Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Formigari, Alessia (2008) Metallotioneine: Evoluzione molecolare e funzionale nei protozoi ciliati appartenenti al genere Tetrahymena. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

The ciliated protozoan, Tetrahymena thermophila, has long served as a model for basic research. At the same time, its unique biological properties make it extremely attractive as practical system for the overexpression of recombinant proteins.
The scientific community has recently taken into great consideration the use of T. thermophila for the production of recombinant proteins for both biotechnological perspectives and as research tools, since no system (e. g., bacteria, fungi, insect and mammalian cell lines) is universally suitable for the expression of foreign genes. The utility of T. thermophila as an experimental model organism has been recently increased by the development of inducible expression vectors based on the MTT1 metallothionein promoter. Metallothioneins (MT) are a group of low molecular weight proteins which bind metals through their numerous cysteine residues and which are present in many phyla. One of the most important properties of these proteins is their ability to be transcriptionally induced by transition metals. The research studies, made during my PhD course, focused on molecular and fuctional evolution of MT in T. thermophila.
In the present study, two new MT (MTT-5 in T. thermophila and MT-2 in T. pyriformis) gene isoforms have been cloned and characterized. The transcriptional activity of MTT-2 and MTT-5 towards heavy metals (cadmium, copper and zinc), was evaluated. Results showed that the three metals induced different MTT-2-mRNA and MTT-5-mRNA levels. Furthermore, using the coding sequence of nrk2-GFP gene as a reporter, I found that the upstream region of MTT5 induced nrk2-GFP protein expression. The fluorescence was present in the basal bodies and at the tips of cilia within transformed cells. These results have substantially contributed to demonstrate the suitability of free-living protozoan in studies of cell tolerance to heavy metals, and they have validated the use of Tetrahymena as a model system to determine ecotoxicological risk. To date, only a limited number of inducible promoters for driving high-level gene expression in T. thermophila has been described. Furthermore, little is known about the sequence elements that regulate gene expression within the upstream regions of ciliate genes. I described a robust new promoter from MTT-5, a T. thermophila cadmium-inducible MT gene of T. thermophila during my research studies. Using, as a reporter, the coding sequence of a gene for a candidate vaccine antigen from a parasitic protist, Ichthyophthirius multifiliis, I found that the upstream region of MTT5 can induce high-level expression of the relevant gene product in its correct 3-dimensional conformation. Expression was sensitive to cadmium, and to lesser extent copper, but not to zinc. Moreover, a direct comparison between this promoter and one from a previously described Cd-inducible MT gene, namely MTT1, shows that MTT5 is considerably stronger.
To begin to define the sequence elements underlying the metal-responsiveness of this promoter, I constructed a series of deletions starting with a 1777 bp fragment immediately upstream of the start codon of MTT5, which is fully functional. Interestingly, a fragment as short as 300 bp upstream of the start codon appears fully functional as well, while a deletion down to 290 bp essentially abolishes activity in response to cadmium. These results have been confirmed by site-specific mutagenesis. This study indicates that the MTT5 promoter can be used as a practical tool for protein manufacture in T. thermophila, and sheds light on potential sequence elements responsible for metal-induced promoter control in this species. The identification of this MRE sequences in Tetrahymena, quite different from those previously identified in mammalians, represents the first step to characterize molecular mechanisms involved in the expression of Tetrahymena MT isoforms.
Phylogenetic analysis performed with all Tetrahymena MT protein and nucleotidic sequences revealed that MTT-5 is closely related to Cd-induced isoforms and quite separate from Cu-induced ones. Our results indicate that Cd and Cu MTs diverged early in evolution, before the speciation event that separated the Tetrahymena borealis group and the Tetrahymena australis group. The mutation rate in the Tetrahymena MTs appears to be heterogeneous, being very low for MT-1 and MTT-1 and higher for other isoforms. The phylogentic analysis indicates a particular evolutionary history independent from other MT isoforms, for MTT-5.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Piccinni, Ester
Ph.D. course:Ciclo 20 > Corsi per il 20simo ciclo > BIOLOGIA EVOLUZIONISTICA
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:metallotioneine, Tetrahymena, promotore, espressione genica, evoluzione
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:726
Depositato il:05 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Furgason W.H. (1940). The significant cytostomal pattern of the “Glaucoma-Colpidium” group and a new proposed new genus and species, Tetrahymena geleii. Arch Protistenkd, 94: 224-266. Cerca con Google

