Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Frare, Maria Chiara (2014) Opto-thermal properties of plasmonic metal nanostructures in solution and in polymer matrix for optical limiting protection against cw laser. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

The development of nanotechnology has provided a variety of noble metal nanostructures with unique optical properties that are useful for different application fields. Metal nanoparticles present strongly enhanced optical properties associated with localized surface plasmon resonance (LSPR): here, the effect on the optical properties of metal nanostructures is investigated by different techniques. The large AuNPs absorption cross section coupled with fast nonradiative decay rate and low radiative decay efficiency make them perfect converter of light into heat: the high temperatures reached can be used for photothermal terapy, light conversion in thermal and photovoltaic devices, but our interest has been focused on optical limiting application against cw laser.
The study of the thermal conversion of incoming light could be useful for the protection of the human eye from accidental or intentional damage. A good protection device should be a “smart material” able to activate the protection at high energy with a large dynamic range and in a wide wavelength interval. The last property is especially required in the case of military use, for protection against laser pointing devices or blinding weapons of unpredictable emission wavelength. In this case, passive filters, commonly used for specific wavelengths, are useless because of their selectivity and lack of tuning properties. The irradiation of an optical limiting material with a focused cw laser beam induces energy absorption rapidly converted into a local heating and a temperature gradient corresponding to a refractivity index variation across the sample. In this way, even a flat sample acts as a focusing or defocusing lens and spreads the laser beam.
We have studied different aspects of the phenomenon, as described below, to achieve the application in a solid state device with a broadband range of activity and a fast response time.
In the first experimental part of this thesis different nanostructures have been synthesized, starting from gold nanoparticles, nanoshells and nanorods with different aspect ratio, in order to obtain plasmonic resonances in a wide range of the visible spectrum. Nanostructures has been then manipulated for the functionalization with a thiolated-fulleropyrrolidine (FULP-SH) to combine the thermal relaxation process with a faster one. A useful material for protection devices should preferably be in the solid state, so a thorough study has been centered on polycarbonate (PC) as matrix because of its good optical qualities. Film production and nanoparticles embedding require a specific study of the functionalization and transfer of nanostructures synthesized in aqueous solvent.
We characterized the morphology and their linear optical properties with conventional techniques: transmission electron microscopy (TEM) gives information about the dimension of nanostructures to implement the synthesis, UV-Vis spectroscopy correlates structures with extinction properties and surface enhanced Raman spectroscopy (SERS) of the nanosystems defines the correct functionalization with organic molecules.
In the second part of the project we studied and tried to improve the nonlinear optical response of these promising systems in order to obtain different characteristics.
Using z-scan technique we define the nature of the defocusing mechanism, confirming the self-defocusing behavior and giving nonlinear efficiency parameters to compare different systems. Optical power limiting measurements give direct information on the protection ability of these systems. Thanks to the easy functionalization of nanostructures we figured out promising properties for a solid state protection device.
First we have studied the optical limiting properties of gold nanoparticle solutions identifying a thermal response as the main mechanism. We have then compared these results with those obtained by coupling gold nanoparticles with a thiolated-fulleropyrrolidine. In this way we wanted to combine the thermal process with a faster one, to permit a stronger reduction of transmittance and a better limiting efficiency. Such a strategy has been proved to be effective for improving OL through a quite different mechanism that is activated in a much shorter time.
Optical limiting measurements have been conducted on gold nanoparticles embedded in polycarbonate with good results that have been compared to the colloidal solutions. The study of a different matrix for optical limiting studies has been attempt: silk fibroin. This matrix has been selected because of the easier nanoparticles embedding. Furthermore it can be applied for instance in controlled release of drugs, thanks to the biocompatibility and gradual solubility of silk matrix. Preliminary studies discourage the use of this system for optical limiting but different application could be considered. The fibroin-nanoparticles solution can be easily transform to obtain a porous structure: the idea is to employ this matrix as a sensor for liquid samples with SERS characterization, taking advantage of the high porosity and the presence of plasmonic structures.
In the last part we tried to compare thermal properties revealed by our systems through cw laser excitation to nonlinear optical properties classically expressed by pulsed laser excitation. Optical limiting related to photoacoustic measurements allow us to discriminate the contribution of the absorption and to choose the best system with higher linear transmittance and lower threshold for nonlinear behavior

