Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Cortese, Giuliana and Ventura, Laura (2009) Accurate likelihood inference on the area under the ROC curve for small sample. [Working Paper] WORKING PAPER SERIES, 17/2009 . , PADOVA (Inedito)

Full text disponibile come:

[img]
Preview
PDF Document
603Kb

Abstract (english)

The accuracy of a diagnostic test with continuous-scale results is of high importance in clinical medicine. Receiver operating characteristics (ROC)curves, and in particular the area under the curve (AUC), are widely used to examine the effectiveness of diagnostic markers. Classical likelihood-based inference about the AUC has been widely studied under various parametric assumptions, but it is well-known that it can be inaccurate when the sample size is small, in particular in the presence of unknown parameters. The aim of this paper is to propose and discuss modern higher-order likelihood based procedures to obtain accurate point estimators and confidence intervals for the AUC. The accuracy of the proposed methodology is illustrated by simulation studies. Moreover, two real data examples are used to illustrate the application of the proposed methods.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Working Paper
Anno di Pubblicazione:November 2009
Key Words:Area under the ROC curve, diagnostic markers, higher-order likelihood inference, small sample size, confidence intervals, reliability.
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:7158
Depositato il:15 Sep 2014 13:43
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record