Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Scutari, Marco (2009) Structure Variability in Bayesian Networks. [Working Paper] WORKING PAPER SERIES, 13/2009 . , PADOVA (Inedito)

Full text disponibile come:

[img]
Anteprima
Documento PDF
562Kb

Abstract (inglese)

The structure of a Bayesian network encodes most of the information about the probability distribution of the data, which is uniquely identified given some general distributional assumptions. Therefore it’s important to study the variability of its network structure, which can be used to compare the performance of different learning algorithms and to measure the strength of any arbitrary subset of arcs.
In this paper we will introduce some descriptive statistics and the corresponding parametric and Monte Carlo tests on the undirected graph underlying the structure of a Bayesian network, modeled as a multivariate Bernoulli random variable.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Working Paper
Anno di Pubblicazione:Settembre 2009
Parole chiave (italiano / inglese):Bayesian network, bootstrap, multivariate Bernoulli distribution, structure learning algorithms.
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:7154
Depositato il:15 Set 2014 13:36
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record