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Abstract: Innovation diffusion processes are generally described at aggregate level with
models like the Bass model (1969) and the Generalized Bass Model (1994). However, the
recognized importance of communication channels between agents has recently suggested
the use of agent-based models, like Cellular Automata. We argue that an adoption process
is nested in a communication network that evolves dynamically and implicitly generates a
non–constant potential market. Using Cellular Automata we propose a two–phase model of
an innovation diffusion process. First we describe the Communication Network necessary
for the awareness of an innovation. Then, we model a nested process representing the proper
adoption dynamics. Through a “Mean Field Approximation” we propose a continuous repre-
sentation of the discrete time equations derived by our Automata Network. This constitutes
a special non autonomous Riccati equation, not yet described in well–known international
catalogues. The main results refer to the closed form solution of this equation and to the
corresponding statistical analysis for identification and inference. We discuss an application
in the field of bank services.

Keywords: diffusion process, Bass model, communication network, cellular automata, Ric-
cati equation.

1 Introduction

Since the publication of the Bass model in 1969, research on diffusion of innovation
and innovation theory have raised a growing interest, with reference both to con-
sumers behaviour (see Gatignon and Robertson (1985)) and marketing management
for developing new strategies focused on potential adopters. Interesting reviews of
the literature on diffusion models are provided by Mahajan and Muller (1979), Ma-
hajan et al. (1990), Mahajan et al. (2000) and Meade and Islam (2006) where it
is highlighted that the purpose of the diffusion model is to describe the successive
increases in the number of adoptions and predict the continued development of a
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diffusion process already in progress. In spite of the more recent research prolifera-
tion in this field, the basic known diffusion models are those of Fourt and Woodlock
(1960), Mansfield (1961) and Bass (1969). The last one results from the summa-
tion of the other two and assumes that potential adopters are influenced in their
purchase behaviour by two sources of information: an external, like mass–media
communication and an internal, word-of-mouth. Furthermore, it is assumed that
adopters can be influenced only by one of these two forces, forming two distinct
groups, innovators (mass-media) and imitators (word-of-mouth) and therefore, part
of the adoption is based on learning by imitation and part of it does not. Formally,
the model can be expressed through a first order differential equation

z′(t) =
(

p + q
z(t)
m

)
(m− z(t)). (1)

Instantaneous adoptions, z′(t), are proportional to the residual market (m − z(t))
and determined by two additive components. The first one, p(m − z(t)) refers to
innovators, who adopt with a rate p called coefficient of innovation. The group of
innovators is surely crucial for the “take-off” of diffusion, even if present at any stage
of the process.

The second part of Equation (1), qz(t)/m(m − z(t)), represents adoptions of
buyers who are influenced by previous adopters (word-of-mouth effect, w–o–m for
short) through parameter q. The effect of parameter q is modulated by the ratio
z(t)
m , which at time t = 0 is clearly zero, z(t)

m = 0, justifying the temporal delay of
adoptions due to w–o–m effect. As a consequence, if innovators are necessary for
the initial phase of the diffusion process, imitators are crucial for its development
and growth, the life cycle of an innovation depending on these two combined effects.

An extremely useful extension of the Bass model is represented by the Gener-
alized Bass Model (GBM) by Bass et al. (1994) allowing to include the presence
of exogenous interventions (strategic interventions, policies, marketing strategies).
The GBM equation is

z′(t) =
(

p + q
z(t)
m

)
(m− z(t))x(t), (2)

where x(t) denotes a quite general intervention function, whose effect can accelerate
or delay adoptions over time but cannot control independently the potential market
m or the intrinsic diffusion parameters p and q.

Indeed, one of the main assumptions in the Bass models relates to the potential
market (or carrying capacity) m whose size is considered fixed along the whole dif-
fusion process. One can see this aspect by inspecting both Equations (1) and (2).
In this paper we propose a modification of this assumption developing a model in
which the potential market is no longer constant but a function of time, m(t). A
central question requires to motivate this time dependence, presenting a theoretical
explanation of a dynamic potential. An evolutionary perspective may offer an ap-
propriate framework.

According to the Bass model, the diffusion of an innovation in a social context
is represented as a learning process, in which few persons decide to adopt on the
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basis of an external information and the others get the relevant information from
previous adopters, imitating their behaviour. However, the data we use for modelling
a diffusion process do not provide this distinction explicitly, just telling us how much
has been purchased at a certain time. Thus, the existence of these groups does not
emerge from a direct inspection of data, but, as a working hypothesis on latent
categories, it has proven to be an excellent modelling choice in most cases.

Moreover, it suggests some considerations on the role of information heterogene-
ity for explaining different attitudes in consumption. As we have seen, the Bass
model proposes a simple and efficient bipartition of consumers’ behaviour based on
information channels. Of course we are not saying anything new if we point out the
relevance of information for any economic action.

However, starting from a basic level of reasoning, according to which a consumer
adopts after being informed about an innovation (its existence and its features), we
could investigate more in detail the relationship between information and innovation
diffusion.

