Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Coppe, Alessandro (2008) A bioinformatic and computational approach to regulation of genome function: integrated analysis of genome organization, promoter sequences and gene expression. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

3528Kb

Abstract (inglese)

Although much is known about gene expression regulation in both Prokaryotes and Eukaryotes, this complex and fascinating mechanism still remains to be fully elucidated. The relatively recent advent of high-throughput techniques for studying transcription has made available an invaluable amount of data that can be used for genome-wide analysis using bioinformatics approaches. These computational methods have now become an integrative part of biological research. The different topics of this thesis are related to the development and application of computational methodologies to better understand the basis of genomic gene expression regulation at different levels. A first level of investigation regarded the relationships among chromosomal structure, expression profile and functional characteristics, focusing on genomic organization and structure. For this task, REEF (REgionally Enriched Features) software has been developed, designed to identify genomic regions enriched in specific features, such as a class or group of genes homogeneous for expression and/or functional characteristics. REEF can be used to detect density variations of specific features along the genome sequence, for example genomic regions with significant enrichment of genes which are co-expressed, differentially expressed, or related to particular molecular functions. Local feature enrichment is calculated using test statistic based on the hypergeometric distribution applied genome-wide by sliding windows and false discovery rate is used for controlling multiplicity. REEF has been applied to the study of genomic distribution of tissue-specific genes and to the analysis of gene differentially expressed when comparing different myeloid cell lines. These analyses identified clusters of tissue-specific genes in the human genome and positional enrichment of hemopoietic functional module-related genes. The second level of investigation regarded gene expression regulation at promoter level. Unknown transcription factor binding sites might be detected by searching for shared sequence elements in upstream regulatory regions of genes with common biological function and/or similar expression profile. In fact, genes with similar expression are frequently co-regulated and genes with related function are often similarly expressed. New methodologies for the identification of regulatory motifs in human promoters were developed and tested. Since a drawback of this approach is the exceedingly high number of results, the use of biological knowledge both before and after application of automated pattern discovery allowed the definition of a “sheltered environment” enhancing the specificity of the computational analysis. COOP (Clustering of Overlapping Patterns) software for the extraction of sequence motifs was developed and used to analyze genomic sequences of 1 Kb upstream of 91 retina specific genes, identifying a set of putative regulative motifs, frequently occurring in retina promoter sequences. Most of them are localized in the proximal portion of promoters and tend to be less variable in central region than in lateral regions and some of them are similar to known regulatory sequences. The performances of COOP were further evaluated by simulation approaches and by applying it to a standard positive control dataset, proposed by Tompa and colleagues for systematic evaluation and comparison of pattern discovery software. A webtool for the prediction of functional elements in promoter sequences, MOST (MOtif Searching web Tool), has been applied to different datasets under various testing conditions in order to study the influence of specific search parameters on results. Two groups of promoter sequences containing known regulatory signals were used as positive control datasets: the public yeast benchmark dataset of Tompa and colleagues and a custom produced dataset of 37 human promoter sequences, subgroups of which contained some instances of one of nine different signals. The testing of performances of the method on different benchmark datasets gave quite positive results.
Taking the concepts behind COOP to a new level, a more rigorous methodology was developed for the identification of surprising and putatively regulatory motifs, by comparing their frequency in promoters sequences of co-expressed genes with that in a background set of sequences, representative of the whole set of human gene promoters. Promoter sequences are divided in overlapping regions, considered independently, for identifying positional bias in the arrangement of transcription factors binding sites along promoters. Due to the genome-wide characteristics of this approach, a new webtool for the automatic identification and retrieval of a high number of promoters in the human genome was also developed. This motif discovery methodology has been adopted to investigate structure of promoters of genes crucial during myeloid differentiation.


Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Danieli, Gian Antonio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > GENETICA E BIOLOGIA MOLECOLARE DELLO SVILUPPO
Data di deposito della tesi:29 Gennaio 2008
Anno di Pubblicazione:29 Gennaio 2008
Parole chiave (italiano / inglese):gene expression, funcional genomics, regulatory motifs, computational biology, bioinformatics
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Area 05 - Scienze biologiche > BIO/18 Genetica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:705
Depositato il:17 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Allocco DJ, Kohane IS, Butte AJ. Quantifying the relationship between co-expression, coregulation and gene function. BMC Bioinformatics. 2004; 5:18. Cerca con Google

2. Apostolico A, Bock ME, Lonardi S. Monotony of surprise and large-scale quest for unusual words. J Comput Biol. 2003;10(3-4):283-311. Cerca con Google

3. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res. 1997; 7(10):986-95. Cerca con Google

4. Bortoluzzi S, Coppe A, Bisognin A, Pizzi C, Danieli GA. A multistep bioinformatic approach detects putative regulatory elements in gene promoters. BMC Bioinformatics. 2005; 6:121. Cerca con Google

5. Bortoluzzi S., d'Alessi F. and Danieli G.A. A Novel Resource For The Study Of Genes Expressed In The Adult Human Retina. Invest. Ophthalmol. Vis. Sci. 2000; 41: 3305-3308. Cerca con Google

6. Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI. Large clusters of co-expressed genes in the Drosophila genome. Nature. 2002; 420(6916):666-9. Cerca con Google

7. Buhler J, Tompa M. Finding motifs using random projections. J Comput Biol. 2002; 9(2):225-42. Cerca con Google

8. Caselle M, Di Cunto F, Provero P. Correlating overrepresented upstream motifs to gene expression: a computational approach to regulatory element discovery in eukaryotes. BMC Bioinformatics. 2002 ;3:7. Cerca con Google

9. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005; 308(5725):1149-54. Cerca con Google

10. Cheung P, Allis CD, Sassone-Corsi P. Signaling to chromatin through histone modifications. Cell. 2000; 103(2):263-71. Cerca con Google

11. Chalifa-Caspi V, Yanai I, Ophir R, Rosen N, Shmoish M, Benjamin-Rodrig H, Shklar M, Stein TI, Shmueli O, Safran M, Lancet D. GeneAnnot: comprehensive two-way linking between oligonucleotide array probesets and GeneCards genes. Bioinformatics. 2004; 20(9):1457-8. Cerca con Google

12. Chang CF, Wai KM, Patterton HG. Calculating the statistical significance of physical clusters of coregulated genes in the genome: the role of chromatin in domain-wide gene regulation. Nucleic Cerca con Google

13. Acids Res. 2004; 32(5):1798-807. Cerca con Google

14. Choo Y, Klug A. Physical basis of a protein-DNA recognition code. Curr Opin Struct Biol. 1997; 7(1):117-25. Cerca con Google

15. Cohen BA, Mitra RD, Hughes JD, Church GM. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression. Nat Genet. 2000; 26(2):183-6. Cerca con Google

16. Coppe A, Danieli GA, Bortoluzzi S. REEF: searching REgionally Enriched Features in genomes. BMC Bioinformatics. 2006;7:453. Cerca con Google

17. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, Watson SJ, Meng F: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005, 33:e175. Cerca con Google

18. Dermitzakis ET, Clark AG. Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol. 2002; 19(7):1114-21. Cerca con Google

19. Di Polo A, Lerner LE, Farber DB. Transcriptional activation of the human rod cGMPphosphodiesterase beta-subunit gene is mediated by an upstream AP-1 element. Nucleic Acids Res. 1997; 25(19):3863-7. Cerca con Google

20. Draghici S, Khatri P, Eklund AC, Szallasi Z. Reliability and reproducibility issues in DNA microarray measurements. Trends Genet. 2006; 22(2):101-9. Cerca con Google

21. Emberly E, Rajewsky N, Siggia ED. Conservation of regulatory elements between two species of Drosophila. BMC Bioinformatics. 2003; 4:57. Cerca con Google

22. Eskin E, Pevzner PA. Finding composite regulatory patterns in DNA sequences. Bioinformatics. Cerca con Google

23. 2002; 18 Suppl 1:S354-63. Cerca con Google

24. Ferrari F, Bortoluzzi S, Coppe A, Basso D, Bicciato S, Zini R, Gemelli C, Danieli GA, Ferrari S. Genomic expression during human myelopoiesis. BMC Genomics. 2007; 8:264. Cerca con Google

25. Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S. Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinformatics. 2007; 8(1):446. Cerca con Google

