Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Viale, E (2014) Symbiotic bacteria inhabiting tephritid flies: a worldwide specific interaction. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document (Viale_Elisabetta_tesi)
3160Kb

Abstract (english)

Several insect lineages have evolved mutualistic associations with their symbiotic bacteria. This is the case of some members of Tephritinae, the most specialized subfamily of fruit flies (Diptera: Tephritidae), harboring co-evolved and vertically transmitted bacterial symbionts in their midgut, known as ‘Candidatus Stammerula spp.’. In the tephritid fly Bactrocera oleae, the major olive pest, symbionts are located in the oesophageal bulb, a diverticulum of the fly head, and designated as ‘Candidatus Erwinia dacicola’.
This research, based on two main studies, is focused on different aspects of the relationships between species of the family Tephritidae and their nonculturable symbiotic bacteria.
The first study investigated the presence of specific symbiotic bacteria in 15 of the 25 described endemic tephritids of the Hawaiian Archipelago, which represent a spectacular example of adaptive radiation, and their molecular relationships with symbionts of non-Hawaiian tephritids. Moreover the concordant evolution between host and symbiont phylogenies was tested. A specific symbiont was detected through PCR assays in all endemic individuals analyzed and it was designated as ‘Candidatus Stammerula trupaneae’ as it was included in Ca. Stammerula spp. monophyletic clade. The phylogeny of the insect host was reconstructed based on two regions of the mitochondrial DNA (16S rDNA and COI-tRNALeu-COII), while the bacterial 16S rRNA was used for the symbiont analysis. Host and symbiont phylogenies were then compared and evaluated for patterns of cophylogeny and strict cospeciation. Topological congruence between Hawaiian Tephritinae and their symbiotic bacteria phylogenies suggests a limited, but significant degree of host-symbiont cospeciation. The character evolution of three host traits, as island location, host lineage, and host tissue attacked, was finally reconstructed based on the symbiont phylogenies under the hypothesis of cospeciation.
The second study surveys the genetic variability of the olive fly symbiont, Ca. Erwinia dacicola, together with the patterns of genetic differentiation of B. oleae, over a large area of its geographical distribution, including most regions of the Mediterranean area, plus South Africa, California and Pakistan. Three bacterial haplotypes, showing a significative geographic distribution, were identified and the co-existence of different Ca. E. dacicola haplotypes in a single fly was never found. Our results reveal the presence of three symbiont haplotypes with a significant phylogeographic distribution related to the territory. In the Mediterranean populations only two bacterial lineages (htA and htB), previously recovered in Italian olive fly populations, have been found, showing a significative East-West genetic differentiation. The South African and Californian olive fly populations were represented only by one of these two lineages, respectively htA and htB. Moreover, a new haplotype (htC) was detected exclusively in the Pakistani population. On the other hand, a high degree of mitochondrial genetic variability with a substantial phylogeographic differentiation has been observed in the B. oleae populations analyzed, revealing the presence of 39 insect haplotypes. Symbiont and host haplotypes were then compared and a significant correlation was found suggesting the predominant presence of vertical transmission. Moreover, the bacterial haplotypes distribution seems to be more related to the territory than the numerous insect host haplotypes, representing an useful tool to reconstruct the debated olive fly’s historical origin.

Abstract (italian)