[2] Corliss J.O. (1952). The autogamic cycle of Tetrahymena rostrata. C R Hebd Seances Acad Sci, 235: 399-402. Cerca con Google

[3] Nanney D.L., McCoy J.W. (1976). Characterization of the species of the Tetrahymena pyriformis complex. Trans Am Microsc Soc, 95: 664-682. Cerca con Google

[4] Gibbons I.R. (1963). Studies on the Protein Components of Cilia from Tetrahymena pyriformis. Proc Natl Acad Sci USA, 50: 1002-1010. Cerca con Google

[5] Blackburn E.H., Gall J.G. (1978). A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol, 120: 33-53. Cerca con Google

[6] Greider C.W., Blackburn E.H. (1987). The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell, 51: 887-898. Cerca con Google

[7] Blackburn E.H. (1991). Telomeres. Trends Biochem Sci, 16: 378-381. Cerca con Google

[8] Zaug A.J., Cech T.R. (1986). Self-splicing RNA and an RNA enzyme in Tetrahymena. J Protozool, 34: 416-417. Cerca con Google

[9] Horowitz S., Gorovsky M.A. (1985). An unusual genetic code in nuclear genes or Tetrahymena. Proc Natl Acad Sci USA, 82: 2452-2455. Cerca con Google

[10] Brownell J.E., Zhou J.X., Ranalli T., Kobayashi R., Edmondos D.G., Roth S.Y., Allis C.D. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell, 84: 843-851. Cerca con Google

[11] Frankel J. (2000). Cell biology of Tetrahymena thermophila. Method Cell Biol, 62: 27-125. Cerca con Google

[12] Margoshes M., Vallee B.L. (1957). A cadmium protein from equine imaging hyperintensity in Alzheimer's disease: correlation with kidney cortex. J Am Chem Soc, 79: 4813-4814. Cerca con Google

[13] Kägi J.H.R., Valle B.L. (1960). Metallothionein, a cadmium and zinc containing protein from equine renal cortex. J Biol Chem, 235: 3460-3465. Cerca con Google

[14] Kägi J.H.R. (1993). Evolution, structure and chemical activity of class I metallothioneins: and overview. In Suzuki KT, Imura N, Kimura M (eds) Metallothionein III. Birkhäuser Verlag, Basel, pp 29-55. Cerca con Google

[15] Piccinni E., Staudenmann W., Albergoni V., De Gabrieli R., James P. (1994). Purification and primary structure of metallothioneins induced by cadmium in the protists Tetrahymena pigmentosa and Tetrahymena pyriformis. Eur J Biochem, 226: 853-859. Cerca con Google

[16] Fowler B.A., Hildebrand C.E., Kojima Y., Webb M. (1987). Nomenclature of metallothonein. In: Kägi J. H. R., Kojima Y., eds. Metallothionein II. Experientia Supplememtum. Basel: Birkhäuser Verlag; pp. 19-22. Cerca con Google

[17] Kägi J.H.R. (1991). Overview of metallothionein. Methods Enzymol, 205: 613-626. Cerca con Google

[18] Hamer D.H. (1986). Metallothionein. Ann Rev Biochem, 55: 913-951. Cerca con Google

[19] Kille P., Hemmings A., Lunney E.A. (1994). Memories of metallothionein. Biochim Biophys Acta, 1205: 151-161. Cerca con Google

[20] Culotta V.C., Howard W.R., Liu X.F. (1994). CRS5 encodes a metallothionein-like protein in S. cerevisiae. J Biol Chem, 269: 26295-2630. Cerca con Google

[21] Karin M., Najarian R., Haslinger A., Valenzuela P., Welsch J., Fogel S. (1984). Primary structure and transcription of an amplified genetic locus: the CUP 1 locus of yeast. Proc Natl Acad Sci, 81: 337-341. Cerca con Google