26. Ge H, Liu Z, Church GM, Vidal M. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet. 200; 29(4):482-6. Cerca con Google

27. Goutsias J, Lee NH. Computational and experimental approaches for modeling gene regulatory networks. Curr Pharm Des. 2007; 13(14):1415-36. Cerca con Google

28. GuhaThakurta D. Computational identification of transcriptional regulatory elements in DNA sequence. Nucleic Acids Res. 2006; 34(12):3585-98. Cerca con Google

29. Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 1999; 9(11):1106-15. Cerca con Google

30. Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med. 1990; 9(7):811-8. Cerca con Google

31. Ideker T. A systems approach to discovering signaling and regulatory pathways--or, how to digest large interaction networks into relevant pieces. Adv Exp Med Biol. 2004; 547:21-30. Cerca con Google

32. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961; 3:318-56. Cerca con Google

33. Johnson JM, Edwards S, Shoemaker D, Schadt EE. Dark matter in the genome: evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 2005; 21(2):93-102. Cerca con Google

34. Kapranov P, Willingham AT, Gingeras TR. Genome-wide transcription and the implications for genomic organization. Nat Rev Genet. 2007; 8(6):413-23. Cerca con Google

35. Keich U, Pevzner PA. Subtle motifs: defining the limits of motif finding algorithms. Bioinformatics. 2002; 18(10):1382-90. Cerca con Google

36. Kent WJ. BLAT--the BLAST-like alignment tool. Genome Res. 2002; 12(4):656-64. Cerca con Google

37. Kingsbury GA, Feeney LA, Nong Y, Calandra SA, Murphy CJ, Corcoran JM, Wang Y, Prabhu Das MR, Busfield SJ, Fraser CC, Villeval JL. Cloning, expression, and function of BLAME, a novel member of the CD2 family. J Immunol. 2001; 166(9):5675-80. Cerca con Google

38. Kinet JP. The high-affinity IgE receptor (Fc epsilon RI): from physiology to pathology. Annu Rev Immunol. 1999; 17:931-72. Cerca con Google

39. Kosak ST, Scalzo D, Alworth SV, Li F, Palmer S, Enver T, Lee JS, Groudine M. Coordinate gene regulation during hematopoiesis is related to genomic organization. PLoS Biol. 2007; 5(11):e309. Cerca con Google

40. Kruglyak S, Tang H. Regulation of adjacent yeast genes. Trends Genet. 2000; 16(3):109-11. Cerca con Google

41. Kruse M, Meinl E, Henning G, Kuhnt C, Berchtold S, Berger T, Schuler G, Steinkasserer A. Signaling lymphocytic activation molecule is expressed on mature CD83+ dendritic cells and is upregulated by IL-1 beta. J Immunol. 2001; 167(4):1989-95. Cerca con Google

42. Kuppner MC, Gastpar R, Gelwer S, Nössner E, Ochmann O, Scharner A, Issels RD. The role of heat shock protein (hsp70) in dendritic cell maturation: hsp70 induces the maturation of immature dendritic cells but reduces DC differentiation from monocyte precursors. Eur J Immunol. 2001; 31(5):1602-9. Cerca con Google

43. Lawrence CE, Reilly AA. An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins. 1990; 7(1):41-51. Cerca con Google

44. Lercher MJ, Urrutia AO, Hurst LD. Clustering of housekeeping genes provides a unified model of gene order in the human genome. Nat Genet. 2002; 31(2):180-3. Cerca con Google

45. Liu Y, Liu XS, Wei L, Altman RB, Batzoglou S. Eukaryotic regulatory element conservation analysis and identification using comparative genomics. Genome Res. 2004; 14(3):451-8. Cerca con Google

46. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997; 389(6648):251-60. Cerca con Google

47. MacIsaac KD, Fraenkel E. Practical strategies for discovering regulatory DNA sequence motifs. PLoS Comput Biol. 2006; 2(4):e36. Cerca con Google

48. Marsan L, Sagot MF. Algorithms for extracting structured motifs using a suffix tree with an application to promoter and regulatory site consensus identification. J Comput Biol. 2000; 7(3- 4):345-62. Cerca con Google