This is certainly a crucial issue for understanding both individual and collec-
tive action within innovation contexts. A relevant contribution, more in qualitative
terms, on this topic has been given by Cohen and Levinthal (1990), that defined the
concept of absorptive capacity. Even though the authors’ focus is the firm, we think
that very similar considerations may be easily applied in a consumption perspective.

Considered both at the individual and organizational level, the term absorptive
capacity refers to the ”ability to recognize the value of new information, assimilate
it and apply it”, Cohen and Levinthal (1990).

It is argued by the authors that this ability to assimilate and exploit a novelty
is function of a prior related knowledge. That is, the presence of a background of
relevant knowledge implies a greater receptiveness to new ideas.

Cohen and Levinthal use this concept both for individuals and organizations. As
they point out, in the individual case, this ability is related to cognitive functions
of the single person, while to understand an organization’s absorptive capacity it is
necessary to focus on its communication structure, since this capacity for organiza-
tions is not the simple sum of those of its components, but has to do with knowledge
transfers.

The concept of absorptive capacity in organizations is particularly interesting
for the purposes of this paper, in which we focus on innovation phenomena at the
aggregate level.

The adoption of an innovation in a specific social context may be viewed as a
direct evidence of an existing absorptive capacity: in fact, the ability to assimilate
and accept a novelty may find a simple check in the observed adoption process.
Specifically, the potential market m may represent a measure of this absorptive
capacity. As we know, the potential market m is typically considered a constant
quantity over time.

However, the concept of absorptive capacity suggests a different perspective for
considering this aspect.

Since the ability to assimilate an innovation depends on the accumulation of a
prior knowledge, we could try to define the potential market accordingly. A process
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of accumulation of knowledge in a social system requires the transfer of information
among the components of the system. In this sense Cohen and Levinthal highlight
the importance of designing the communication structure of an organization to un-
derstand its absorptive capacity. Accumulating knowledge involves some learning
dynamics, whose description, in our view, is best reached through an evolutionary
model, rather than a cross–sectional modelling, as proposed by Cohen and Levinthal
(1990).

Developing an evolutionary perspective, we find convenient to represent a com-
munication structure as a set of informational linkages among the units of the system.
As individual knowledge is created connecting ideas and concepts between them but
also destroying some existing connections, the development of a collective knowledge
can be thought of as an evolving network, in which some linkages exist, some rise
and some others die.

Considering the potential market m(t) as a function of this knowledge process,
will imply to make it dependent on a network of connections that changes over time.

Recent studies (see for instance, Mahajan et al. (1984); Eliashberg et al. (2000))
have confirmed that internal communication forces (w-o-m, learning) play a key role
in new product adoption. Goldenberg et al. (2001) have noticed that the grow-
ing use of the Internet, allowing a very quick and simple spread of information, has
raised a new kind of w–o–m called “internet word–of–mouth”. In fact, companies are
currently investing much effort in viral marketing (Oberndorf (2000)) and today’s
managers are attending to the power of w-o-m, trying to “manage rather than direct
it” (Goldenberg et al. (2001). However, little is known on how this interpersonal
communication is structured and realized. Actually, the Bass model, that has proven
to be very flexible and reliable in forecasting, does not provide a clear explanation
on the process of communication underlying adoptions. This probably relates to the
aggregate nature of the model. But innovation theory states that “diffusion theory’s
main focus is on communication channels” (Mahajan et al. (1990)) and for this
reason their actual structure should be analyzed and understood as much as possible.

Goldenberg et al. (2001) say that the gap of knowledge may be linked to the
complexity of the w-o-m process, which may be described as a “complex adaptive
system”, i.e., a system consisting of many interacting agents, whose relations at the
micro-level generate emergent, collective behaviour, visible at the macro-level of in-
quiry. If the Bass model is generally able to capture this macro-behaviour through
three parameters (m, p, q), the analysis of the underlying micro-interactions is left
to other kinds of models (see, for instance, Chatterjee and Eliashberg (1990) and
Roberts and Lattin (2000)) within diffusion of innovation theories in quantitative
marketing and methods dealing with the issue of complexity. Many scientific dis-
ciplines, such as physics, biology and ecology have developed models to investigate
how complex systems evolve. Within these, Stochastic Cellular Automata models
seem to be a useful choice for connecting behaviour at the micro and macro levels.
The perceived complexity of organizations and markets, in which many agents in-
teract with each other, has suggested the use of Cellular Automata also in economic
and social fields (see, for instance, Goldenberg and Efroni (2001), Moldovan and
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Goldenberg (2004), Goldenberg et al. (2005)).

A Cellular Automaton consists of a finite number of individuals (or cells) that
interact in a defined environment. Each cell can assume a particular state (for exam-
ple, adopter, neutral) depending on its state in the previous period of time and on
the information received interacting with other cells. The evolution of the state of
each cell is controlled by a predefined function called transition rule, which explicitly
considers these interactions. The advantage provided by Cellular Automata models
is the opportunity to observe the evolution of a given structure through the analysis
of every single interaction between its components, representing another way, with
respect to aggregate models, to deal with structural change and evolution. In this
sense, Cellular Automata models may be powerful complements, rather than com-
plete substitutes, of aggregate models for the analysis of life cycles and evolutionary
patterns. In particular, the micro-level descriptive power of Cellular Automata could
represent the conceptual introduction for new possible generalizations of the Bass
model (see, for instance, Guseo and Guidolin (2006)).