Diverse specie di insetto si sono evolute in associazione con i loro batteri simbionti. Questo è il caso di alcuni membri dei Tephritinae, la più specializzata sottofamiglia delle mosche della frutta (Diptera: Tephritidae), che ospitano nell’intestino batteri simbionti coevoluti e trasmessi in maniera verticale, conosciuti come “Candidatus Stammerula spp.”. Nella mosca dell’olivo, Bactrocera oleae, i batteri simbionti sono localizzati nel bulbo esofageo, un diverticolo presente nel capo della mosca, e identificati con il nome di “Candidatus Erwinia dacicola”.
Questo lavoro, basato su due principali studi, si focalizza su diversi aspetti delle relazioni filogenetiche che intercorrono tra le mosche della frutta e i loro batteri simbionti.
Il primo lavoro studia la presenza di specifici batteri simbionti in 15 delle 25 specie descritte di tefritidi endemici dell’Arcipelago delle Hawaii, uno spettacolare esempio di radiazione adattativa, e le relazioni molecolari che intercorrono con i simbionti delle Tephritinae non Hawaiiani. Inoltre è stata analizzata la concordanza evolutiva tra la filogenesi dell’insetto rispetto a quella del simbionte. Uno specifico simbionte è stato individuato mediante saggi di PCR in tutti gli individui analizzati e nominato “Candidatus Stammerula trupaneae”, in quanto incluso nel gruppo monofiletico formato da Ca. Stammerula spp. La filogenesi dell’insetto ospite è stata ricostruita analizzando due regioni del DNA mitocondriale (16S rDNA e COI-tRNALeu-COII), mentre il gene batterico 16S rRNA è stato utilizzato nell’analisi del simbionte. Le filogenesi dell’ospite e del simbionte sono state quindi comparate e valutate per lo studio del modello di congruenza filogenetica e cospeciazione. La congruenza tra la filogenesi delle Tephritinae Hawaiiane e i loro batteri simbionti suggerisce un ridotto, ma significativo livello di cospeciazione. L’evoluzione dei caratteri ancestrali, basata su tre aspetti dell’insetto quali l’isola di origine, la pianta ospite e il tessuto vegetale attaccato dalla mosca, è stata infine ricostruita sulla base della filogenesi del simbionte ipotizzando la presenza di cospeciazione.
Il secondo studio analizza la variabilità genetica del simbionte della mosca dell’olivo, Ca. Erwinia dacicola, insieme al grado di differenziazione genetica di B. oleae, su un ampio raggio della sua distribuzione geografica, comprendendo molte regioni del Mediterraneo e alcuni campionamenti puntiformi in Sud Africa, California e Pakistan. Tre aplotipi batterici, con una significativa distribuzione geografica, sono stati identificati ed è stata esclusa la coesistenza di diversi aplotipi di Ca. E. dacicola nella stessa mosca. Nelle popolazioni della mosca dell’olivo raccolte nel Mediterraneo, solo due aplotipi batterici (htA e htB), identificati in precedenza nelle popolazioni Italiane, sono stati trovati, mostrando una significativa distribuzione Est-Ovest. Le popolazioni del Sud Africa e della California sono rappresentate in maniera esclusiva da uno dei due aplotipi, rispettivamente htA e htB. Un nuovo aplotipo (htC) inoltre è stato individuato esclusivamente nelle popolazioni Pakistane.
D’altro lato, un alto grado di variabilita’ genetica caratterizzato da una certa differenziazione geografica è stato osservato nelle popolazioni di B. oleae analizzate; i nostri risultati mostrano la presenza di 39 aplotipi dell’insetto. Gli aplotipi del simbionte e quelli dell’insetto sono stati quindi confrontati e un’associazione significativa, con una stretta correlazione al territorio, è stata trovata, evidenziando la presenza di una prevalente trasmissione verticale del simbionte durante il ciclo vitale dell’insetto. Inoltre, il fatto che la distribuzione degli aplotipi batterici sia più strettamente correlata al territorio rispetto a quella ritrovata nei numerosi aplotipi dell’insetto ospite, può rappresentare un importante mezzo per ricostruire la dibattuta origine della mosca dell’olivo.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Girolami, V
Ph.D. course:Ciclo 26 > Scuole 26 > SCIENZE DELLE PRODUZIONI VEGETALI
Data di deposito della tesi:28 July 2014
Anno di Pubblicazione:28 July 2014
Key Words:simbiosi, Tephritinae endemiche delle isole Hawaii, Bactrocera oleae, coevoluzione endosymbiosis, endemic Hawaiian Tephritinae, Bactrocera oleae, coevolution
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/11 Entomologia generale e applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente
Codice ID:7001
Depositato il:28 Jul 2015 10:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aksoy, S., Chen, X., Chow, A., 1995. Mycetome endosymbionts of tsetse flies constitute a distinct lineage related to the Enterobacteriaceae. Insect. Mol. Biol. 4, 15–22. Cerca con Google

Augustinos, A.A., Stratikopoulos E.E., Zacharopoulou A., Mathiopoulos K.D., 2002. Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Mol. Ecol. Notes. 2, 278–280. Cerca con Google

Augustinos, A.A., Mamuris, Z., Stratikopoulos, E.E., D'Amelio, S., Zacharopoulou, A., Mathiopoulos, K.D., 2005. Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica. 125, 231-241. Cerca con Google

Baker, R.H. and DeSalle R., 1997. Multiple Sources of Character Information and the Phylogeny of Hawaiian Drosophilids.Syst. Biol.46, 654-673. Cerca con Google

Baldwin, B.G. and Robichaux R.H., 1995. Historical biogeography and ecology of the Hawaiian silversword alliance (Asteraceae): New molecular phylogenetic perspectives,in: Wagner, W.L., Funk, V.A. (Eds.), Hawaiian Biogeography: Evolution on a hot spot Archipelago.Smithsonian Institution Press, Washington DC, pp. 259-287. Cerca con Google

Baldwin, B.G., 1997. Adaptive radiation of the Hawaiian silversword Alliance: congruence and conflict of phylogenetic evidence from molecular and non-molecular investigations, in: Givnish, T.J. and Sytsma, K.J. (Eds),Molecular Evolution and Adaptive Radiation. Cambridge University Press, pp. 103-128. Cerca con Google

