Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Paletti, Roberta (2008) Analisi funzionale e strutturale di peptidi antimicrobici prodotti da Pseudomonas spp. e loro potenzialità  in applicazioni biotecnologiche. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1999Kb

Abstract (inglese)

Lipodepsipeptides (LDP) are a group of cyclic secondary metabolites produced by many Pseudomonas species. On the basis of their amino acid chain length, they are usually divided into two groups: the mycins and the peptins. The first group consists of acylated peptides of 9 amino acids closed in a cyclic structure between the first and the last residue. The peptins are bigger and more complex than the former, being composed of 18 to 25 amino acids, again cyclized (usually in an 8 or in a 5 residues ring) and acylated. Both kind of peptides are expressed in vivo, they significantly contribute to bacterial pathogenesis and have the plasma membrane of plants as their primary site of action, but may have also different target organisms. Both classes of LDPs induce hemolysis and leakage from liposomes by the formation of pores. The peptins inhibit the growth of Gram positive bacteria and have stronger phytotoxic activity than the mycins. The mycins displays a prominent antifungal activity. The antifungal property is potentially useful for the development of biocontrol agents and also appears interesting in the perspective of biomedical applications.
For these strategies is very important to clarify the mechanism of action of LDPs.
We investigated the importance of LDPs structural characteristics on their ability to create a lesion on liposomes and RBC. Some structural analogues of tol I, produced by Pseudomonas tolaasii, and WLIP, by P. reactans, were tested. The results have suggested the importance of the lactone ring and the N-terminus acyl moiety. Furthermore, the importance of some residues in the peptide chain was observed. In particular structural changes in these amino acids may modify the LDP conformation and consequently their permeabilization ability. The analysis individuated some WLIP derivatives completely non active. Hydrolyzed WLIP resulted particularly interesting. The study of the interaction of the LDP with lipid monolayer showed that the opening of the ring decreases the ability to bind the membrane. Moreover, hydrolized WLIP is able to inhibit the permeabilizing ability of its natural form, WLIP, and also of tol I on vesicles. Experiments on monolayer suggested that hydrolyzed WLIP does not affect the insertion in the membrane of WLIP while it decreases the tol I interaction with the monolayer. We hypothesized that the interaction between WLIP and hydrolyzed WLIP can happen at the membrane level, blocking the oligomerization process which is necessary for the pore formation. Tol I and hydrolyzed WLIP instead can interact in solution, forming an aggregate that subtract the active LDP to the interaction with the membrane.
Furthermore, the nature of the interaction of the different LDPs with lipids by determining the transmembrane movement of a fluorescent lipid asimetrically included in the bilayer was also investigated. The results suggested that peptins promoted the lipid transfer between the inner and the outer membrane layer. This was a clear indication that a mixed lipid/peptide pore with "toroidal" structure is formed. This lesion permits the contact of the inner and outer leaflets of the membrane bilayer.
Finally we prepared vesicles from different fungal pathogen lipids to test peptins and mycins activity on systems more similar to natural targets. On these new model systems peptins displayed more activity than the mycins, supporting the strong antifungal role of the peptins when the cell wall is removed.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bubacco, Luigi - Dalla Serra, Mauro
Dottorato (corsi e scuole):Ciclo 20 > Corsi per il 20simo ciclo > FISIOLOGIA MOLECOLARE E BIOLOGIA STRUTTURALE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):lipodepsipeptidi, Pseudomonas spp., liposomi, emolisi, monolayer, poro toroidale
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/10 Biochimica
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:707
Depositato il:21 Ott 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Ait-Lahsen,H., A.Soler, M.Rey, C.J.de La, E.Monte, and A.Llobell. 2001. An antifungal exo-alpha-1,3-glucanase (AGN13.1) from the biocontrol fungus Trichoderma harzianum. Appl. Environ. Microbiol. 67:5833-5839. Cerca con Google

2. Alvarez,C., M.Dalla Serra, C.Potrich, I.Bernhart, M.Tejuca, D.Martinez, I.F.Pazos, M.E.Lanio, and G.Menestrina. 2001. Effects of lipid composition on membrane permeabilization by Sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. Biophys. J. 80:2761-2774. Cerca con Google