Abstract (italiano)

Lo sviluppo delle nanotecnologie ha fornito una varietà di nanostrutture metalliche con proprietà ottiche uniche utili per diverse applicazioni. Le nanoparticelle metalliche presentano una forte amplificazione delle proprietà ottiche associate al plasmone di risonanza superficiali (LSPR): in questo lavoro abbiamo studiato le proprietà ottiche di nanoparticelle d’oro (AuNPs) con diverse tecniche. La grande cross section di assorbimento delle AuNPs accoppiata con la rapido decadimento non radiativo e la scarsa efficienza di decadimento rendono efficace la conversione di luce in calore: le alte temperature raggiunte possono essere utilizzate per terapia fototermica, conversione luminosa in dispositivi fotovoltaici, ma il nostro interesse si è focalizzato sull’applicazione nella limitazione ottica contro laser in continuo (cw).
Lo studio della conversione termica della luce incidente può essere utilizzato per la realizzazione di dispositivi per la protezione dell’occhio contro danni accidentali o intenzionali.
Un buon dispositivo di protezione dovrebbe essere un materiale intelligente in grado di attivarsi sopra una certa soglia di intensità, con un ampio intervallo di attività e a diverse lunghezze d’onda. Quest’ultima proprietà è di particolare interesse in ambito militare per la protezione contro dispositivi laser di puntamento o armi accecanti di lunghezze d’onda non note a priori. In questo caso sono i filtri passivi per specifiche lunghezze d’onda attualmente utilizzati risultano inefficaci data la loro alta selettività e scarsa versatilità.
L’irraggiamento di un limitatore ottico con un raggio laser cw focalizzato induce un assorbimento dell’energia che viene rapidamente convertito in un riscaldamento locale e la formazione di un gradiente di temperatura che corrisponde ad una variazione di indice di rifrazione attraverso il campione. In questo modo anche un campione piatto agisce come una lente focalizzante o defocalizzante e diffonde la luce.
Abbiamo studiato diversi aspetti del fenomeno, come descritto in seguito, per ottenere un dispositivo a stato solido con un ampio intervallo di attività e una risposta rapida.
Nella prima parte sperimentale di questa tesi sono state sintetizzate diverse nanostrutture, a partire da nanoparticelle d’oro, nanoshells e nanorods con aspect ratio differenti, al fine di ottenere risonanze plasmoniche in un ampio intervallo dello spettro visibile. Le nanostrutture sono state in seguito funzionalizzate con molecole di fulleropirrolidina tiolata (FULP-SH) per combinare il processo di rilassamento termico con uno più rapido.
Un limitatore ottico per un dispositivo di protezione deve essere preferibilmente solido, e quindi lo studio delle proprietà ottiche è stato effettuato anche in matrice, in particolare in polycarbonato (PC), scelto per le sue ottime qualità ottiche. La produzione dei film e l’inglobamento delle nanoparticelle ha richiesto degli studi sulla funzionalizzazione e la stabilizzazione delle nanostrutture sintetizzate in solvente acquoso.
Abbiamo caratterizzato la morfologia e le proprietà ottiche lineari con tecniche convenzionali: microscopia a trasmissione elettronica (TEM), che fornisce informazioni sulle dimensioni e la forma delle nanostrutture al fine di implementarne la sintesi, spettroscopia UV-Visibile che correla le strutture con le proprietà di estinzione, e la spettroscopia Raman che ha verificato l’effettiva funzionalizzazione dei sistemi con le molecole organiche.
Nella seconda parte del progetto abbiamo studiato le risposte ottiche non lineari di questi promettenti sistemi per poterne modulare le proprietà.
Attraverso la tecnica Z-scan siamo stati in grado di definire la natura del meccanismo di defocalizzazione e di ottenere i parametri non lineari che ci hanno permesso di confrontare i nostri risultati con quelli attualmente presenti in letteratura. Misure di limitazione ottica hanno dato informazioni sull’efficacia di protezione dei nostri sistemi. Grazie alla semplicità di funzionalizzazione delle nanoparticelle abbiamo individuato delle nuove e promettenti proprietà per un dispositivo di protezione a stato solido.
In primo luogo abbiamo studiato le proprietà di limitazione ottica di nanoparticelle in soluzione per identificare la tipologia di funzionamento. In seguito i risultati sono stati confrontati con quelli ottenuti con nanoparticelle funzionalizzate con FULP-SH. In questo modo abbiamo tentato di associare al processo di rilassamento termico un meccanismo più rapido, in modo da ridurre maggiormente la trasmittanza e migliorare l’efficienza di limitazione. Abbiamo quindi verificato l’efficacia della strategia utilizzata evidenziando un miglioramento della limitazione ottica in un tempo inferiore.
Le misure di limitazione ottica eseguite su nanoparticelle in matrice di PC hanno dato ottimi risultati, paragonabili a quelli ottenuti in soluzione. Un primo di studio di matrici differenti si è concentrato sulla fibroina della seta, scelta per la semplicità di inglobamento delle nanoparticelle. Inoltre questo sistema AuNPs-fibroina potrebbe trovare sbocco anche in diverse applicazioni: grazie alla biocompatibilità della matrice ed alla sua solubilità graduale in acqua potrebbe essere usato per il rilascio controllato di farmaci. Studi preliminari scoraggerebbero l’utilizzo di questo sistema nella limitazione ottica ma possono essere comunque considerate altre applicazioni. Le nanoparticelle in fibroina possono infatti essere facilmente trasformate in strutture porose: un’idea potrebbe essere quella di utilizzarle come sensori per campioni in soluzione con caratterizzazione Raman amplificata (SERS), combinando l’alta porosità e la presenza di strutture plasmoniche.
Nell’ultima parte abbiamo confrontato le proprietà termiche dei nostri sistemi attraverso studi di fotoacustica che ci hanno permesso di discriminare il contributo assorbitivo dall’estinzione totale e di scegliere il sistema migliore con alta trasmittanza lineare e basse soglie di attivazione nonlineari