Baldwin, B.G., 1998. Age and Rate of Diversification of the Hawaiian Silversword Alliance (Compositae).Proc. Natl. Acad. Sci. USA. 95, 9402-9406. Cerca con Google

Baldwin, B.G., 2006. Contrasting patterns and process of evolutionary change in the tarweed-silversword lineage: revisiting Clausen, Keck, and Hiesey's findings. Ann. Missouri Bot. Gard. 93, 64-93. Cerca con Google

Bandi, C., McCall, J.W., Genchi, C., Corona, S., Venco, L., Sacchi, L., 1999. Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia. Int. J. Parasitol. 29, 357–364. Cerca con Google

Barrier, M., Baldwin B.G., Robichaux R.H.,Purugganan M.D., 1999. Interspecific Hybrid Ancestry of a Plant Adaptive Radiation: Allopolyploidy of the Hawaiian Silversword Alliance (Asteraceae) Inferred from Floral Homeotic Gene Duplications.Mol. Bio. Evol. 16, 1105-1113. Cerca con Google

Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Guilhaumon, F., Missa, O., Leponce, M., 2012. Arthropod diversity in a tropical forest. Science. 338, 1481-1484. Cerca con Google

Baumann, P., Moran, N.A., Baumann, L., 2000. The Prokaryotes, A Handbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications. The Marine Gram-negative Eubacteria: Genus Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes, Springer-Verlag, New York, pp. 1302-1330. Cerca con Google

Baumann, P., 2005. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189. Cerca con Google

Besnard, G., Khadari, B., Baradat, P., Bervillè, A., 2002. Olea europea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theor. Appl. Genet. 104, 1353–1361. Cerca con Google

Besnard, G., Rubio de Casas, R., Vargas, P., 2007. Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J. Biogeogr. 34, 736–752. Cerca con Google

Blochmann, F., 1892. Über das Vorkommen bakterienähnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zbl Bakteriol. 11, 234–240. Cerca con Google

Braendle, C., Miura, T., Bickel, R., Shingleton, A.W., Kambhampati, S., Stern, D.L., 2003. Developmental origin and evolution of bacteriocytes in the aphid-Buchnera symbiosis. PLoS Biol. 1, E21. Cerca con Google

Brown, J.M., Todd-Thompson M., McCord A., O’Brien A., O’Fallon B., 2006. phylogeny, host association, and wing pattern variation in the endemic Hawaiian Fruit Flies (Diptera, Tephritidae).Instr. Biodiv. 7,1-16. Cerca con Google

Buchner, P., 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York. Cerca con Google

Capuzzo, C., Firrao, G., Mazzon, L., Squartini, A., Girolami, V., 2005. ‘Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int. J. Syst. Evol. Microbiol. 55, 1641–1647. Cerca con Google

Caraway, V., Carr G.D., Morden, C.W., 2001. Assessment of hybridization and introgression in lava-colonizing Hawaiian Dubautia (Asteraceae: Madiinae) using RAPD markers. Am. J. Bot. 88, 1688-1694. Cerca con Google

Carr, G.D., 1985. Monograph of the Hawaiian Madiinae (Asteraceae): Argyroxiphium, Dubautia and Wilkesia. Allertonia 4, 1–123. Cerca con Google

Carr, G.D., 1998. Another New Species of Dubautia (Asteraceae-Madiinae) from Kaua'i, Hawaiian Islands. Novon. 8, 8-11. Cerca con Google

Carson, H.L., Clague D.A., 1995. Geology and Biogeography of the Hawaiian Islands.In: Wagner, W.L., Funk, V.A. (Eds.), Evolution Evolution on A Hotspot Archipelago. Smithsonian Institution Press, Washington, DC, pp. 160– 194. Cerca con Google

Castresana, J., 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Mol. Bio. Evol. 17, 540-552. Cerca con Google

Clark, M.A., Baumann, L., Munson, M.A., Baumann, P., Campbell, B.C., Duffus, J.E., Moran, N.A., 1992. The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage separated from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 25, 119–123. Cerca con Google

Clague, D.A., Dalrymple, G.B., 1987. The Hawaiian-emperor volcanic chain. In: Decker, R.W., Wright, T.L., Stauffer, P.H. (Eds.), Volcanism in Hawaii. U.S. Geological Survey Professional Paper 1350. U.S. Government Printing Office, Washington, DC, pp. 1–54. Cerca con Google

Clague D.A., 1996. The growth and subsidence of the Hawaiian-emperor volcanic chain.In: Keast, A., Miller, S. E. (Eds.), The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Pattern and Processes.SPB Academic Press, Amsterdam, pp. 35-50. Cerca con Google

Clement, M., Posada, D., Crandall, K.A., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. Cerca con Google

Crandall, K.A. and Templeton, A.R., 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phytogeny reconstruction. Genetics. 134, 959-969. Cerca con Google

