45. Cerca con Google

Zeldovich, Y. B. (1972). A hypothesis, unifying the structure and the entropy of the Universe. MNRAS, 160:1P. Zheng, W., Meiksin, A., Pifko, K., Anderson, S. F., Hogan, C. J., Tittley, E., Kriss, G. A., Chiu, K., and et al. (2008). Intergalactic He II Absorption in the Spectra of Quasars at Redshifts 3.5 and 3.8, Observed with the HST ACS Prism. ApJ, 686:195–200. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record