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Bozio, Renato
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:22 Dicembre 2014
Anno di Pubblicazione:22 Dicembre 2014
Parole chiave (italiano / inglese):limitazione ottica/optical limiting, nanoparticelle/nanoparticles, cw laser/cw laser, policarbonato/polycarbonate, plasmonica/plasmonics, optotermico/optothermal
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Area 03 - Scienze chimiche > CHIM/05 Scienza e tecnologia dei materiali polimerici
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:7395
Depositato il:12 Nov 2015 09:58
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Feynmann, R. There’s a plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960). Cerca con Google

2. Gao, Y. et al. Size effect of optical limiting in gold nanoparticles. Chem. Phys. 336, 99–102 (2007). Cerca con Google

3. Gao, J. & Xu, M. Metal Nanopaticles of Various Shapes. 1–19 Cerca con Google

4. Larosa, C., Stura, E., Eggenhöffner, R. & Nicolini, C. Optimization of Optical Properties of Polycarbonate Film with Thiol Gold-Nanoparticles. Materials (Basel). 2, 1193–1204 (2009). Cerca con Google

5. Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B. Biointerfaces 58, 3–7 (2007). Cerca con Google

6. Link, S. & El-Sayed, M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999). Cerca con Google

7. Link, S. & El-Sayed, M. a. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000). Cerca con Google

8. Shahriari, E., Yunus, W. M. M. & Saion, E. Effect of particle size on nonlinear refractive index of Au nanoparticle in PVA solution. Brazilian J. Phys. 40, 256–260 (2010). Cerca con Google