In this paper we use a Cellular Automata Network for describing a network of
interacting agents, who communicate between them information about a particular
innovation. Thus, we propose a two–phase modelling, representing first the Com-
munication Network and then the proper adoption process that can occur only when
there is sufficient knowledge about the involved innovation. In this case, the analy-
sis unit for Cellular Automata is represented by each communication channel (edge)
between two agents, whose state can be already active, susceptible of activation,
inactive. We suppose that the activation of an edge can occur through a standard
w–o–m or imitative process. Moreover, we assume that in the case of very closely
related cells, the edge may be activated by an external source of information, such as
advertising. In such a way, we are able to describe two distinct behavioural patterns,
the imitative and the innovative, reproducing the Bass framework. Furthermore, we
consider the possibility of edges’ inactivation. This may happen with a natural and
autonomous decay process or through a negative word-of-mouth due to resistance
to innovation effects. This represents a typical reaction to innovation for dissatisfac-
tion or inadequate performance, whose effect may affect dynamically the potential
market (see, for instance, Moldovan and Goldenberg (2004)).

All these possibilities are described in a unique transition rule, able to represent
the changing state of each edge. Once defined this Communication Network, the
second stage of the model relates to the structure of the embedded adoption process.

The paper is organized as follows. In Section 2 we present a stochastic evolution
of a Communication Network, extending the binary Automata Network proposed by
Boccara et al. (1997). In particular, Boccara et al. (1997), Boccara and Fukś (1999)
and Boccara (2004) proposed, among others, interesting representations of special
Automata models, allowing a “Mean Field Approximation”. In Section 3 we present
a model for a co-evolutive adoption process using a “Mean Field Approximation” to
link our Automata Network and an adoption process within a Riccati equation.

The closed form solution of a special non autonomous Riccati equation, which,
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under particular constraints, provides the standard Bass model and the Generalized
Bass Model (GBM) submitted to an environmental intervention function x(t), is
proposed in Appendix A . In Section 4 we apply previous results to the co–evolutive
model and examine statistical aspects concerned with inference and applications.
Section 5 is devoted to an application within bank services. Final comments and
discussion are considered in Section 6.

2 Evolution of Knowledge in a Communication Network

Let G = (V, E) be a finite directed graph, where V = {1, 2, · · · , i, · · · , N} is a
set of vertices whose cardinality is N = c(V ). The set E of ordered pairs (i, j)
called directed edges or arcs, E ⊂ V × V , depicts a subset of all the possible binary
relationships within vertices V including reflexive relationships. Due to possible
limitations on connectivity, the cardinality of E is U = c(E) ≤ N2. From now on,
we will use the simpler term edge to refer to a proper directed edge.

In social or physical systems these constraints may have natural interpretations
based on large distances or accessibility censoring limits that a priori exclude a pos-
sible link between two vertices. Each edge in E may assume, at time t, a special
state among a finite set of levels, Q = {0, 1, 2, · · · ,K}. We will assume a simple
binary version, Q = {0, 1}, i.e., an edge may be active, 1, when an information
about an innovation is transmitted between vertices of an admissible edge or not, 0.
We denote the state of an edge (i, j) at time t with an indicator function c(i, j; t).
Function c(i, j; t) equals 1 if and only if the edge (i, j) is active, otherwise is zero, in
particular, if (i, j) /∈ E.

The active state of an edge may be reversible. With susceptible reflexive edges
or with strongly connected vertices we represent the possible support of initializing
dissemination of information due to a high level of individual specific prior related
knowledge (using Cohen and Levinthal’s terminology) and to external channels of
communication like mass media.

Here we follow, only partially, some notations expressed for Automata Networks
in Boccara et al. (1997) and in Boccara and Fukś (1999).

Let us define a rectangular centered neighborhood A(i,j) around an edge (i, j)
with radii 1ei and 2ej ∈ IN (the set of natural numbers including 0), i.e.,

A(i,j) = {(r, s)|i− 1ei ≤ r ≤ i + 1ei, j − 2ej ≤ s ≤ j + 2ej}.

We assume that the transition rule g(·) governing network states is a function,
possibly with stochastic components, of the arc states of the neighborhood A(i,j) of
an edge (i, j) ∈ E, i.e., in expanded form,

c(i, j; t + 1) = g(c(i− 1ei, j − 2ej ; t), c(i− 1ei + 1, j − 2ej ; t), · · ·
· · · , c(i + 1ei, j + 2ej − 1; t), c(i + 1ei, j + 2ej ; t)), (3)

where c(r, s; t) = 0 if (r, s) /∈ E. We assume here a discrete time t ∈ IN .