Crawford, M.H., 2007. Genetic structure of circumpolar populations: a synthesis. American J. Hum. Biol. 19, 203–217 Cerca con Google

Copeland, R.S., White, I.M., Okumu, M., Machera, P., Wharton, R.A., 2004. Insects associated with fruits of the oleaceae (Asteridae, Lamiales) in Kenya, with special reference to the Tephritidae (Diptera). Bishop Mus. Bull. Entomol. 12, 135-164. Cerca con Google

Conow, C., Fielder D., Ovadia Y., Libeskind-Hadas R., 2010. Jane: A new tool for the cophylogeny reconstruction problem.Algorithm. Mol. Biol. 5, 16-25. Cerca con Google

Daane, K.M. and Johnson, M.W., 2010. Olive Fruit Fly: Managing an Ancient Pest in Modern Times. Annu. Rev. Entomol. 55, 151–69. Cerca con Google

Dale, C., Moran, N.A., 2006. Molecular mechanisms underlying symbiosis with heritable bacteria. Cell. 126, 453–65. Cerca con Google

Degnan, P.H., Yu, Y., Sisneros, N., Wing, R.A., Moran, N.A., 2009. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. P. Natl. Acad. Sci. USA. 106, 9063–9068. Cerca con Google

Dobson, S.L., Bourtzis, K., Braig, H.R., Jones, B.F., Zhou, W., Rousset, F., O'Neill, S.L., 1999. Wolbachia infections are distributed throughout insect somatic and germ line tissues. Insect Biochem. Mol. Biol. 29, 153–60. Cerca con Google

Dogac, E., Kandemir, I., Taskin, V., 2013. The genetic polymorphisms and colonization process of olive fly populations in Turkey. PloS One 8, e56067. Cerca con Google

Douglas, A.E., 1989. Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc. 64, 409–434. Cerca con Google

Drummond, A.J., Rambaut A., 2007. BEAST: Bayesian Evolutionary Analysis by Sampling Trees.BMC Evol. Biol. 7, 214. Cerca con Google

Engel, P., and Moran, N.A., 2013. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. Cerca con Google

Estes, A.M., Hearn, D.J., Bronstein, J.L., Pierson, E.A., 2009. The olive fly endosymbiont, “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. Appl. Environ. Microbiol. 75, 7097–7106. Cerca con Google

Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 131, 479–491. Cerca con Google

Excoffier, L., Laval, G., Schneider, S., 2007. ARLEQIN (ver. 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online. 1, 47–50. Cerca con Google

Fahrenholz, H., 1913. Ektoparasiten Und Abstammungslehre.Zoologischer Anzeiger 41, 371-374. Cerca con Google

Fleischer, R.C., McIntosh C.E., Tarr C.L., 1998. Evolution on a Volcanic Conveyor Belt: Using Phylogeographic Reconstructions and K–Ar‐based Ages of the Hawaiian Islands to Estimate Molecular Evolutionary Rates.Mol. Ecol.7, 533-545. Cerca con Google

Fleischer, R.C., McIntosh C.E., 2001. Molecular Systematics and Biogeography of the Hawaiian Avifauna.Stud. Avian Biol. 22, 51-60. Cerca con Google

Foote, R.H., Blanc, F.L., Norrbom, A.L., 1993. Handbook of the Fruit Flies (Diptera:Tephritidae) of America North of Mexico.Ithaca, NY/London: Comstock., pp. 571. Cerca con Google

Fukatsu, T., and Nikoh, N., 1998. Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl. Environ. Microbiol. 64, 3599– 3606. Cerca con Google

Gillespie, R. 2004., Community assembly through adaptive radiation in Hawaiian spiders.Science. 303, 356-359. Cerca con Google

Girolami, V. and Cavalloro, R., 1972. Aspetti della simbiosi batterica di Dacus oleae (Gmelin) in natura e negli allevamenti di laboratorio. Ann. Soc. Entomol. Fr. 8, 561–571 (in Italian). Cerca con Google

Girolami, V., 1973. Reperti morfo-istologici sulle batteriosimbiosi del Dacus oleae Gmelin e di altri ditteri tripetidi, in natura e negli allevamenti su substrati artificiali. Redia. 54, 269–294. Cerca con Google

Girolami, V., 1983. Fruit fly symbiosis and adult survival: general aspects. In: Cavalloro, R., (Eds.), Fruit flies of economic importance, Proceedings of the CEC/IOBC International Symposium, Athens, pp. 74–76. Cerca con Google

Goeden R.D., 1994 Analysis of known and new host records for Paroxyna from California (Diptera: Tephritidae). Proc. Entomol. Soc. Wash. 96, 281-287. Cerca con Google

Goodman, K., O'Grady P., Wicker-Thomas C., 2013. Molecular phylogeny and biogeography of the Hawaiian Craneflies Dicranomyia (Diptera: Limoniidae). PLoS One. 8, e73019. Cerca con Google