9. Zhang, J. Z. & Noguez, C. Plasmonic Optical Properties and Applications of Metal Nanostructures. Plasmonics 3, 127–150 (2008). Cerca con Google

10. Link, S. & El-Sayed, M. a. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 103, 4212–4217 (1999). Cerca con Google

11. Govorov, A. O. & Richardson, H. H. Generating heat with metal nanoparticles We describe recent studies on photothermal effects using colloidal. Nano Today 2, 30–38 (2007). Cerca con Google

12. Yoon, J. H. & Yoon, S. Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates. Phys. Chem. Chem. Phys. 13, 12900–5 (2011). Cerca con Google

13. Thomas, K. G., Zajicek, J. & Kamat, P. V. Surface Binding Properties of Tetraoctylammonium Bromide-Capped Gold Nanoparticles. Langmuir 18, 3722–3727 (2002). Cerca con Google

14. Lukianova-Hleb, E. Y. & Lapotko, D. O. Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Nano Lett. 9, 2160–6 (2009). Cerca con Google

15. Hashimoto, S., Werner, D. & Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 13, 28–54 (2012). Cerca con Google

16. Gaiduk, A., Ruijgrok, P. V, Yorulmaz, M. & Orrit, M. Making gold nanoparticles fluorescent for simultaneous absorption and fluorescence detection on the single particle level w. 149–153 (2011). doi:10.1039/c0cp01389g Cerca con Google

17. Ani Joseph, S. et al. Photothermal Characterization of Nanogold Under Conditions of Resonant Excitation and Energy Transfer. Plasmonics 5, 63–68 (2010). Cerca con Google

18. Pustovalov, V. K., Smetannikov, a. S. & Zharov, V. P. Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys. Lett. 5, 775–792 (2008). Cerca con Google

19. Jiménez-Pérez, J. L. et al. Thermal Characterization of Solutions Containing Gold Nanoparticles at Different pH Values. Int. J. Thermophys. 34, 955–961 (2012). Cerca con Google

20. Qu, S., Du, C., Song, Y., Wang, Y. & Gao, Y. Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands. Chem. Phys. Lett. 356, 403–408 (2002). Cerca con Google

21. Ani Joseph, S. et al. Thermal diffusivity of rhodamine 6G incorporated in silver nanofluid measured using mode-matched thermal lens technique. Opt. Commun. 283, 313–317 (2010). Cerca con Google

22. Patel, H. E. et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl. Phys. Lett. 83, 2931 (2003). Cerca con Google

23. Frare, M. C. et al. Fullerene functionalized gold nanoparticles for optical limiting of continuous wave laser. PCCP Submitted (2014). Cerca con Google

24. Hartland, G. V. & Schatz, G. Virtual Issue: Plasmon Resonances - A Physical Chemistry Perspective. J. Phys. Chem. C 115, 15121–15123 (2011). Cerca con Google

25. Eustis, S. & el-Sayed, M. a. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–17 (2006). Cerca con Google

26. Ghosh, S. K. & Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem. Rev. 107, 4797–862 (2007). Cerca con Google

27. Kamat, P. V. Meeting the Clean Energy Demand:  Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 111, 2834–2860 (2007). Cerca con Google

28. Oelhafen, P. & Schüler, a. Nanostructured materials for solar energy conversion. Sol. Energy 79, 110–121 (2005). Cerca con Google

29. Pillai, S. & Green, M. a. Plasmonics for photovoltaic applications. Sol. Energy Mater. Sol. Cells 94, 1481–1486 (2010). Cerca con Google

30. Atwater, H. a & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–13 (2010). Cerca con Google

31. Matheu, P., Lim, S. H., Derkacs, D., McPheeters, C. & Yu, E. T. Metal and dielectric nanoparticle scattering for improved optical absorption in photovoltaic devices. Appl. Phys. Lett. 93, 113108 (2008). Cerca con Google