49. Martin M, Romero X, de la Fuente MA, Tovar V, Zapater N, Esplugues E, Pizcueta P, Bosch J, Engel P. CD84 functions as a homophilic adhesion molecule and enhances IFN-gamma secretion: adhesion is mediated by Ig-like domain 1. J Immunol. 2001; 167(7):3668-76. Cerca con Google

50. MAQC Consortium, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo Y, Sun YA, Willey JC, Setterquist RA, Fischer GM, Tong W, Dragan YP, Dix DJ, Frueh FW, Goodsaid FM, Herman D, Jensen RV, Johnson CD, Lobenhofer EK, Puri RK, Schrf U, Thierry-Mieg J, Wang C, Wilson M, Wolber PK, Zhang L, Amur S, Bao W, Barbacioru CC, Lucas AB, Bertholet V, Boysen C, Bromley B, Brown D, Brunner A, Canales R, Cao XM, Cebula TA, Chen JJ, Cheng J, Chu TM, Chudin E, Corson J, Corton JC, Croner LJ, Davies C, Davison TS, Delenstarr G, Deng X, Dorris D, Eklund AC, Fan XH, Fang H, Fulmer-Smentek S, Fuscoe JC, Gallagher K, Ge W, Guo L, Guo X, Hager J, Haje PK, Han J, Han T, Harbottle HC, Harris SC, Hatchwell E, Hauser CA, Hester S, Hong H, Hurban P, Jackson SA, Ji H, Knight CR, Kuo WP, LeClerc JE, Levy S, Li QZ, Liu C, Liu Y, Lombardi MJ, Ma Y, Magnuson SR, Maqsodi B, McDaniel T, Mei N, Myklebost O, Ning B, Novoradovskaya N, Orr MS, Osborn TW, Papallo A, Patterson TA, Perkins RG, Peters EH, Peterson R, Philips KL, Pine PS, Pusztai L, Qian F, Ren H, Rosen M, Rosenzweig BA, Samaha RR, Schena M, Schroth GP, Shchegrova S, Smith DD, Staedtler F, Su Z, Sun H, Szallasi Z, Tezak Z, Thierry-Mieg D, Thompson KL, Tikhonova I, Turpaz Y, Vallanat B, Van C, Walker SJ, Wang SJ, Wang Y, Wolfinger R, Wong A, Wu J, Xiao C, Xie Q, Xu J, Yang W, Zhang L, Zhong S, Zong Y, Slikker W Jr. The MicroArray Quality Control (MAQC) project shows interand intraplatform reproducibility of gene expression measurements. Nat Biotechnol. 2006; 24(9):1151-61. Cerca con Google

51. Mecham BH, Wetmore DZ, Szallasi Z, Sadovsky Y, Kohane I, Mariani TJ. Increased measurement accuracy for sequence-verified microarray probes. Physiol Genomics. 2004; 18(3):308-15. Cerca con Google

52. Mootha VK, Handschin C, Arlow D, Xie X, St Pierre J, Sihag S, Yang W, Altshuler D, Puigserver P, Patterson N, Willy PJ, Schulman IG, Heyman RA, Lander ES, Spiegelman BM. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004; 101(17):6570-5. Cerca con Google

53. Montanari M, Gemelli C, Tenedini E, Zanocco Marani T, Vignudelli T, Siena M, Zini R, Salati S, Chiossi G, Tagliafico E, Manfredini R, Grande A, Ferrari S. Correlation between differentiation plasticity and mRNA expression profiling of CD34+-derived CD14- and CD14+ human normal myeloid precursors. Cell Death Differ. 2005; 12(12):1588-600. Cerca con Google

54. Morandi B, Costa R, Falco M, Parolini S, De Maria A, Ratto G, Mingari MC, Melioli G, Moretta A, Ferlazzo G. Distinctive lack of CD48 expression in subsets of human dendritic cells tunes NK cell activation. J Immunol. 2005; 175(6):3690-7. Cerca con Google

55. Pennacchio LA, Rubin EM. Genomic strategies to identify mammalian regulatory sequences. Nat Cerca con Google

56. Rev Genet. 2001; 2(2):100-9. Cerca con Google

57. Petsko G: Modeling Structure from Sequence. In Current Protocols in Bioinformatics. Edited by: Baxevanis AD. John Wiley & Sons Inc; 2002. Cerca con Google