3. Balali,G.R., S.M.Neate, A.M.Kasalkheh, B.J.Stodart, D.L.Melanson, and E.S.Scott. 2007. Intraspecific variation of Rhizoctonia solani AG 3 isolates recovered from potato fields in Central Iran and South Australia. Mycopathologia 163:105-115. Cerca con Google

4. Ballio,A., D.Barra, F.Bossa, J.E.DeVay, Grgurina I., N.S.Iacobellis, G.Marino, B.Pucci, M.Simmaco, and G.Surico. 1988. Multiple forms of siringomycin. Physiol. Mol. Plant Pathol. 33:493-496. Cerca con Google

5. Ballio,A., F.Bossa, L.Camoni, D.Di Giorgio, M.C.Flamand, H.Marcite, G.Nitti, P.Pucci, and A.Scaloni. 1996. Structure of fuscopeptins, phytotoxic metabolites from Pseudomonas fuscovaginae. FEBS Lett. 381:213-216. Cerca con Google

6. Ballio,A., F.Bossa, D.Di Giorgio, A.Di Nola, C.Manetti, M.Paci, A.Scaloni, and A.L.Segre. 1995. Solution conformation of the Pseudomonas syringae pv. syringae phytotoxic lipodepsipeptide syringopeptin 25A: two-dimensional NMR, distance geometry and molecular dinamics. Eur. J. Biochem. 234:747-758. Cerca con Google

7. Baré,S., V.M.Coiro, A.Scaloni, A.DiNola, M.Paci, A.L.Segre, and A.Ballio. 1999. Conformations in solution of the fuscopeptins - Phytotoxic metabolites of Pseudomonas fuscovaginae. Eur. J. Biochem. 266:484-492. Cerca con Google

8. Bassarello,C., S.Lazzaroni, G.Bifulco, P.Lo Cantore, N.S.Iacobellis, R.Riccio, L.Gomez-Paloma, and A.Evidente. 2004. Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J. Nat. Prod. 67:811-816. Cerca con Google

9. Bender,C.L., F.Alarcon Chaidez, and D.C.Gross. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol. Mol. Biol. Rev. 63:266-292. Cerca con Google

10. Brandwagt,B.F., L.A.Mesbah, F.L.Takken, P.L.Laurent, T.J.Kneppers, J.Hille, and H.J.Nijkamp. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc. Natl. Acad. Sci. U. S. A. 97:4961-4966. Cerca con Google

11. Brodey,C.L., P.B.Rainey, M.Tester, and K.Johnstone. 1991. Bacterial blotch disease of the cultivated mushroom is caused by an ion channel forming lipodepsipeptide toxin. Mol. Plant Microbe Interact. 4:407-411. Cerca con Google

12. Bull,C.T., M.L.Wadsworth, K.N.Sorensen, J.Y.Takemoto, R.K.Austin, and J.L.Smilanick. 1998. Syringomycin E produced by biological control agents controls green mold on lemons. Biol. Control 12:89-95. Cerca con Google

13. Carpaneto,A., M.Dalla Serra, G.Menestrina, V.Fogliano, and F.Gambale. 2002. The phytotoxic lipodepsipeptide syringopeptin 25A from Pseudomonas syringae pv syringae forms ion channels in sugar beet vacuoles. J. Membr. Biol. 188:237-248. Cerca con Google

14. Carsolio,C., A.Gutierrez, B.Jimenez, M.Van Montagu, and A.Herrera-Estrella. 1994. Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc. Natl. Acad. Sci U. S. A 91:10903-10907. Cerca con Google

15. Chen SH and Rodriguez M. 2004. Antifungal lipopeptides: a tale of pseudomycin prodrugs and analogues. Drugs of the future 28:441-463. Cerca con Google

16. Chen,S.H., X.Sun, R.Boyer, J.Paschal, D.Zeckner, W.Current, M.Zweifel, and M.Rodriguez. 2000. Syntheses and biological evaluation of novel pseudomycin side-chain analogues. Part 2. Bioorg. Med. Chem. Lett. 10:2107-2110. Cerca con Google