32. Hägglund, C. & Kasemo, B. Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits. Opt. Express 17, 11944–57 (2009). Cerca con Google

33. Chen, F.-C. et al. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles. Appl. Phys. Lett. 95, 013305 (2009). Cerca con Google

34. Kuwauchi, Y., Yoshida, H., Akita, T., Haruta, M. & Takeda, S. Intrinsic catalytic structure of gold nanoparticles supported on TiO2. Angew. Chem. Int. Ed. Engl. 51, 7729–33 (2012). Cerca con Google

35. Stratakis, M. & Garcia, H. Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem. Rev. 112, 4469–506 (2012). Cerca con Google

36. Tian, Y. & Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. 16, 1810–1 (2004). Cerca con Google

37. Frare, M. C., Weber, V., Signorini, R. & Bozio, R. Gold nanoparticles in a polycarbonate matrix for optical limiting against a CW laser. Laser Phys. 24, 105901 (2014). Cerca con Google

38. Polavarapu, L., Venkatram, N., Ji, W. & Xu, Q.-H. Optical-limiting properties of oleylamine-capped gold nanoparticles for both femtosecond and nanosecond laser pulses. ACS Appl. Mater. Interfaces 1, 2298–303 (2009). Cerca con Google

39. Sarkhosh, L., Aleali, H., Karimzadeh, R. & Mansour, N. Large thermally induced nonlinear refraction of gold nanoparticles stabilized by cyclohexanone. Phys. Status Solidi 207, 2303–2310 (2010). Cerca con Google

40. Majles Ara, M. H. et al. Diffraction patterns and nonlinear optical properties of gold nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 113, 366–372 (2012). Cerca con Google

41. Jia, L., Guo, L., Zhu, J. & Ma, Y. Stability and cytocompatibility of silk fibroin-capped gold nanoparticles. Mater. Sci. Eng. C. Mater. Biol. Appl. 43, 231–6 (2014). Cerca con Google

42. Boisselier, E. & Astruc, D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–82 (2009). Cerca con Google

43. Qin, Z. & Bischof, J. C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191–217 (2012). Cerca con Google

44. Zharov, V. P., Galitovsky, V. & Viegas, M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl. Phys. Lett. 83, 4897 (2003). Cerca con Google

45. Chen, P. C., Mwakwari, S. C. & Oyelere, A. K. Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnol. Sci. Appl. 1, 45–65 (2008). Cerca con Google

46. Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: review. Sensors Actuators B Chem. 54, 3–15 (1999). Cerca con Google

47. Hong, S., Lee, S. & Yi, J. Sensitive and molecular size-selective detection of proteins using a chip-based and heteroliganded gold nanoisland by localized surface plasmon resonance spectroscopy. Nanoscale Res. Lett. 6, 336 (2011). Cerca con Google

48. Loo, C., Lowery, A., Halas, N., West, J. & Drezek, R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–11 (2005). Cerca con Google

49. Huang, X., Neretina, S. & El-Sayed, M. a. Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater. 21, 4880–4910 (2009). Cerca con Google

50. Hirsch, L. R. et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. U. S. A. 100, 13549–54 (2003). Cerca con Google

51. Lin, Y. et al. Genetically Programmable Thermoresponsive Plasmonic Gold/Silk- Elastin Protein Core/Shell Nanoparticles. Langmuir 30, 4406–4414 (2014). Cerca con Google

52. Huang, X., El-Sayed, I. H., Qian, W. & El-Sayed, M. a. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–20 (2006). Cerca con Google

53. Chen, H., Shao, L., Li, Q. & Wang, J. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–724 (2013). Cerca con Google

54. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. a. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 23, 217–28 (2008). Cerca con Google

55. Dickerson, E. B. et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269, 57–66 (2008). Cerca con Google

56. Thierry, B., Ng, J., Krieg, T. & Griesser, H. J. A robust procedure for the functionalization of gold nanorods and noble metal nanoparticles. Chem. Commun. (Camb). 1, 1724–6 (2009). Cerca con Google