[22] Lerch K. (1980). Copper metallothionein, a copper-binding protein from Neurospora crassa. Nature, 284: 368-370. Cerca con Google

[23] Binz P.A., Kägi J.H.R. (1999). Metallothioneins: molecular evolution and classification. In Klaasen CD (ed) Metallothionein IV. Birkhäuser Verlag, Basel, pp 7-13. Cerca con Google

[24] Kägi J.H.R., Kojima Y. (1987). Chemistry and biochemistry of metallothionein. Experientia, 52: 25-61. Cerca con Google

[25] Roesijadi G. (1992). Metallothionein in metal regulation and toxicity in acquatic animals. Aquat. Toxicol, 22: 81-114. Cerca con Google

[26] Mididotti S., McGuirt J.P., Sens M.A., Todd J.H., Sens D.A. (1996). Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol Lett, 85: 17-27. Cerca con Google

[27] Miles A.T., Hawksworth G.M., Beattie J.H., Rodilla V. (2000). Induction, regulation, degradation and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol Biol, 35: 35-70. Cerca con Google

[28] Quaife C.J., Findley S.D., Erickson J.C., Froelik G.J., Kelly E.J., Zambrowicz B.P., Palmiter R.D. (1994). Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochem, 33: 7250-7259. Cerca con Google

[29] Zheng H., Berman N.E., Klaassen C.D. (1995). Chemical modulation of metallothionein I and III mRNA in mouse brain. Neurochem. Int., 27: 43-58. Cerca con Google

[30] Hidalgo J., Aschner M., Zatta P., Vâsàk M. (2001). Roles of the metallothionein family of proteins in the central nervous system. Brain Res. Bull,. 55: 133-45. Cerca con Google

[31] Barsyte D., White K.N., Lovejoy D.A. (1999). Cloning and characterization of metallothionein cDNAs in the mussel Mytilus edulis L. digestive gland. Comp Biochem Physiol, 122C: 287-296. Cerca con Google

[32] Dallinger R., Berger B., Hunziker P., Kägi J.H.R. (1997). Metallothionein in snail Cd and Cu metabolism. Nature, 388: 237-238. Cerca con Google

[33] Syring R.A., Brouwer T.H., Brouwer M. (2000). Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp Biochem Physiol, 125C: 325-332. Cerca con Google

[34] Zhang B., Egli D., Georgiev O., Schaffner W. (2001). The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol, 21: 4505-4514. Cerca con Google

[35] Egli D., Selvaraj A., Yepiskoposyan H., Zhang B., Hafen E., Georgiev O., Schaffner W. (2003). Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J, 22: 100-108. Cerca con Google

[36] Freedman J.H., Slice L.W., Dixon D., Fire A., Rubin C.S. (1993). The novel metallothionein genes of Caenorabdtis elegans. Structural organization and inducible, cell-specific expression. J Biol Chem, 268: 2554-2564. Cerca con Google

[37] Stürzenbaum S.R., Kille P., Morgan A.J. (1998.) The identification, cloning and characterization of earthworm metallothionein. FEBS Lett, 431: 437-442. Cerca con Google

[38] Borrelly G.P., Harrison M.D., Robinson A.K., Cox S.G., Robinson N.J., Whitehall S.K. (2002). Surplus zinc is handled by Zym1 metallothionein and Zhf endoplasmic reticulum transporter in Schizosaccharomyces pombe. J Biol Chem,. 277: 30394-30400. Cerca con Google

[39] Münger K., German U.A., Lerch K. (1987). The Neurospora crassa metallothionein gene. Regulation of expression and chromosomal location. J Biol Chem, 25: 7363-7367. Cerca con Google

[40] Winge D.R. (1998). Copper-regulatory domain involved in gene expression. Prog Nucleic Acid Res Mol Biol, 58: 165-195. Cerca con Google

[41] Mehra R.K., Gaery J.R., Butt T.R., Gray W.R., Winge D.R. (1989). Candida glabrata metallothioneins. Cloning and sequence of the genes and characterization of proteins. J Biol Chem, 264: 19747-19753. Cerca con Google