Section 2 Evolution of Knowledge in a Communication Network 7

We may specify function g(·) by a combination of local and individual effects.
A prominent local effect on the state c(i, j; t + 1) of an edge (i, j) is determined by
the joint influence of neighboring edge states. More precisely, we define a kind of
local pressure (probability) of the system, σc(i, j; t), upon edge (i, j) to turn from
an uninformative status towards an informative one. This pressure depends on a
flexible probability measure, pn,m ≥ 0, that allows a more general description of a
neighborhood, possibly (i, j)–dependent.

σc(i, j; t) =
∞∑

n=−∞

∞∑
m=−∞

c(i + n, j + m; t)pn,m ;
∑
n,m

pn,m = 1. (4)

If we assume that this local pressure is translational invariant, we may consider the
“Mean Field Approximation” that excludes the local effect of distribution pn,m,

σc(i, j; t) ' ν(t) =
∑

i,j

c(i, j; t)
U

. (5)

Note that if a censoring constraint uniformly acts outside a neighborhood of given
pattern, relationship (5) must be weakened with a correction, v < 1,

σc(i, j; t) ' vν(t), (6)

where v represents a spatial memory depth or, in other terms, only the “visible”
fraction – assumed (i, j)–independent – of the distribution pn,m.

Let us define now a particular rule g(·), through a partially probabilistic spec-
ification, in order to describe some interesting components of individual and local
information diffusion,

c(i, j; t + 1) = c(i, j; t) + Bi(1, pc) I(c(i,j;t)=0) +
+ Bi(1, qc σc(i, j; t)) I(c(i,j;t)=0) +
− Bi(1, ec) I(c(i,j;t)=1) −Bi(1, wc σc(i, j; t)) I(c(i,j;t)=1). (7)

Notice that this transition rule must be interpreted within the conventional notations
of Computer Science in a sequential order from the left to the right. For instance,
the indicator function c(i, j; t) may change its status, “within time t”, if the second
addend turns out to be 1 and similarly for the subsequent components. Only after
the last additive term the obtained result is transferred (=) to the left hand member
c(i, j; t + 1) and indexed by time t + 1.

The second component of Equation (7), Bi(1, pc)I(c(i,j;t)=0), depends upon a
binomial experiment, with parameter pc, which is realizable only if the indicator
function I(c(i,j;t)=0) is set to one, i.e., proposition (c(i, j; t) = 0) is true. The mean-
ing of this first component may be linked to the direct effect of external information
like mass media communication channels and the change of state is possible, with
probability pc, only if “institutional communication” reaches susceptible edges, i.e.,
reflexive edges or strongly connected vertices.



8 R. Guseo, M. Guidolin

The third component of Equation (7) considers the joint probability qcσc(i, j; t),
that depicts the local pressure of neighboring knowledge, σc(i, j; t), and the intrinsic
attitude of pure imitative response pushed by a binomial parameter qc. This sec-
ond experiment is an opportunity strictly referred to standard edges (not reflexive
or weakly connected) and expresses the common perceived fact that imitative be-
haviour is an individual attitude based upon a local geometry of evidence.

Note that the activation of these two components is strictly alternative or ex-
clusive, i.e., if the first experiment changes the status of an edge, the second one is
switched off and vice versa: the activation of an imitative relationship forbids the
innovative behaviour.

The fourth component is a decay effect driven by a binomial Bi(1, ec) under the
control of the correct state, I(c(i,j;t)=1), and describes the possible withdrawal from
an active state representing a normal loss of information.

The fifth component is a negative word–of–mouth driven by a binomial Bi(1, wc)
under the control of the correct state, I(c(i,j;t)=1), and represents the forced with-
drawal from the active state due to the opposite effects of local pressure producing
resistance to innovation. Also these two exit rules are strictly alternative.

Here we suggest a useful interpretation of the proposed stochastic transition rule
(7) with reference to some contributions in literature on social networks theory. In
particular, the distinct roles assigned to strongly connected vertices, on the one hand,
and standard edges (weakly connected), on the other, may be fruitfully related to
the theory of strong and weak ties formulated by Granovetter (1973). In his work
”the Strenght of Weak Ties” (1973) Granovetter highlighted that persons are often
influenced by others with whom they have weak relationships, called ”weak ties”
to distinguish them from those ”strong ties” that are stable and frequent linkages,
which create individuals’ strictly personal networks. We may consider weak ties as
the crucial factor for the spread of information by word-of-mouth as it is also high-
lighted in Rogers (2003). Goldenberg et al. (2001) claimed that “the significance
of weak ties lies in their potential to unlock and expose interpersonal networks to
external influences (individuals in distant networks), thus paving the path for the
spread of information throughout society”. Thus, we may conclude that diffusion
of knowledge in a social system mostly depends on the presence of these weak ties.
Strong ties constitute those intimate relationships whose role may be better related
to an (eventual) innovative behaviour. In the transition rule (7) we have also con-
sidered the possibility for an edge to be inactivated by a natural decay process or
by a negative word–of–mouth, exactly with the same logic followed for the positive
diffusion of information.

Once defined the stochastic transition rule (7) informing on how an edge may be
activated, the second step is to recognize a convenient method to infer that emergent
collective behaviour we are interested in.