Guindon, S., Gascuel O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by Maximum Likelihood.Systematic Biology. 52, 696-704. Cerca con Google

Hagen, K. S., 1966. Dependence of the olive fly, Dacus oleae, larvae on symbiosis with Pseudomonas savastanoi for the utilization of olive. Nature. 209, 423–424. Cerca con Google

Hardy, D.E., Delfinado, M.D., 1980.Diptera: Cyclorrhapha III, serie Schizophora. Section Acalyptrata, exclusively of family Drosophilidae. In: Zimmermann, E.C. (Eds.). Insects of Hawaii. Volume 13. University of Hawai'i Press, Honolulu. pp. 451. Cerca con Google

Headrick, D.H., and Goeden, R.D., 1998. The biology of nonfrugivorous tephritid fruit flies. Annu. Rev. Entomol. 43, 217–241. Cerca con Google

Houk, E.J., Griffiths, G.W., 1980. Intracellular symbiotes of the Homoptera. Annu. Rev. Entomol. 25, 161–187. Cerca con Google

Huelsenbeck,, J.P., Nielsen, R, Bollback, J.P. 2003. Stochastic mapping of morphological characters. Syst Biol 52: 131-158. Cerca con Google

Janson, E.M., Stireman, J. O., Singer, M.S., Abbot, P., 2008. Phytophagous insect- microbe mutualisms and adaptive evolutionary diversification. Evol. 62, 997- 1012. Cerca con Google

Jordan, S., Simon C., Polhemus D., 2003. Molecular systematics and adaptive radiation of Hawaii's endemic Damselfly genus Megalagrion (Odonata: Coenagrionidae).Syst. Biol.52, 89-109. Cerca con Google

Koch, H., Abrol D.P., Li J., Schmid‐Hempel P., 2013. Diversity and evolutionary patterns of bacterial gut associates of Corbiculate Bees. Mol. Ecol.22, 2028-2044. Cerca con Google

Korneyev, V.A., 1999. Phylogeny of the subfamily Tephritinae: relationships of the tribes and subtribes.In: Aluja, M., Norrbom, A.L. (Eds.), Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior. CRC Press, Boca Raton, pp. 549–580. Cerca con Google

Korneyev, V.A. (1999). Phylogeny of the subfamily Tephritinae: relationships of the tribes and subtribes. In: Aluja, M., and Norrbom, A.L. (Eds.), Fruit flies (Tephritidae): phylogeny and evolution of behavior, CRC Press, Boca Raton, FL, pp. 549–580. Cerca con Google

Kounatidis, I., Crotti, E., Sapountzis, P., Sacchi, L., Rizzi, A., Chouaia, B., Bandi, C., Alma, A., Daffonchio, D., Mavragani-Tsipidou, P., Bourtzis, K., 2009. Acetobacter tropicalis is a major symbiont in the olive fruit fly Bactrocera oleae. Appl. Environ. Microbiol. 75, 3281–3288. Cerca con Google

Law, R., Lewis D.H., 1983. Biotic environments and the maintenance of sex–some evidence from mutualistic symbioses.Biol. J. Linn. Soc.20, 249-276. Cerca con Google

Law, R., 1985. Evolution in a mutualistic environment. In: Bouche, D.H., (Eds.), The Biology of Mutualism: Ecology and Evolution, Oxford University Press, London, pp. 145-170. Cerca con Google

Legendre, P., M.J. Anderson.. 1998. Program Distpcoa. Département de Sciences Biologiques, Université De Montréal. Cerca con Google

Legendre, P., 2001. Test of host-parasite coevolution: program PARAFIT user’s guide.Département de Sciences Biologiques, Université de Montréal. Cerca con Google

Legendre, P., Desdevises Y., Bazin E., 2002. A statistical test for host-parasite coevolution.Syst. Biol. 51, 217-234. Cerca con Google

Light, J.E., Hafner M.S., 2007. Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers.Molecular Phylogenetics and Evolution. 45, 997-1013. Cerca con Google

Liquido, N.J., Cunningham, R.T., Nakagawa S., 1990. Host plants of Mediterranean fruit fly (Diptera: Tephritidae) on the Island of Hawaii (1949–1985 survey). J. Econ. Entomol. 83, 1863–1878. Cerca con Google

Lumaret, R., Ouazzani, N., Michaud, H., Vivier, G., Deguilloux, M.F., Di Giusto, F., 2004. Allozyme variation of oleaster populations (wild olive tree) (Olea europea L.) in the Mediterranean Basin. Heredity. 92, 343–351. Cerca con Google

Manousis, T. and Ellar, D.J., 1988. Dacus oleae microbial symbionts. Microbiological Sciences. 5, 149-152. Cerca con Google