17. Choquer,M., E.Fournier, C.Kunz, C.Levis, J.M.Pradier, A.Simon, and M.Viaud. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277:1-10. Cerca con Google

18. Coraiola,M., P.Lo Cantore, S.Lazzaroni, A.Evidente, N.S.Iacobellis, and M.Dalla Serra. 2006. Tolaasin I and WLIP, Lipodepsipeptides from Pseudomonas tolaasii and P. "reactans", permeabilize model membranes. Biochim. Biophys. Acta - Biomembranes 1758:1713-1722. Cerca con Google

19. Coraiola, M., Paletti, R., Fiore, A., Fogliano, V., and Dalla Serra, M. Structure of the fuscopeptin pore on lipid membranes. Eur. Biophys. J. 36[Suppl. 1], O367. 2007. Ref Type: Abstract Cerca con Google

20. Dalla Serra,M., G.Fagiuoli, P.Nordera, I.Bernhart, C.Della Volpe, D.Di Giorgio, A.Ballio, and G.Menestrina. 1999. The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin and syringopeptins. Mol. Plant Microbe Interact. 12:391-400. Cerca con Google

21. Dalla Serra,M., G.Menestrina, A.Carpaneto, F.Gambale, V.Fogliano, and A.Ballio. 2003a. Molecular mechanism of action of syringopeptins, antifungal peptides from Pseudomonas syringae pv. syringae. In Pore-forming peptides and protein toxins. G.Menestrina, editor. Taylor & Francis Group, London, UK. 272- 95. Cerca con Google

22. Dalla Serra,M., G.Menestrina, M.Coraiola, and I.Grgurina. 2003b. Interaction of syringomycin E structural analogues with biological and model membranes. In Pseudomonas syringae and related pathogens. Biology and Genetic. S.N.Iacobellis, editor. Kluwer Academic Publishers, Dordrecht (NL). 207-15. Cerca con Google

23. De Lucca,A.J., T.J.Jacks, J.Y.Takemoto, B.Vinjard, J.Peter, E.Navarro, and T.J.Walsh. 1999. Fungal lethality, binding, and cytotoxicity of syringomycin-E. Antimicrob. Agents Chemother. 43:371-373. Cerca con Google

24. El Tarabily,K.A. 2004. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J. Appl. Microbiol. 96:69-75. Cerca con Google

25. Emanuele,M.C., A.Scaloni, P.Lavermicocca, N.S.Iacobellis, L.Camoni, D.DiGiorgio, P.Pucci, M.Paci, A.Segre, and A.Ballio. 1998. Corpeptins, new bioactive lipodepsipeptides from cultures of Pseudomonas corrugata. FEBS Lett. 433:317-320. Cerca con Google

26. Eren,E. and J.M.Arguello. 2004. Arabidopsis HMA2, a divalent heavy metaltransporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol. 136:3712-3723. Cerca con Google

27. Fogliano,V., A.Ballio, M.Gallo, S.Woo, F.Scala, and M.Lorito. 2002a. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Mol. Plant Microbe Interact. 15:323-333. Cerca con Google

28. From,C., V.Hormazabal, S.P.Hardy, and P.E.Granum. 2007. Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: implications for assessment of toxicity and food poisoning potential. Int. J. Food Microbiol. 117:43-49. Cerca con Google

29. Grgurina I. 2002. Toxicity of Syringomycins and its Pathological Significance. In Advances in Microbial Toxin Research and its Biotechnological Exploitation. Rajeev K.Upadhyay, editor. Kluwer Academic, New York. 105-40. Cerca con Google

30. Griffiths,R.G., J.Dancer, E.O'Neil, and J.L.Harwood. 2003. Lipid composition of Botrytis cinerea and inhibition of its radiolabelling by the fungicide iprodione. New Phytol. 160:199-207. Cerca con Google

31. Guenzi,E., G.Galli, I.Grgurina, D.C.Gross, and G.Grandi. 1998. Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem. 273:32857-32863. Cerca con Google