In general, Cellular Automata are implemented through computer simulations
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generating a global behaviour from an individual (local) rule. The use of such
techniques raises evident questions about the reliability of selected simulation pa-
rameters for which information is usually not available (see, for more details, Guseo
and Guidolin (2006)).

Directly facing with this problem we alternatively propose a local to global map-
ping considering a “Mean Field Approximation” of the transition rule (7). In this
way we may statistically infer collective behaviour from historical observed aggre-
gate data.

Let us consider, therefore, the average number of active edges within E at time
t following the mean behaviour of the transition rule (7),

Uν(t + 1) = U [ν(t) + pc(1− ν(t)) + qcν(t)(1− ν(t))− ecν(t)− wcν
2(t)]. (8)

Note that if we incorporate truncating effects like those described in Equation (6),
parameter qc collects two unidentifiable effects, the spatial memory depth v and the
intrinsic pure imitative effect q: qc = vq.

We can approximate previous discrete time equation with a continuous Riccati
equation, namely,

ν ′(t) = −(qc + wc)ν2(t) + (qc − pc − ec)ν(t) + pc, (9)

and if we skip ec and wc components, we obtain a standard Bass (1969) model.

Solution ν(t) of previous Equation (9) is described in Appendix A as a special
case for f(·) = g(·) = 1 and its explicit form is discussed in Section 4.

Potential market (carrying capacity) definition
We conclude this section highlighting the important modelling choice related to

the communication network we have designed. Function Uν(t) defines an aggregate
temporal evolution of the knowledge or the awareness of an innovation within the
proposed communication network. Such a knowledge, based on active edges, is only
a preliminary step in absorptive capacity definition following Cohen and Levinthal’s
(1990) terminology. We are interested in transforming this dynamic knowledge in a
dynamic carrying capacity or potential market in order to define a potential bound-
ary for the nested adoption process. This potential boundary is not a function of
observed quantities: it is a latent structure that we can not measure directly.

The positive squared root of Uν(t),

k(t) =
√

U
√

ν(t), (10)

depicts the upper bound of the carrying capacity m(t) for the related process of in-
novation adoption by individuals describing the system, here represented as vertices
of the graph G = (V, E). Note that k(t) is proportional to

√
ν(t), so that we can

assume
m(t) = K

√
ν(t) (11)
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as the actual carrying capacity, where K ≤ √
U if a vertex does not replicate an

adoption. If replication of adoption is allowable, K may be much greater than
√

U .
An extension in Uν(t) transformation may be based on ν(t)α in order to take

into account possible dimensional collapse of E ⊂ V × V .

Figure 1: Two different communication frameworks. Common adoption parameters:
qs = 0.4, ps = 0.01, rs = 0; Common communication parameters: K = 1, pc =
0.15, ec = 0.03. Special cases: Case (a) : qc = 0.7, wc = 0, Case (b) : qc = 0.9, wc =
0.2.

3 Co–evolution of the Diffusion of an Innovation

We denote the state of a vertex i ∈ V at time t with the indicator function s(i; t).
Following the same guidelines developed in Section 2, we define a transition rule
for the description of an individual adoption process over time with the notation of
cellular automata, i.e.,

s(i; t + 1) = s(i; t) + Bi(1, ps) I(s(i;t)=0) +
+ Bi(1, qs σs(i; t)) I(s(i;t)=0) +
− Bi(1, rs) I(s(i;t)=1) +

+ s(i; t).
m′(t)
m(t)

. (12)

The first four additive components of the left hand member in Equation (12) may
be interpreted following the same ideas of the previous section and the conventional
notation is interpreted, as in Equation (7), sequentially, following Computer Science
updating rules “within time t”. The result is transferred (=) to the left hand member
s(i; t + 1) and indexed with time t + 1.

In particular, the second component, Bi(1, ps) I(s(i;t)=0), represents the direct
effect of mass media. Experiment Bi(1, ps) is performed with adoption innovative
probability ps if s(i; t) = 0. The third component represents the w–o–m contribution
to adoption under a joint imitative probability based on two factors, an imitation
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coefficient, qs, and a specific local pressure stimulating imitative adoption, σs(i; t).
The fourth component represents a decay exit rule with exit probability rs. The
fifth component, s(i; t) · m′(t)

m(t) , describes an infinitesimal variational contribution to
the individual state due to the relative varying effect of carrying capacity m(t) over
time and is independent of K. Note that for a constant carrying capacity m(t) = M ,
this component gives a null contribution. This infinitesimal contribution depicts
s(i; t) · m′(t)

m(t) as an interaction of the individual state with the global increasing or
shrinking effect of the potential market as a function of knowledge network dynamics.
A possible extension may be based on a suitable weighting of the above interaction,
i.e., αs(i; t) · m′(t)

m(t) . In the sequel we assume α = 1.
The average behaviour of Equation (12) followed by a summation over all the

states s(i; t) within V is a discrete time co–evolutive model

y(t + 1) = y(t) + ps(m(t)− y(t)) + qs
y(t)
m(t)

(m(t)− y(t))− rsy(t) + y(t)
m′(t)
m(t)

. (13)

A continuous approximation of previous Equation (13) is

y′(t) = m(t)
{
−rs

y(t)
m(t)

+
(

ps + qs
y(t)
m(t)

)(
1− y(t)

m(t)

)}
+ y(t)

m′(t)
m(t)

. (14)

Perturbed evolution of an adoption process
An extension of the previous representation is based on the modification of uni-

form dynamics due to exogenous interventions effects during the diffusion process.
A similar approach is developed in Bass et al. (1994) with the Generalized Bass
Model (GBM).