[42] Murphy A., Zhou J., Goldsbrough B.P., Taiz L. (1997). Purification and immunological identification of metallothionein 1 and 2 from Arabidopsis thaliana. Plant Physiol, 113: 1293-1301. Cerca con Google

[43] Murphy A., Taiz L. (1995). Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes: Correlation with copper tolerance. Plant Physiol, 109: 945-954. Cerca con Google

[44] Murphy A., Taiz L. (1997). Correlation between long term K+ leakage and copper tolerance in ten Arabidopsis ecotypes. New Phytol ,136: 211-222. Cerca con Google

[45] Blindauer C., Harrison M..D, Robinson A.K., Parkinson J.A., Bowness P.W., Sadler P.J., Robinson N.J. (2002). Multiple bacteria encode metallothioneins and SmtA-like zinc finger. Molec Micro, 45: 1421-1432. Cerca con Google

[46] Karin M. (1985). Metallothioneins: proteins in search of function. Cell, 41: 9-10. Cerca con Google

[47] Kägi J.H.R., Schäffer A. (1988). Biochemestry of metallothionein. Biochemestry, 27: 8509-8515. Cerca con Google

[48] Albergoni V., Piccinni E. (1998). Copper and zinc metallothioneins. In : “Copper and zinc in inflammatory and degenerative diseases”, (ed. Rainsford K.D., Milanino R., Soreson J.R.J., Velo G.P.), Kluwer Academic Publishers, London, 61-78. Cerca con Google

[49] Palmiter R.D. (1998). The elusive function of metallothioneins. Proc Natl Acad Sci, 95: 8428-8430. Cerca con Google

[50] Coyle P., Philcox J.C., Carey L.C., Rofe A.M. (2002). Metallothionein: the multipurpose protein. Cell Mol Life Sci, 59: 627-647. Cerca con Google

[51] Cherian M. G. (1994). The significance of the nuclear and cytoplasmatic localization of metallothionein in human liver and tumor cells. Environ. Health. Persp,, 102: 131-135. Cerca con Google

[52] Kägi J.H.R., Kojima Y., Kissling M.M., Learch K. (1980). Metallothionein: an exceptional metal thiolate protein. Excrepta Medica, 72: 223-237. Cerca con Google

[53] Formigari A., Santon A., Irato P. (2007). Efficacy of Zn treatment against iron-induced toxicity in rat hepatoma cell line H4-II-E-C3. Liver International, 27(1):120-7. Cerca con Google

[54] Thornalley P.J., Vâsàk M. (1985). Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta, 827: 36-44. Cerca con Google

[55] Cousins R.J. (1994). Metal elements and gene expression. Ann Rev Nutr, 14: 449-469. Cerca con Google

[56] Andrews G.K. (1990). Regulation of metallothionein expression. Prog Food Nutr Sci, 14: 193-258. Cerca con Google

[57] Samson S.L., Gedamu L. (1998). Molecular analyses of metallothionein gene regulation. Prog Nucleic Acid Res Mol Biol, 59:257-288. Cerca con Google

[58] Klaassen C.D., Liu J.E. Choudhuri S. (1999). Metallothionein: an intracellular protein against cadmium toxicity. Ann Rev Pharmacol Toxicol, 39: 267-294. Cerca con Google

[59] Ghoshal K., Jacob S.T. (2001). Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol., 66: 357-84. Cerca con Google

[60] Radtke F., Heuchel R., Georgiev O., Hergersberg M., Gariglio M., Dembic Z., Schaffner W. (1993). Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J,12: 1355-1362. Cerca con Google

[61] Smirnova I.V., Bittel D.C., Ravindra R., Jiang H., Andrews G.K. (2000). Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem, 275: 9377-9384. Cerca con Google

[62] Saydam N., Adams T.K., Steiner F., Schaffner W., Freedman J.H. (2002). Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem, 277: 20438-20445. Cerca con Google

[63] Palmiter R.D. (1994). Regulation of metallothionein genes by heavy metals appears to be mediated by a sensitive inhibitor that interacts with a costitutively active transcription factor, MTF 1. Proc Natl Acad Sci USA, 91: 1219-1223. Cerca con Google