Margulis, L., and Fester, R., 1991. Symbiosis as a Source of Evolutionary Innovation (Eds). Cambridge, MA: MIT Press. Cerca con Google

Mazzon, L., Piscedda, A., Simonato, M., Martinez-Sañudo, I., Squartini, A., and Girolami, V., 2008. Presence of specific symbiotic bacteria in flies of the subfamily Tephritinae (Diptera Tephritidae) and their phylogenetic relationships: proposal of ‘Candidatus Stammerula tephritidis.’ Int. J. Syst. Evol. Microbiol. 58, 1277–1287. Cerca con Google

Mazzon, L., Martinez-Sanudo I., Simonato M., Squartini A., Savio C., Girolami V., 2010. Phylogenetic relationships between flies of the Tephritinae subfamily (Diptera, Tephritidae) and their symbiotic bacteria. Mol. Phylogenet. Evol. 56, 312-326. Cerca con Google

Mazzon, L., Martinez-Sañudo, I., Savio, C., Simonato, M., Squartini, A., 2011 -Stammerula and other symbiotic bacteria within the fruit flies inhabiting Asteraceae flowerheads In: Manipulative Tenants Bacteria Associated With Arthropods. Edited by Zchori-Fein E. and Bourtzis K. CRC Press, Taylor and Francis Group, pp. 1-136. ISBN: 978-1-4398-2749-9. Cerca con Google

Meier-Kolthoff, J.P., Auch A.F., Huson D.H., Goker M., 2007. COPYCAT: cophylogenetic analysis tool.Bioinformatics (Oxford, England) 23, 898-900. Cerca con Google

Mendlová, M., Desdevises Y., Civáňová K., Pariselle A., Šimková A., 2012. Monogeneans of west african cichlid fish: evolution and cophylogenetic interactions.PloS One. 7, e37268. Cerca con Google

Miller, M.P., 1997. RxC. A program for the analysis of contingency tables. Northern Arizona University, Flagstaff, AZ. Cerca con Google

Montiel Bueno, A. and Jones, O., 2002. Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC Wprs. Bull. 25, 1-11. Cerca con Google

Moran, N. and Telang, A., 1998. Bacteriocyte-associated symbionts of insects. Biosci. 48, 295–304. Cerca con Google

Moran, N.A., and Baumann, P., 2000. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3, 270–275. Cerca con Google

Moran, N.A., and Wernegreen, J.J., 2000. Lifestyle evolution in symbiotic bacteria: insights from genomics. Trends Ecol. Evol. 15, 321–326. Cerca con Google

Moran, N.A., Dale, C., Dunbar, H., Smith, W.A., Ochman, H., 2003. Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ. Microbiol. 5, 116–126. Cerca con Google

Moran, N.A., Dunbar, H.E., 2006. Sexual acquisition of beneficial symbionts in aphids. Proc. Natl. Acad. Sci. USA. 103, 12803–12806. Cerca con Google

Moran, N. A., McCutcheon, J. P., & Nakabachi, A., 2008. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165-190. Cerca con Google

Munson, M.A., Baumann, P., Kinsey, M.G., 1991. Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int. J. Syst. Bacteriol. 41, 566–568. Cerca con Google

Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H.E., Moran, N.A., Hattori, M., 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science. 314, 267-267. Cerca con Google

Nardi, F., Carapelli A., Dallai R., Roderick G.K., Frati F., 2005. Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol. Ecol. 14, 2729–2738. Cerca con Google

Nardi, F., Carapelli A., Boore J.L., Roderick G.K., Dallai R., Frati F., 2010. Domestication of olive fly through a multi-regional host shift to cultivated olives: Comparative dating using complete mitochondrial genomes. Mol. Phylogenet. Evol. 57, 678-686. Cerca con Google

Nardon, P., and Grenier, A.M., 1988. Genetical and biochemical interactions between the host and its endocytobiotes in the weevils Sitophilus (Coleoptera, Curculionidae) and other related species. In: Scannerini, S., Smith, D.C., Bonfante-Fasolo, P., and Gianinazzi-Pearson, V. (Eds), Cell to Cell Signals in Plants, Animals and Microbial Symbiosis. NATO ASI Series H17. Berlin: Springer Verlag, pp. 255– 270. Cerca con Google

Neuenschwander, P., Michelakis, S., 1981. Olive fruit drop caused by Dacus oleae (Gmel) (Dipt., Tephritidae). J. Appl. Entomol. 91, 193-205
 Cerca con Google

Nitta, J.H., O’Grady P.M., 2008. Mitochondrial phylogeny of the endemic Hawaiian craneflies (Diptera, Limoniidae, Dicranomyia): implications for biogeography and species formation. Mol. Phylogenet. Evol.46, 1182-1190. Cerca con Google