57. Chen, J. et al. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 7, 1318–22 (2007). Cerca con Google

58. Tong, L. et al. Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. Adv. Mater. 19, 3136–3141 (2007). Cerca con Google

59. Mie, G. Beiträge zur optik trüber medien speziell kolloidaler metalllösungen. Ann. Phys. 330, 377–445 (1908). Cerca con Google

60. Mie, G. A contribution to the optics of turbid media, especially colloidal metallic suspensions. Ann. Phys. 25, (1908). Cerca con Google

61. Shuang, Z., Peng, W., Peiji, W., Peiwang, Z. & Cheng, Y. Investigation of optical limiting of organic complex sample. Synth. Met. 121, 1471–1472 (2001). Cerca con Google

62. Rajashekar, B., Limbu, S., Aditya, K., Nageswara Rao, G. & Siva Sankara Sai, S. Azo doped polymer thin films for active and passive optical power limiting applications. Photochem. Photobiol. Sci. 12, 1780–6 (2013). Cerca con Google

63. Signorini, R. et al. Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel glasses. Carbon N. Y. 38, 1653–1662 (2000). Cerca con Google

64. Ramakrishna, G., Varnavski, O., Kim, J., Lee, D. & Goodson, T. Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc. 130, 5032–3 (2008). Cerca con Google

65. Amendola, V., Mattei, G., Cusan, C., Prato, M. & Meneghetti, M. Fullerene non-linear excited state absorption induced by gold nanoparticles light harvesting. Synth. Met. 155, 283–286 (2005). Cerca con Google

66. Hirata, S., Totani, K., Yamashita, T., Adachi, C. & Vacha, M. Large reverse saturable absorption under weak continuous incoherent light. Nat. Mater. 13, 938–46 (2014). Cerca con Google

67. Gordon, J. P., Leite, R. C. C., Moore, R. S., Porto, S. P. S. & Whinnery, J. R. Long-Transient Effects in Lasers with Inserted Liquid Samples. J. Appl. Phys. 36, 3 (1965). Cerca con Google

68. Leite, R. C. C. THE THERMAL LENS EFFECT AS A POWER-LIMITING DEVICE. Appl. Phys. Lett. 10, 100 (1967). Cerca con Google

69. Chon, B. J. W. M., Bullen, C., Zijlstra, P. & Gu, M. Spectral Encoding on Gold Nanorods Doped in a Silica Sol – Gel Matrix and Its Application to High-Density Optical Data Storage **. Adv. Drug Deliv. Rev. 17, 875–880 (2007). Cerca con Google

70. Hogan, N. J. et al. Nanoparticles Heat through Light Localization. Nano Lett. 14, 4640–4645 (2014). Cerca con Google

71. Heber, A., Selmke, M. & Cichos, F. Metal nanoparticle based all-optical photothermal light modulator. ACS Nano 8, 1893–8 (2014). Cerca con Google

72. Fedoruk, M., Meixner, M., Carretero-palacios, S. & Lohmu, T. Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles. ACS Nano 7, 7648–7653 (2013). Cerca con Google

73. Schmid, S., Wu, K., Larsen, P. E., Rindzevicius, T. & Boisen, A. Low-Power Photothermal Probing of Single Plasmonic Nanostructures with Nanomechanical String Resonators. Nano Lett. 14, 2318–2321 (2014). Cerca con Google

74. Herzog, J. B., Knight, M. W. & Natelson, D. Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires. Nano Lett. 14, 499–503 (2014). Cerca con Google

75. Neal, D. P. O., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004). Cerca con Google

76. Huang, X. & El-Sayed, M. a. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010). Cerca con Google

77. Hollins, R. C. Materials for optical limiters. Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999). Cerca con Google

78. Calvete, M., Yang, G. Y. & Hanack, M. Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met. 141, 231–243 (2004). Cerca con Google