[64] Roesijadi G. (1996). Metallothionein and its role in toxic metal regulation. Comp Biochem Physio., 113C: 117-123. Cerca con Google

[65] Bittel D., Dalton T., Samson S.L., Gedamu L., Andrews G.K. (1998). The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals. J Biol Chem, 273: 7127-7133. Cerca con Google

[66] Haq F., Mahoney M., Koropatnick (2003). Signaling events for metallothionein induction. Mutation Research, 533:211-226. Cerca con Google

[67] Gorovsky M.A., Yao M.C., Keevert J.B., Pleger G.L (1975). Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol, 9: 311-327. Cerca con Google

[68] Cassidy-Hanley D., Bowen J., Lee J.H., Cole E., VerPlank L.A., Gaertig J., Gorovsky M.A., Bruns P.J. (1997). Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics, 146: 135-147. Cerca con Google

[69] De Gabrieli R., Piccinni E. (1995). Copper thionein in Tetrahymena pigmentosa. J Eukariot Microbiol, 42: 21-A. Cerca con Google

[70] Boldrin F., Santovito G., Irato P., Piccinni E. (2002). Metal interaction and regulation of Tetrahymena pigmentosa metallothionein genes. Protist, 153: 283-291. Cerca con Google

[71] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the folin phenol reagent. J Biol Chem, 193: 265-275. Cerca con Google

[72] Gaertig J., Thatcher T.H., Gu L., Gorovsky M.A. (1994). Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci USA, 91: 4549-4553. Cerca con Google

[73] Tang X., Nakata Y., Li H.O., Zhang M., Gao H., Fujita A., Sakatsume O., Ohta T., Yokoyama K. (1994). The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res, 22: 2857-2858. Cerca con Google

[74] Pfaffl M.W. (2001). A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res, 29: 2002-2007. Cerca con Google

[75] Shang Y., Song X., Bowen J., Corstanje R., Gao Y., Gaertig J., Gorovsky M.A. (2002). A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Proc Natl Acad Sci USA, 99: 3734-3739. Cerca con Google

[76] Chen G., Courey A.J. (1999). Generation of epitope-tagged proteins by inverse PCR mutagenesis. Biotecniques, 26:814-816. Cerca con Google

[77] Thompson J.D., Higgins D.G., Gibson T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res., 22: 4673-4680. Cerca con Google

[78] Kumar S., Tamura K., Nei M. (2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinfor, 5: 150-163(14). Cerca con Google

[79] Sneath P.H.A., Sokal R.R. (1973). Numerical Taxonomy, W.H. Freeman, San Francisco. Cerca con Google

[80] Saitou N., Nei M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol, 4:406-425. Cerca con Google

[81] Rzhetsky A., Nei M. (1992). A simple method for estimating and testing minimum- evolution trees. Mol Biol Evol, 9:945-967. Cerca con Google

[82] Fitch W.M. (1971)- Towards defining the course of evolution: Minimum change for a specific tree topology. Sys Zool, 20: 406-416. Cerca con Google

[83] Piccinni E., Bertaggia D., Santovito G., Miceli C., Kraev A. (1999). Cadmium metallothionein gene of Tetrahymena pyriformis. Gene, 234: 51-59. Cerca con Google

[84] Santovito G., Irato P., Palermo S., Boldrin F., Sack R., Hunziker P., Piccinni E. (2001). Identification, clonino and characterisation of a novel copper-metallothionein in Tetrahymena pigmentosa. Sequencing of cDNA and expression. Protist, 152: 219-229. Cerca con Google

[85] Boldrin F., Santovito G., Negrisolo E., Piccinni E. (2003). Cloning and sequencing of four new metallothionein genes from Tetrahymena thermophila and Tetrahymena pigmentosa: evolutionary relationships in Tetrahymena MT family. Protist, 154: 431-442. Cerca con Google

[86] Santovito G., Irato P., Piccinni E. (2000). Regulation of metallothionein in Tetrahymena: induction of MT-mRNA and protein by cadmium exposure. Eur J Protistol, 36: 437-442. Cerca con Google

[87] Fu C., Miao W. (2006) Cloning and characterization of a new multi-stress inducible metallothionein gene in Tetrahymena pyriformis. Protist, 157: 193-203. Cerca con Google