We model this more flexible context multiplying by an impact function, x(t),
whose neutral level is obviously x(t) = 1 ∀t, i.e.,

y′(t) = m(t)
{
−rs

y(t)
m(t)

+
(

ps + qs
y(t)
m(t)

)(
1− y(t)

m(t)

)}
x(t) + y(t)

m′(t)
m(t)

. (15)

Remind that x(t) exerts its effect only on the future and, therefore, on the first
component of Equation (15) which is a function of the residual market.

This is a special Riccati equation analyzed in Appendix A. Note that in original
GBM we have two special constraints: decay component is excluded, rs y(t)/m(t) =
0, and the potential market (carrying capacity) is constant, m(t) = M . The solution
of Equation (15) is presented in Section 4 under the pertinent substitutions, in
particular, f(·) = x(·) and g(·) = m(·).

4 Statistical Co–evolutive Modelling

The proposed continuous co–evolutive model in Equation (15) may be solved by
recognizing that it is a special version of Equation (19) (see Appendix A). In this
sense we have to determine, preliminarily, the potential market m(t) on the basis of
Equation (9) and Equation (19). For the initial conditions m(0) = 0, f(·) = 1 and
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Figure 2: Current account diffusion (Area 2, Cardine, Italy). Co–evolutive cumula-
tive model with no exit rule.

g(·) = 1, we obtain

m(t) = K

√
1− e−Dct

1
cr2

− 1
cr1

e−Dct
, Dc =

√
(qc − pc − ec)2 + 4(qc + wc)pc > 0, (16)

where cri = (−(qc − pc − ec) ± Dc)/(−2(qc + wc)), i = 1, 2, with cr2 > cr1. If, for
instance, ec > 0 then the limit of m(t) for t → +∞ may be less than K.

Vice versa, note that if communication effects are persistent, i.e. with no decay
effect, ec = 0, and no negative word–of–mouth, wc = 0, then Dc = qc + pc and
cr1 = −pc/qc, cr2 = 1 so that

m(t) = K

√
1− e−(pc+qc)t

1 + qc

pc
e−(pc+qc)t

. (17)

The limiting behaviour of m(t) for t → +∞ equals the constant carrying capacity K.

Under an initial condition C = 0, for g(·) = m(·) and f(·) = x(·) the per-
turbed co–evolutive model, controlled by Equation (15) is determined on the basis
of Equation (19) (see Appendix A),

y(t) = m(t)
1− e−Ds

R t
0 x(τ)dτ

1
sr2

− 1
sr1

e−Ds
R t
0 x(τ)dτ

, Ds =
√

(qs − ps − rs)2 + 4qsps > 0, (18)
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where sri = (−(qs − ps − rs)±Ds)/(−2qs), i = 1, 2, with sr2 > sr1.

The perturbed closed form solution is very useful for a statistical approach to
forecasting and simulations. The internal rules generating a two–fold NA under a
widespread distribution of local influence on individual adoption or withdrawal of
an innovation are represented by the involved parameters that may be used, within
stochastic rules (7) and (12), for simulations under scenario hypotheses.

The time dependent potential market m(t) penalizes with different emphasis the
evolution of the natural adoption process. In Figure 1 we represent two different
communication frameworks. In case (a) we consider a good positive w–o–m, qc = 0.7,
and an absent effect of negative w–o–m, wc = 0. In case (b) we have considered a
negative w–o–m, 0.2, which is not compensated by a stronger positive imitative
component, qc = 0.9. Case (b) exhibits a lower asymptotic potential market.

The statistical implementation of model (18) may adopt different error struc-
tures. In a nonlinear regressive approach we consider a particular model for obser-
vations, w(t) = y(t) + ε(t), with an i.i.d. residual ε(t). A useful complementary
approach is based on ARMAX representation with a standard nonlinear estimation
as a first step (see e.g. Guseo (2004), Guseo and Dalla Valle (2005) and Guseo et
al. (2006)).

Note that joint identifiability of parameters in Equation (9) is not possible be-
cause the autonomous Riccati Equation (19), under f(·) = g(·) = 1, is characterized
by three independent parameters so that we have to evaluate which are the domi-
nant effects or, more generally, we have to set one of the four parameters in Equation
(9) to a specified level based upon past experience. A common choice is ec or wc

exclusion.

5 A Current Account Diffusion

We examine the weekly cumulative diffusion of a particular bank current account
introduced by Cardine in a northern area of Italy (Area 2) for small and medium
size firms. The cumulative data refer to a 64 weeks period from the origin of the
service. Original data inspection suggests us that the exit rules parameters at both
levels (communication network and adoption process) may be considered, at a first
step, non significant, i.e., ec = wc = rs = 0.