Norrbom, A.L., and Kim K.C., 1988. A list of the reported host plants of the species of Anastrepha (Diptera: Tephritidae). U.S. Dep. Agric. Animal Plant Health Insp. Serv. APHIS 81. Cerca con Google

Norrbom, A.L., Carroll, L.E., Thompson, F.C., White, I.M., Freidberg, A., 1999. Status of knowledge. In: Thompson, F.C. (Eds.), Fruit fly expert identification system and systematic information database, Myia 9, ix., pp. 9–48. Cerca con Google

Osborn, A.M., Moore, E.R., Timmis, K.N., 2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ. Microb. 2, 39-50. Cerca con Google

Oliver, K.M., Degnan, P.H., Burke, G.R., Moran, N.A., 2010. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266. Cerca con Google

Palmano, S., Firrao, G., Locci, R., 2000. Sequence analysis of domains III and IV of the 23S rRNA gene of verticillate streptomycetes. Int. J. Syst. Evol. Microbiol. 50, 1187-1191. Cerca con Google

Parecer, S., and Ahmadjian, V., 2000. Symbiosis. An Introduction to Biological Associations. Oxford: Oxford University Press. Cerca con Google

Patwary, M.U., Kenchington, E.L., Bird, C.J., Zouros, E., 1994. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellanicus (Gmelin, 1791). J. Shellfish Res. 13, 547–553. Cerca con Google

Petri, L., 1909. Ricerche Sopra i Batteri Intestinali della Mosca Olearia. Memorie della Regia Stazione di Patologia Vegetale di Roma, Roma. Cerca con Google

Posada, D., Crandall, K.A., 2001. Selecting the best-fit model of nucleotide substitution. System. Biol. 50, 580-601. Cerca con Google

Posada, D., Buckley, T.R., 2004. Model selection and model averaging in phylogenetics: advantages of AIC and bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. Cerca con Google

Posada, D., 2008. jModelTest: phylogenetic model averaging. Mol. Biol.Evol. 25, 1253-1256. Cerca con Google

Poulin, R. and Morand, S., 2004. Parasite Biodiversity. Smithsonian Books. Cerca con Google

Price, J.P., Elliott-Fisk D., 2004. Topographic history of the Maui Nui Complex, Hawai'i, and its implications for biogeography. Pac.Sci. 58, 27-45. Cerca con Google

Rambaut, A., Drummond A., 2008. FigTree: tree figure drawing tool, Version 1.2. 2.Institute of Evolutionary Biology, University of Edinburgh. Cerca con Google

Randazzo, C. L., Scifò, G. O., Tomaselli, F., Caggia, C., 2009. Polyphasic characterization of bacterial community in fresh cut salads. Int. J. Food Microbiol. 128, 484-490. Cerca con Google

Revell, L. J. (2012) phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3: 217-223. Cerca con Google

Rice, R.E., 1999. Olive fruit fly, Bactrocera (Dacus) oleae. UC Plant Prot. Q. 9, 2. Cerca con Google

Rice, R., Phillips, P., Stewart-Leslie, J. , Sibbett, G., 2003. Olive fruit fly populations measured in Central and Southern California. Calif. Agr. 57, 122-127. Cerca con Google

Robichaux, R.H., Carr G.D., Liebman M., Pearcy R.W., 1990. Adaptive radiation of the Hawaiian silversword alliance (Compositae-Madiinae): ecological, morphological, and physiological diversity. Ann.Missouri Bot. Gard. 77, 64-72. Cerca con Google

Roderick, G.K., Gillespie R.G., 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods.Mol. Ecol. 7, 519-531. Cerca con Google

Ronquist, F., Huelsenbeck J.P., 2003. MrBayes 3: bayesian phylogenetic inference under mixed models.Bioinform. (Oxford, England). 19, 1572-1574. Cerca con Google

Roy, T., Chang, T.H., Lan, T., Lindqvist, C., 2013.Phylogeny and Biogeography of new world Stachydeae (Lamiaceae) with emphasis on the origin and diversification of Hawaiian and south american taxa.Mol. Phylogenet. Evol. 69, Cerca con Google

218-238. Cerca con Google

Rubinoff, D., Schmitz P., 2010. Multiple aquatic invasions by an endemic, terrestrial Hawaiian moth radiation.Proc. Natl. Acad. Sci. USA. 107, 5903-5906. Cerca con Google

Sacchetti, P., Granchietti, A., Landini, S., Viti, C., Giovannetti, L., and Belcari, A. (2008). Relationships between the olive fly and bacteria. J. Appl. Entomol. 132: 682–689. Cerca con Google

Savio, C., Mazzon, L., Martinez-Sañudo, I., Simonato, M., Squartini, A., Girolami, V., 2012. Evidence of two lineages of the symbiont ‘Candidatus Erwinia dacicola’in Italian populations of Bactrocera oleae (Rossi) based on 16S rRNA gene sequences. Int. J. System. Evol. Microbiol. 62, 179-187. Cerca con Google