[88] Dondero F., Cavaletto M., Grezzi A.R., La Terza A., Banni M., Viarengo A. (2004). Biochemical characterization and quantitative gene expression analysis of the multi-stress inducile metallothionein from Tetrahymena thermophila. Protist, 155:157-168. Cerca con Google

[89] Diaz S., Amaro F., Rico D., Campos V., Benitez L., Martin-Gonzales A., Hamilton E.P., Orias E., Gutierrez J.C. (2007). Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies. PLos ONE, 2: e291. Cerca con Google

[90] Boldrin F., Santovito G., Formigari A., Bisharyan Y., Cassidy-Hanley D., Clark T.G., Piccinni E. (2007). MTT2, a copper-inducible metallothionein gene from Tetrahymena thermophila. Comp Biochem Phys C, In press Cerca con Google

[91] Wuitschick J.D., Karrer K.M. (1999). Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in Tetrahymena thermophila. J Eukaryot Microbiol, 46: 239-247 Cerca con Google

[92] Schmidt H.J. (1996). Molecular Biology of Ciliates. In Hausmann K, Bradbury PC (eds) Cialiates: cells as organisms. Gustav Fischer, pp 325-353. Cerca con Google

[93] Helftenbein E. (1985). Nucleotide sequence of a macronuclear DNA molecule coding for alpha-tubulin from the ciliate Stylonychia lemnae. Special codon usage: TAA is not a translation termination codon. Nucleic Acids Res,13: 415-433. Cerca con Google

[94] Herrick G., Hunter D., Williams K., Kotter K. (1987). Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. Genes Dev, 1: 1047-1058. Cerca con Google

[95] Preer J.R. Jr, Preer L.B., Rudman B.M., Barnett A.J. (1985). Deviation from the universal code shown by the gene for surface protein 51A in Paramecium. Nature, 314: 188-190. Cerca con Google

[96] Caron F., Meyer E. (1985). Does Paramecium primaurelia use a different genetic code in its macronucleus? Nature, 314: 185-188. Cerca con Google

[97] Meyer F., Schmidt H.J., Plumper E., Hasilik A., Mersmann G., Meyer H.E., Engstrom A., Heckmann K. (1991). UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc Natl Acad Sci USA, 88: 3758-3761. Cerca con Google

[98] Liang A., Heckmann K. (1993) The macronuclear gamma-tubulin-encoding gene of Euplotes octocarinatus contains two introns and an in-frame TGA. Gene, 136: 319-322. Cerca con Google

[99] Brunk C.F., Sadler L.A. (1990). Characterization of the promoter region of Tetrahymena genes. Nucleic Acids Res, 18: 323-329. Cerca con Google

[100] Kozak M. (1997). Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J, 16: 2482-2492. Cerca con Google

[101] Baim S.B., Sherman F. (1988). mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 8: 1591-1601. Cerca con Google

[102] Jacobson A., Peltz S.W. (1996). Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem, 65: 693-739. Cerca con Google

[103] Neves A.M., Barahona I., Galego L., Rodrigues-Pousada C. (1988). Ubiquitin genes in Tetrahymena pyriformis and their expression during heat shock. Gene, 73: 87-96. Cerca con Google

[104] Barahona I., Soares H., Cyrne L., Penque D., Denoulet P., Rodrigues-Pousada C. (1988). Sequence of one ?- and two ?-tubulin genes of Tetrahymena pyriformis. Structural and functional relationships with other eukaryotic tubulin genes. J Mol Biol, 202: 365-382. Cerca con Google

[105] Brimmer A., Weber K. (2000). The cDNA sequences of three tetrins, the structural proteins of the Tetrahymena oral filaments, show that they are novel cytoskeletal proteins. Protist, 151: 171-180. Cerca con Google

[106] Mochizuki K., Fine N.A., Fujisawa T., Gorovsky M.A. (2002). Analysis of a iwi-related gene implicates small RNAs in genome rearrangement in Tetrahymena. Cell, 110: 689-699. Cerca con Google

[107] Uchida Y., Takio K., Titani K., Ihara Y., Tomonaga M. (1991). The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron, 7: 337-347. Cerca con Google