Following these assumptions we implement our model (18) with variable potential
in order to understand its performance under a nonlinear regressive framework. The
main results are outlined in Table 1.

We observe a quite interesting determination index, R2 = 0.998825, which is
confirmed by a good graphical performance, see Figure 2. Nevertheless, the Durbin-
Watson statistic (0.444564) suggests the presence of autocorrelated residuals. Note
that residual deviance is SSE = 135785 and local deviations in the first part of non
cumulative series is very high (see, for instance, data description in Figure 3).

Under such conditions the marginal linearized asymptotic 95% confidence inter-
vals are instable so that we may exclude their marginal direct use. Nevertheless,
global use of transfer function is unaffected. We argue that this problem may be
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Figure 3: Current account diffusion (Area 2, Cardine, Italy). Co–evolutive non cu-
mulative model with no exit rule, ARMAX sharpening, standard instantaneous Bass
model and actual ”active bank account” data.

Table 1: Current account diffusion. Parameters estimates of co–evolutive model for
Cardine Area 2 data with no exit rule. ( ) marginal linearized asymptotic 95%
confidence limits

K qc pc qs ps R2
1 D −W

6883.1 0.1840 0.1730 -0.0164 0.0192 0.998265 0.444
(-9508) (-0.357) (-0.030) (-0.0721) (-0.0252) SSE :
(23274) (0.725) ( 0.376) (0.0394) (0.0636) [135785]

overcome by implementing an appropriate ARMAX procedure. The main results
are outlined in Table 2.

The proposed ARMAX procedure considers only an AR component of order two
with a regressor based upon the predicted values of initial NLS step referred to the
new co–evolutive model with variable potential (PREb2cobs000). The goodness–
of–fit is very high, R2

2 = 0.999427, (see, for instance, Figure 4 and Figure 3). In
particular, in Figure 3 we compare the non cumulative diffusion bank account data
and competing models. Note the dominant performance of new composed model
and the perfect agreement of NLS-ARMAX representation with reference to current
data.

The residual deviance is one third of previous one: SSE = 45616 = 747.8 ·
61 so that the squared multiple partial correlation coefficient is R̃2 = 0.664 and
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Table 2: Co-evolutive cumulative model with no exit rule and ARMAX(2,0,0) sharp-
ening. ( ) t–statistic; [ ] p–values

AR(1) AR(2) PREb2cobs000 mean SSE

1.0729 -0.3886 0.3080 118.538 45616
(9.422) (-4.569) (5.4987) (2.8222) {d.f.61}

[0.000000] [0.000025] [0.000001] [0.006430] R2
2 = 0.999427

Figure 4: Current account diffusion (Area 2, Cardine, Italy). Co–evolutive cumula-
tive model with no exit rule and cumulative ARMAX sharpening.

the corresponding F = R̃2(N − k)/((1 − R̃2)s) ratio – where s is the incremental
parameter number between nested models and k is the parameter cardinality of
extended ARMAX model – is quite significant, F = 36.9. Previous first step based
on non linear variable potential model (PREb2cobs000) and AR components are
marginally significant.

Following these results, evaluation of potential market (17) – which is essentially
a latent structure that we can not measure directly – may be compared with the ap-
proximate averaged dynamics described by model (18). As we can see, by inspecting
Figure 5, the inferred potential market reaches its stationary level after ten weeks
demonstrating that the joint communication and marketing effort effects are very
rapid. Both parameters pc and qc are quite high: 0.173 and, respectively, 0.184, with
an expected high value for pc that represents the direct bank communication effort.
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Figure 5: Normalized current account diffusion (Area 2, Cardine, Italy). Co–
evolutive cumulative model with no exit rule and normalized potential market.

6 Final remarks and discussion

This paper addresses different aspects in innovation diffusion modelling by combining
theoretical, technical and applied aspects on communication dynamics and adoption
processes. Here we summarize some crucial elements we have highlighted:

a) Innovation diffusion is not a univariate adoption process over time. We argue
that an adoption process is nested in a communication network that evolves
dynamically and implicitly generates the corresponding non–constant potential
market.

b) We guess that a communication network is a necessary phase in determining the
evolution of a prior related knowledge, which is, using Cohen and Levinthal’s
(1990) terminology, the basic element for developing an absorptive capacity.

c) Our two-phase modelling is a particular specification of the above general ideas.
Indeed, some opportunities and problems may be better examined within a
well-defined mathematical and statistical framework in order to test perfor-
mances, significance of model components and forecasting.

d) Cellular Automata and Network Automata are a simple and effective tool for rep-
resenting both the communication network evolution and the nested adoption
process.

e) In our model we assume that the communication network is not observable. In
general we do not have precise information about how agents communicate
between them and the network we consider has a virtual structure. However
we are not interested in determining detailed particular shapes of the actual
network. Our focus is on an aggregate transformation of this network, i.e., the
concrete potential market m(t).
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f) With a mean field approximation we have reformulated a Complex Systems rep-
resentation in a dual tractable differential one, see Equations (9), (11) and
(15).

