Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Tancredi, A. - Anderson, C. - O'Hagan, A. (2002) Accounting for threshold uncertainty in extreme value estimation. [Working Paper] WORKING PAPER SERIES, 12/2002 . , PADOVA (Inedito)

Full text disponibile come:

Documento PDF

Abstract (inglese)

Tail data are often modelled by fitting a generalized Pareto distribution (GPD) to the exceedances over high thresholds. In practice, a threshold υ is fixed and a GPD is fitted to the data exceeding υ. A difficulty in this approach is the selection of the threshold above which the GPD assumption is appropriate. Moreover the estimates of the parameters of the GPD may depend significantly on the choice of the threshold selected. Sensitivity with respect to the threshold choice is normally studied but this does not fully take account of threshold uncertainty.
We propose to model extreme and non extreme data with a distribution composed by a piecewise constant density up to an unknown end point α and by a GPD with threshold α for the remaining tail part. Since we estimate the threshold together with the other parameters of the GPD we take naturally into account the threshold uncertainty. We will discuss this model from a Bayesian point of view and the method will be illustrated using simulated data and two real data sets.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Working Paper
Anno di Pubblicazione:Settembre 2002
Parole chiave (italiano / inglese):Extreme value theory, Generalized Pareto Distribution, Reversible jump algorithm, Threshold estimation, Uniform mixtures.
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:7320
Depositato il:12 Dic 2014 12:42
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record