32. Hatta,R., K.Ito, Y.Hosaki, T.Tanaka, A.Tanaka, M.Yamamoto, K.Akimitsu, and T.Tsuge. 2002. A conditionally dispensable chromosome controls hostspecific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59-70. Cerca con Google

33. Hutchison,M.L. and K.Johnstone. 1993. Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of the brown blotch disease symptoms by Pseudomonas tolaasii on Agaricus bisporus. Physiol. Mol. Plant Pathol. 42:373-384. Cerca con Google

34. Iacobellis, N. S. and Lo Cantore, P. Bacterial diseases of cultivated mushrooms in southern Italy. Proceedings of X Congress of Mediterranean Phytopathological Union , 33-37. 1997. Ref Type: Conference Proceeding Cerca con Google

35. Iacobellis,N.S. and P.Lo Cantore. 1998. Recenti acquisizioni sul determinismo della batteriosi del carboncello (Pleurotus eryngii). Agricoltura Ricerca 176:51- 54. Cerca con Google

36. Jourdan,F., S.Lazzaroni, B.L.Mendez, P.Lo Cantore, M.de Julio, P.Amodeo, N.S.Iacobellis, A.Evidente, and A.Motta. 2003. A left-handed alpha-helix containing both L- and D-amino acids: the solution structure of the antimicrobial lipodepsipeptide tolaasin. Proteins 52:534-543. Cerca con Google

37. Kayalar,C. and N.Düzgünes. 1986. Membrane action of colicin E1: detection of the release of carboxyfluorescein and calcein from liposomes. Biochim. Biophys. Acta - Biomembranes 860:51-56. Cerca con Google

38. Kitten,T., T.G.Kinscherf, J.L.McEvoy, and D.K.Willis. 1998. A newly identified regulator is required for virulence and toxin production in Pseudomonas syringae. Mol. Microbiol. 28:917-929. Cerca con Google

39. Laycock,M.V., P.D.Hildebrand, P.Thibault, J.A.Walter, and J.L.C.Wright. 1991. Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J. Agric. Food Chem. 39:483-489. Cerca con Google

40. Lo Cantore, P. Aspetti patogenetici, fisiologici e molecolari di Pseudomonas tolaasii e P. reactans. 2001. Università degli Studi della Basilicata, Potenza. Ref Type: Thesis/Dissertation Cerca con Google

41. MagetDana,R. 1999. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim. Biophys. Acta – Biomembranes 1462:109-140. Cerca con Google

42. Malev,V.V., L.V.Schagina, P.A.Gurnev, J.Y.Takemoto, E.M.Nestorovich, and S.M.Bezrukov. 2002. Syringomycin E Channel: A Lipidic Pore Stabilized by Lipopeptide? Biophys. J. 82:1985-1994. Cerca con Google

43. 43. Menestrina,G., M.Coraiola, V.Fogliano, A.Fiore, I.Grgurina, A.Carpaneto, F.Gambale, and M.Dalla Serra. 2003. Antimicrobial lipodepsipeptides from Pseudomonas spp: a comparison of their activity on model membranes. In Pseudomonas syringae and Related Pathogens. Biology and Genetic. S.N.Iacobellis, editor. Kluwer Academic Publishers, Dordrecht (NL). 185-98. Cerca con Google

44. Mootz,H.D., D.Schwarzer, and M.A.Marahiel. 2002. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490-504. Cerca con Google

45. Mortishire-Smith,R.J., J.C.Nutkins, L.C.Packman, C.L.Brodey, P.B.Rainey, K.Johnstone, and D.H.Williams. 1991. Determination of the structure of an extracellular peptide produced by the mushroom saprophytic Pseudomonas reactans. Tetrahedron 47:3645-3654. Cerca con Google

46. Muller,P., S.Schiller, T.Wieprecht, M.Dathe, and A.Herrmann. 2000. Continuous measurement of rapid transbilayer movement of a pyrene-labeled phospholipid analogue. Chem. Phys. Lipids 106:89-99. Cerca con Google