g) In our model, especially with reference to the Riccati Equation (15), functions
m(t), and x(t) are independent tools. The effect of intervention function x(t)
modifies the time path of diffusion by locally expanding or shrinking adop-
tions within a ”balance equation constraint”. Instead, the potential market,
m(t), controls and modifies the size of this process, expressed in terms of the
absolute amount of adoptions. This is a technical specification, useful to avoid
theoretical misunderstandings between these different and separable effects.

h) The proposed application gives some insights on the role of statistics in analyzing
evolving time series within a life cycle context. In particular, we observe that
in this specific application the Mean Field Approximation, that allows an
interesting aggregate description of a Complex Systems representation, does
not consider effects of a supposed (not observed) heterogeneity of adopters (or
adoptions). Nevertheless, an ARMAX sharpening, applied as a second step
after a nonlinear least squares procedure, completes inference in a satisfactory
way.

i) The substantive implication of our model, is that we are able to estimate, in
an indirect way and under appropriate theoretical assumptions, the character
of an evolving potential market simply using cumulative selling data. This
is of particular concrete interest because it allows to measure indirectly the
receptiveness of a social context, facilitating comparisons between different
situations and evaluations on the effectiveness of firms’ marketing efforts.

7 APPENDIX A: Riccati Equation, a Special Case

Let us consider the following special Riccati equation in (X,Y) real space

y′x = a
f(x)
g(x)

y2 +
(

bf(x) +
g′(x)
g(x)

)
y + cf(x)g(x), (19)

where a, b, c ∈ R, D =
√

b2 − 4ac > 0 and g(x) 6= 0, f(x) are real functions.
We note that this special version of non autonomous Riccati equation is not

examined in the well–known Handbook by Polyanin and Zaitsev (2003).

The analysis proposed in the sequel represents a contribution to the Polyanin’s
Cathaloge.

An equivalent form of Equation (19) is

y′xg(x)− g′(x)y
g(x)

=
(

a

g(x)
y2 + by + cg(x)

)
f(x), (20)

or
y′xg(x)− g′(x)y

g2(x)
=

[
a

(
y

g(x)

)2

+ b

(
y

g(x)

)
+ c

]
f(x). (21)
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With a simple substitution, i.e., z = y/g(x), we have

z′ = (az2 + bz + c)f(x) (22)

for which a general solution is attainable.
Let us consider the real roots of equation az2+bz+c = 0, i.e., ri = (−b±D)/2a ∈

R, i = 1, 2, where D = a(r2 − r1) =
√

b2 − 4ac > 0 so that Equation (22) may be
represented as follows

z′ = a(z − r1)(z − r2)f(x). (23)

Consider the substitution ż = z− r2 with ż′ = z′ and initial conditions z(0) = C
or ż(0) = C − r2 then, dividing both member of transformed previous equation by
ż2, we attain ż′

ż2 = a(ż + r2 − r1)1
żf(x), or ż′

ż2 =
{
a(r2 − r1)1

ż + a
}

f(x).
Let us consider a further substitution, i.e., ẑ = 1

ż , with ẑ′ = − ż′
ż2 and initial

condition ẑ(0) = 1
C−r2

so that we obtain equation

−ẑ′ = {a(r2 − r1)ẑ + a}f(x) , (24)

which may be integrated as a linear first order equation (see, e.g. Apostol (1978, p.
31)). Its solution is

ẑ =
1

C − r2
G(x) + G(x)a

∫ x

0
f(τ)e−a(r2−r1)

R τ
0 f(ξ)dξdτ, (25)

where G(x) = ea(r2−r1)
R x
0 f(τ)dτ or equivalently G(x) = eD

R x
0 f(τ)dτ so that

ẑ =
1

C − r2
G(x) + G(x)a

[
− 1

D
e−D

R x
0 f(ξ)dξ +

1
D

]

=
G(x)

C − r2
− 1

(r2 − r1)
[1−G(x)] =

r2 − r1G(x)− C(1−G(x))
(C − r2)(r2 − r1)

. (26)

Let us express solution (26) in terms of the initial variable, z = 1
ẑ + r2,

z = r2 +
(C − r2)(r2 − r1)

r2 − r1G(x)− C(1−G(x))

=
r1r2(1−G(x))− C(r1 − r2G(x))

r2 − r1G(x)− C(1−G(x))
. (27)

We obtain the general solution of Equation (19) in a straightforward manner, i.e.,

y(x) = g(x)
r1r2(1−G(x))− C(r1 − r2G(x))

r2 − r1G(x)− C(1−G(x))
. (28)

If the initial condition is set to zero, C = 0, we obtain,

y(x) = g(x)
1−G−1(x)

1
r2
− 1

r1
G−1(x)

= g(x)
1− e−D

R x
0 f(τ)dτ

1
r2
− 1

r1
e−D

R x
0 f(τ)dτ

. (29)

If limx→∞
∫ x
0 f(τ)dτ = +∞, we attain an interesting limiting behaviour of y(x),

i.e., limx→∞ y(x) = r2 limx→∞ g(x).
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