58. Pevzner PA, Sze SH. Combinatorial approaches to finding subtle signals in DNA sequences. Proc Int Conf Intell Syst Mol Biol. 2000; 8:269-78. Cerca con Google

59. Pizzi C, Bortoluzzi S, Bisognin A, Coppe A, Danieli GA. Detecting seeded motifs in DNA sequences. Nucleic Acids Res. 2005; 33(15):e135. Cerca con Google

60. Rodriguez IR, Mazuruk K, Schoen TJ, Chader GJ. Structural analysis of the human hydroxyindole- O-methyltransferase gene. Presence of two distinct promoters. J Biol Chem. 1994; 269(50):31969- 77. Cerca con Google

61. Romero X, Benítez D, March S, Vilella R, Miralpeix M, Engel P. Differential expression of SAP and EAT-2-binding leukocyte cell-surface molecules CD84, CD150 (SLAM), CD229 (Ly9) and CD244 (2B4). Tissue Antigens. 2004; 64(2):132-44. Cerca con Google

62. Roy PJ, Stuart JM, Lund J, Kim SK. Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature. 2002; 418(6901):975-9. Cerca con Google

63. Siddharthan R, Siggia ED, van Nimwegen E. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLoS Comput Biol. 2005; 1(7):e67. Cerca con Google

64. chug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005; 6(4):R33. Cerca con Google

65. Sedgewick R: "Algorithms in C". Third edition. Addison-Wesley editor, Reading, MA; 1998. Cerca con Google

66. Spellman PT, Rubin GM. Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol. 2002; 1(1):5. Cerca con Google

67. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003; 100(16):9440-5. Cerca con Google

68. Stormo GD, Hartzell GW 3rd. Identifying protein-binding sites from unaligned DNA fragments. Proc Natl Acad Sci U S A. 1989; 86(4):1183-7. Cerca con Google

69. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A. 2004; 101(16):6062-7. Cerca con Google

70. Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, Stoeckert CJ Jr. Promoter features related to tissue specificity as measured by Shannon entropy. Genome Biol. 2005; 6(4):R33. Cerca con Google

71. Tabach Y, Brosh R, Buganim Y, Reiner A, Zuk O, Yitzhaky A, Koudritsky M, Rotter V, Domany E. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site. PLoS ONE. 2007; 2(8):e807. Cerca con Google

72. Tompa M, Li N, Bailey TL, Church GM, De Moor B, Eskin E, Favorov AV, Frith MC, Fu Y, Kent WJ, Makeev VJ, Mironov AA, Noble WS, Pavesi G, Pesole G, Régnier M, Simonis N, Sinha S, Thijs G, van Helden J, Vandenbogaert M, Weng Z, Workman C, Ye C, Zhu Z. Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol. 2005; 23(1):137-44. Cerca con Google

73. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673-80. Cerca con Google

74. Trinklein ND, Aldred SJ, Saldanha AJ, Myers RM. Identification and functional analysis of human transcriptional promoters. Genome Res. 2003; 13(2):308-12. Cerca con Google

75. van Helden J, André B, Collado-Vides J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J Mol Biol. 1998; 281(5):827-42. Cerca con Google

76. Vilo J, Kapushesky M, Kemmeren P, Sarkans U, Brazma A: Expression Profiler. In The Analysis of Gene Expression Data: Methods and Software. Edited by: Parmigiani G, Garrett ES, Irizarry R, Zeger SL. Springer Verlag, New York, NY; 2003. Cerca con Google

77. Wagner KD, Wagner N, Vidal VP, Schley G, Wilhelm D, Schedl A, Englert C, Scholz H. The Wilms' tumor gene Wt1 is required for normal development of the retina. EMBO J. 2002; 21(6):1398- 05. Cerca con Google

78. Wang T, Stormo GD. Combining phylogenetic data with co-regulated genes to identify regulatory motifs. Bioinformatics. 2003; 19(18):2369-80. Cerca con Google

79. Werner T. Models for prediction and recognition of eukaryotic promoters. Mamm Genome. 1999; 10(2):168-75. Cerca con Google

80. Wingender E, Dietze P, Karas H, Knüppel R. TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res. 1996; 24(1):238-41. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record