47. Nordera,P., M.Dalla Serra, and G.Menestrina. 1997. The adsorption of Pseudomonas aeruginosa exotoxin A to phospholipid monolayers is controlled by pH and surface potential. Biophys. J. 73:1468-1478. Cerca con Google

48. Nutkins,J.C., R.J.Mortishire-Smith, L.C.Packman, C.L.Brodey, P.B.Rainey, K.Johnstone, and D.H.Williams. 1991. Structure determination of tolaasin, an extracellular lipodepsipeptide produced by the mushroom pathogen Pseudomonas tolaasii Paine. J. Am. Chem. Soc. 113:2621-2627. Cerca con Google

49. Olivain,C., C.Humbert, J.Nahalkova, J.Fatehi, F.L'Haridon, and C.Alabouvette. 2006. Colonization of tomato root by pathogenic and nonpathogenic Fusarium oxysporum strains inoculated together and separately into the soil. Appl. Environ. Microbiol. 72:1523-1531. Cerca con Google

50. Ongjoco,R., K.Szkutnicka, and V.P.Cirillo. 1987. Glucose transport in vesicles reconstituted from Saccharomyces cerevisiae membranes and liposomes. J Bacteriol. 169:2926-2931. Cerca con Google

51. Paletti, R. Struttura e funzione di lipodepsipeptidi di Pseudomonas syringae, biomolecole batteriche con attività fitotossica ed antifungale. Uno studio su membrane modello e biologiche. 2004. Università di Padova, Fac. Scienze MM.FF.NN. Ref Type: Thesis/Dissertation Cerca con Google

52. Paletti,R., M.Coraiola, A.Cimmino, P.Lo Cantore, A.Evidente, N.S.Iacobellis, and M.Dalla Serra. 2007. WLIP and Analogues of Tolaasin I, Lipodepsipeptides from Pseudomonas reactans and Pseudomonas tolaasii. A Comparison of Their Activity on Natural and Model Membranes. In Pseudomonas Syringae Pathovars and Related Pathogens-Identification, Epidemiology and Genomics. M.Fatmi, editor. 183-9. Cerca con Google

53. Parente,R.A., S.Nir, and F.C.Szoka, Jr. 1990. Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry 29:8720-8728. Cerca con Google

54. Peng, J. T. Resistance to disease in Agaricus bisporus (Lange) Imbach. 1986. University of Leeds, Department of Plant Science. Ref Type: Thesis/Dissertation Cerca con Google

55. Praus,P. and M.Turicovà. 2007. A Physico-Chemical Study of the Cationic Surfactants Adsorption on Montmorillonite. J. Braz. Chem. Soc. 18:378-383. Cerca con Google

56. Rainey,P.B., C.L.Brodey, and K.Johnstone. 1991. Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiol. Mol. Plant Pathol. 39:57-70. Cerca con Google

57. Rainey,P.B., C.L.Brodey, and K.Johnstone. 1992. Biology of Pseudomonas tolaasii, cause of brown blotch disease of the cultivated mushroom. Adv. Plant Pathol. 8:95-117. Cerca con Google

58. Rapaport,D., R.Peled, S.Nir, and Y.Shai. 1996. Reversible surface aggregation in pore formation by pardaxin. Biophys. J. 70:2502-2512. Cerca con Google

59. Scaloni,A., M.Dalla Serra, P.Amodeo, L.Mannina, R.M.Vitale, A.L.Segre, O.Cruciani, F.Lodovichetti, M.L.Greco, A.Fiore, M.Gallo, C.D'Ambrosio, M.Coraiola, G.Menestrina, A.Graniti, and V.Fogliano. 2004. Structure, conformation and biological activity of a novel lipodepsipeptide from Pseudomonas corrugata: Cormycin A. Biochem. J. 384:25-36. Cerca con Google

60. Scholz-Schroeder,B.K., J.D.Soule, and D.C.Gross. 2003. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D. Mol Plant Microbe Interact. 16:271-280. Cerca con Google

61. Scott-Craig,J.S., D.G.Panaccione, J.A.Pocard, and J.D.Walton. 1992. The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267:26044-26049. Cerca con Google