[108] Leignel V., Hardivillier Y., Laulier M. (2005). Small metallothionein MT-10 genes in coastal and hydrothermal mussels. Mar Biotechnol, 7(3): 236-44. Cerca con Google

[109] Miceli C., La Terza A., Bradshaw R.A., Luporini P. (1992). Identification and structural characterization of a cDNA clone encoding a membrane-bound form of the polypeptide pheromone Er-1 in the ciliate protozoan Euplotes raikovi. Proc Natl Acad Sci USA, 89:1988-1992. Cerca con Google

[110] Luporini P., Alimenti C., Ortenzi C., Vallesi A. (2005). Ciliate Mating Types and their Specific Protein Pheromones. Acta Protozool, 44: 89-101. Cerca con Google

[111] Santovito G., Formigari A, Boldrin F., Piccinni E. (2007). Molecular and functional evolution of Tetrahymena metallothioneins: New insights into the gene family of Tetrahymena thermophila. Comp Biochem Physiol C, 144: 391-7. Cerca con Google

[112] Knapen D., Reynders H., Bervoets L., Verheyen E., Blust R. (2007). Metallothionein gene and protein expression as a biomarker for metal pollution in natural gudgeon populations. Aquat Toxicol, 82(3): 163-172. Cerca con Google

[113] Kock K. H., Everson I. (1998). Age, growth and maximum size of Antarctic notothenioid fish - revisited - in "Fish Of Antarctica, A Biological Overview", Di Prisco G., Pisano E., Clarke A. Eds. Springer-Verlag Italia. Cerca con Google

[114] Linde A.R., Sànchez-Galàn S., Vallès-Mota P., Garcìa-Vàsquez E. (2001). Metallothionein as bioindicator of freshwater metal pollution: European eel and brown trout. Ecotox Environ Saf, 49: 60-63. Cerca con Google

[115] Cosson R.P., Amiard J.C. (2000). Use of metallothioneins as biomarkers of exposure to metals. In: Lagadic L., Caquet T., Amiard J-C., Ramade F., Use of Biomarkers for Environmental Quality Assessment. Science Publishers Inc., 79-111. Cerca con Google

[116] Roberts A.P., Oris J.T., Burton G.A.Jr, Clements W.H. (2005). Gene expression in caged fish as a first-tier method for exposure assessment. Environ Toxicol Chem, 24: 3092-3098. Cerca con Google

[117] Tom M., Chen N., Segev M., Herut B., Rinkevich B. (2004). Quantifying fish metallothionein transcript by real time PCR for its utilisation as an environmental biomarker. Mar Pollut Bull, 48: 705-710. Cerca con Google

[118] George S., Gubbins M., MacIntosh A., Reynolds W., Sabine V., Scott A., Thain J. (2004). A comparison of pollutant biomarker responses with transcriptional responses in European flounders (Platicthys flesus) subjected to estuarine pollution. Mar Environ Res, 58: 571-575. Cerca con Google

[119] Irato P., Piccinni E., James P., Ammermann D. (1995). Evidence of a cadmium-thionein and the glycine cleavage system in Oxytricha granulifera. J. Euk Microbiol, 42 : 376-378. Cerca con Google

[120] Piccinni E., Irato P., Guidolin L. (1990). Cadmium-thionein in Tetrahymena thermophila and Tetrahymena pyriformis. Eur J Protistol, 26: 176-181. Cerca con Google

[121] Boldrin F., Santovito G., Gaertig J., Wloga D., Cassidy-Hanley D., Clark T.G., Piccinni E. (2006). Metallothionein gene from Tetrahymena thermophila with a copper-inducible-repressible promoter. Eukaryotic Cell, 5: 422-425. Cerca con Google

[122] Peña M.A., Koch K.A., Thiele D.J. (1998) . Dynamic regulation of copper uptake and detoxification in Saccharomices cerevisiae. Mol Cell Biol, 18: 2514-2523. Cerca con Google

[123] Soazig L., Marc L. (2003). Potential use of the levels of the mRNA of a specific metallothionein isoform (MT-20) in mussel (Mytilus edulis) as a biomarker of cadmium contamination. Mar Pollut Bull, 46:1450-1455. Cerca con Google