Schluter, D., 2000.The Ecology of Adaptive Radiation. Oxford University Press. Oxford, U.K. Cerca con Google

Schröder, D., Deppisch, H., Obermayer, M., Krohne, G., Stackebrant, E., Hölldobler, E., Gross, R., 1996. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol. Microbiol. 21, 479–489. Cerca con Google

Segura, M.D., Callejas, C., Ochando, M.D., 2008. Bactrocera oleae: a single large population in northern mediterranean basin. J. Appl. Entomol. 132, 706-713. Cerca con Google

Shigenobu, S., Watanabe, H., Hattori, M., Ishikawa, H., 2000. Genome sequence of the endocellular bacterial symbionts of aphids Buchnera sp. APS. Nature. 407, 81– 86. Cerca con Google

Silva, F.J., Moret, A., Neef, A., Belda, E., 2008. Bacterial microbiota associated with a Bactrocera oleae population from Eastern Spain. In First meeting of TEAM, Palma de Mallorca. Cerca con Google

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701. Cerca con Google

Simon, C., Buckley, T.R., Frati, F., Stewart, J.B., Beckenbach, A.T., 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 37, 545–79. Cerca con Google

Stammer, H.J., 1929. Die bakteriensymbiose der trypetiden (Diptera). Zoomorphology. 15, 481–523. Cerca con Google

Straw, N.A., 1989. Taxonomy, attack strategies and host relations in flowerhead Tephritidae: a review. Ecol. Entomol. 14, 455–462. Cerca con Google

Swofford, D.L., 2003. PAUP. Phylogenetic analysis using parsimony (and other methods) version 4.0. Sinauer Associates. Sunderland, Massachussetts. Cerca con Google

Tamura, K.J., Nei, D.M., Kumar, S., 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596-1599. Cerca con Google

Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 132, 619–633.
 Cerca con Google

Tremblay, E., 1989. Coccoidea endosymbiosis. In: Schwemmler, W., and Gassner, G. (Eds), Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution. Boca Raton: CRC Press, pp. 145–173. Cerca con Google

Tzanakakis, M.E., 2006. Insects and mites feeding on olive: distribution, importance, habits, seasonal development and dormancy. Leiden: Brill Acad. Publ. 182 pp. Cerca con Google

Van Asch, B., Castro, I.P., Rei, F. , Costa, L., 2012. Mitochondrial haplotypes reveal olive fly (Bactrocera oleae) population substructure in the Mediterranean. Genetica. 140, 181-187. Cerca con Google

Wagner, W.L. Herbst D.R., Sohmer S.H., 1999.Manual of the flowering plants of Hawai'i. University of Hawaii and Bishop Museum Press, Honolulu. Cerca con Google

Weisburg, W.G., Barns S.M., Pelletier D.A., Lane D.J., 1991. 16S ribosomal DNA amplification for phylogenetic study.J. Bacteriol. 173, 697-703. Cerca con Google

Wernegreen, J. J., 2002. Genome evolution in bacterial endosymbionts of insects. Nature Rev. Genet. 3, 850-861. Cerca con Google

Werren, J.H., Baldo, L., Clark, M.E., 2008. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751. Cerca con Google

White, I.M., 1988. Handbooks for the identification of british insects. Tephritid flies, Diptera: Tephritidae, Vol. X, Part 5(a). Royal Entomological Society, London, pp. 1–134. Cerca con Google

White, I.M., and Elson-Harris, M.M., 1992. Fruit Flies of Economic Significance: Their Identification and Bionomics. Wallingford, USA: CAB International. Cerca con Google

White, I.M., 2006. Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the Middle East. Afr. Entomol. Mem. pp. 152. Cerca con Google

Wiens, J.J., 1998. Combining Data Sets with Different Phylogenetic Histories.Syst. Biol. 47, 568-581. Cerca con Google

Ziegler, A. C., 2002.Hawaiian Natural History, Ecology, and Evolution. University of Hawaii Press. Honolulu. Cerca con Google

Zimmerman, Elwood Curtin. 1981.Insects of Hawaii. University of Hawaii Press. Honolulu. Cerca con Google

Zohary, D., 1993. The wild genetic resources of the cultivated olive. Cerca con Google

Zygouridis, N.E., Augustinos, A.A., Zalom, F. G., Mathiopoulos, K.D., 2009. Analysis of olive fly invasion in California based on microsatellite markers. Heredity. 102, 402-412. Cerca con Google

Zwölfer, H., 1983. Life systems and strategies of resource exploitation in tephritids. In: Cavalloro, R., (Eds.). Fruit flies of economic importance (Eds.), Proceedings of the CEC/IOBC International Symposium, Athens, pp. 16–30. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record