62. Segre,A., R.C.Bachmann, A.Ballio, F.Bossa, I.Grgurina, N.S.Iacobellis, G.Marino, P.Pucci, M.Simmaco, and J.Y.Takemoto. 1989. The structure of syringomycins A1, E and G. FEBS Lett. 255:27-31. Cerca con Google

63. Soler-Rivas,C., N.Arpin, J.M.Olivier, and H.J.Wichers. 1999a. WLIP, a lipodepsipeptide of Pseudomonas 'reactans', as inhibitor of the symptoms of the brown blotch disease of Agaricus bisporus. J. Appl. Microbiol. 86:635-641. Cerca con Google

64. Soler-Rivas,C., S.Jolivet, N.Arpin, J.M.Olivier, and H.J.Wichers. 1999b. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol. Rev. 23:591-614. Cerca con Google

65. Song,L., M.R.Hobaugh, C.Shustak, S.Cheley, H.Bayley, and J.E.Gouaux. 1996. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274:1859-1866. Cerca con Google

66. Sorensen,K.N., K.H.Kim, and J.Y.Takemoto. 1996. In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae. Antimicrob. Agents Chemother. 40:2710-2713. Cerca con Google

67. Takemoto,J.Y., J.G.Brand, Y.A.Kaulin, V.V.Malev, L.V.Schagina, and K.Blasko. 2003. Lipodepsipeptide pore formers from plant bacterium Pseudomonas syringae. In Pore-forming peptides and protein toxins. G.Menestrina, editor. Taylor & Francis Group, London, UK. 260-71. Cerca con Google

68. Tejuca,M., M.Dalla Serra, M.Ferreras, M.E.Lanio, and G.Menestrina. 1996. The mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. Biochemistry 35:14947-14957. Cerca con Google

69. Van den Broek,P.J., A.E.van Gompel, M.A.Luttik, J.T.Pronk, and C.C.Van Leeuwen. 1997. Mechanism of glucose and maltose transport in plasmamembrane vesicles from the yeast Candida utilis. Biochem. J. 321 ( Pt 2):487-495. Cerca con Google

70. Van Leeuwen,C.C., E.Postma, P.J.Van den Broek, and J.Van Steveninck. 1991. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. J Biol Chem 266:12146-12151. Cerca con Google

71. Van Mau,N., A.V.Kajava, C.Bonfils, J.C.Martinou, and M.C.Harricane. 2005. Interactions of Bax and tBid with lipid monolayers. J. Membr. Biol. 207:1-9. Cerca con Google

72. Wang,N., S.E.Lu, J.L.Wang, Z.J.Chen, and D.C.Gross. 2006. The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. Mol. Plant Microbe Interact. 19:257-269. Cerca con Google

73. Weber,G., K.Schorgendorfer, E.Schneider-Scherzer, and E.Leitner. 1994. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr. Genet. 26:120-125. Cerca con Google

74. Wells,J.M., G.M.Sapers, W.F.Fett, J.E.Butterfield, J.B.Jones, H.Bouzar, and F.C.Miller. 1996. Postharvest discoloration of the cultivated mushrooms Agaricus bisporus caused by Pseudomonas tolaasii, P. "reactans", and P. "gingeri". Phytopathology 86:1098-1104. Cerca con Google

75. Wong,W.C. and T.F.Preece. 1979. Identification of Pseudomonas tolaasii: the white line in agar and mushroom tissue block rapid pitting tests. J. Appl. Bacteriol. 47:401-407. Cerca con Google

76. Wu,R.P., D.S.Youngblood, J.N.Hassinger, C.E.Lovejoy, M.H.Nelson, P.L.Iversen, and H.M.Moulton. 2007. Cell-penetrating peptides as transporters for morpholino oligomers: effects of amino acid composition on intracellular delivery and cytotoxicity. Nucleic Acids Res. 35:5182-5191. Cerca con Google

77. Zhang,J.H., N.B.Quigley, and D.C.Gross. 1995. Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. J. Bacteriol. 177:4009-4020. Cerca con Google

78. Zhang,J.H., N.B.Quigley, and D.C.Gross. 1997. Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 63:2771-2778. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record