[124] Tanaka K., Nigg E.A. (1999). Cloning and characterization of the murine Nek3 protein, a novel member of the NIMA family of putative cell cycle regulators. J Biol Chem, 274: 13491-13497. Cerca con Google

[125] Osmani A.H., O’Donnell K., Pu R.T., Osmani S.A. (1991). Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint. EMBO J,10: 2669-2679. Cerca con Google

[126] Osmani S.A., Ye S.X. (1996). Cell cycle regulation in Aspergillus by two protein kinases. Biochem J, 317: 633-641. Cerca con Google

[127] Gaertig J, Gao Y, Tishgarten T, Clark TG, Dickerson HW (1999). Surface display of a parasite antigen in the ciliate Tetrahymena thermophila. Nat Biotechnol, 17: 462-465. Cerca con Google

[128] Peterson D.S., Gao Y., Asokan K., Gaertig J. (2002). The circumsporozoite protein of Plasmodium falciparum is expressed and localized to the cell surface in the free-living ciliate Tetrahymena thermophila. Mol Biochem Parasitol, 122:119-26. Cerca con Google

[129] Tondravi M.M., Yao M.C. (1986). Transformation of Tetrahymena thermophila by microinjection of ribosomal RNA genes. Proc Natl Acad Sci USA, 83: 4369-4373. Cerca con Google

[130] Gaertig J., Thatcher T.H., Gu L., Gorovsky M.A. (1994). Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci USA, 91: 4549-4553. Cerca con Google

[131] Barchetta S., La Terza A., Ballarini P., Pucciarelli S., Miceli C. (2007). A combination of two regulatory elements in the Tetrahymena thermophila HSP70-1 gene controls heat shock activation. Eukaryot Cell. In press Cerca con Google

[132] Matthews R.A. (1994). Ichthyophthirius multifiliis Fouquet 1876: Infection and protective responses within the fish host. In Parasitic Diseases of Fish Edited by A.W. Pike & J. W. Lewis. Samara Publishing, Dyfed, U.K. pp. 17-42. Cerca con Google

[133] Clark T.G., Dickerson H.W. (1997). Antibody-mediated effects on parasite behavior: evidence of a novel mechanism of immunity against a parasitic protist. Parasitology Today, 13: 477-480. Cerca con Google

[134] Vasconcelos M.H., Tam S.C., Beattie J.H., Hesketh J.E. (1996). Evidence for differences in the post-transcriptional regulation of rat metallothionein isoforms. Biochem J, 315: 665-671. Cerca con Google

[135] Wu A., Wemmie J.A., Edgington N.P., Goebl M., Guevara J.L., Moye-Rowley W.S. (1993). Yeast bZip proteins mediate pleiotropic drug and metal resistance. J Biol Chem, 268:18850–18858. Cerca con Google

[136] Moilanen L.H., Tetsunari F., Freedman J.H. (1999). Regulation of Metallothionein Gene Transcription. J Biol Chem,274: 29655-29665. Cerca con Google

[137] Srüder-Kypke M.C., Wright A.-D.G., Jerome C.A., Lynn D.H. (2001). Parallel evolution of histophagy in ciliates of the genus Tetrahymena. BMC Evol Biol, 1:5. Cerca con Google

[138] Morin G.B., Cech T.R. (1988). Phylogenetic relationships and altered genome structures aming Tetrahymena mitochondrial DNAs. Nucleic Acids Res, 16: 327-346. Cerca con Google

[139] Sadler L.A., Brunk C.F. (1992). Phylogenetic relationships and unusual diversity in histone H4 proteins within the Tetrahymena pyriformis complex. Mol Biol Evol, 9(1): 70-84. Cerca con Google

[140] Ye A.J., Romero D.P. (2002). Phylogenetic relationships amongst tetrahymenine ciliates inferred by a comparison of telomerase RNAs. Int J System Evol Microbiol, 52: 2297-2302. Cerca con Google

[141] Thompson J.D., Higgins D.G., Gibson T.J. (1997). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acids Res, 22:4673-4680. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record