79. Hongbing, Z., Wenzhe, C., Minquan, W. & Chunlin, Z. Optical limiting properties of peripherally modified palladium phthalocyanines doped silica gel glass. Chem. Phys. Lett. 389, 119–123 (2004). Cerca con Google

80. O’Flaherty, S. M. et al. Molecular Engineering of Peripherally And Axially Modified Phthalocyanines for Optical Limiting and Nonlinear Optics. Adv. Mater. 15, 19–32 (2003). Cerca con Google

81. Dini, D., Barthel, M. & Hanack, M. Phthalocyanines as Active Materials for Optical Limiting. European J. Org. Chem. 2001, 3759–3769 (2001). Cerca con Google

82. Riggs, J. E. & Sun, Y.-P. Optical Limiting Properties of [60]Fullerene and Methano[60]fullerene Derivative in Solution versus in Polymer Matrix: The Role of Bimolecular Processes and a Consistent Nonlinear Absorption Mechanism. J. Phys. Chem. A 103, 485–495 (1999). Cerca con Google

83. Aleali, H., Sarkhosh, L., Karimzadeh, R. & Mansour, N. Threshold-tunable optical limiteers of Au nanoparticles in castor oil. J. Nonlinear Opt. Phys. Mater. 21, 1250024 (2012). Cerca con Google

84. Nagaraja, K. K., Pramodini, S., Poornesh, P. & Nagaraja, H. S. Effect of annealing on the structural and nonlinear optical properties of ZnO thin films under cw regime. J. Phys. D. Appl. Phys. 46, 055106 (2013). Cerca con Google

85. Henari, F. Z. & Cassidy, S. Non-linear optical properties and all optical switching of Congo red in solution. Opt. - Int. J. Light Electron Opt. 123, 711–714 (2012). Cerca con Google

86. Majles Ara, M. H. et al. Optical characterization of Erioglaucine using z-scan technique, beam radius variations and diffraction pattern in far-field. Curr. Appl. Phys. 9, 885–889 (2009). Cerca con Google

87. Mansour, K., Soileau, M. J. & Stryland, E. W. Van. Nonlinear optical properties of carbon-black suspensions (ink). J. Opt. Soc. Am. B 9, 1100 (1992). Cerca con Google

88. Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. a. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110, 7238–48 (2006). Cerca con Google

89. Shahriari, E. The effect of nanoparticle size on thermal diffusivity of gold nano-fluid measured using thermal lens technique. J. Eur. Opt. Soc. rapid pubblication 13026, 1–4 (2013). Cerca con Google

90. Mostafavi, M. et al. Optical Limitation induced by Gold Clusters . 1 . Size Effect. J. Phys. Chem. 104, 6133–6137 (2000). Cerca con Google

91. Evanoff, D. D. & Chumanov, G. Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections. J. Phys. Chem. B 108, 13957–13962 (2004). Cerca con Google

92. Setoura, K., Werner, D. & Hashimoto, S. Optical Scattering Spectral Thermometry and Refractometry of a Single Gold Nanoparticle under CW Laser Excitation. J. Phys. Chem. C 116, 15458–15466 (2012). Cerca con Google

93. Olesiak-Banska, J., Gordel, M., Kolkowski, R., Matczyszyn, K. & Samoc, M. Third-Order Nonlinear Optical Properties of Colloidal Gold Nanorods. J. Phys. Chem. C 116, 13731–13737 (2012). Cerca con Google

94. Li, C., Qiu, C., Zhang, Y. & Li, D. Self-assembly of PEGylated gold nanorods and its optical limiting property. Mater. Lett. (2014). doi:10.1016/j.matlet.2014.11.012 Cerca con Google

95. Petrova, H. et al. On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Phys. Chem. Chem. Phys. 8, 814–21 (2006). Cerca con Google

96. Neupane, B., Zhao, L. & Wang, G. Up-conversion luminescence of gold nanospheres when excited at nonsurface plasmon resonance wavelength by a continuous wave laser. Nano Lett. 13, 4087–92 (2013). Cerca con Google

97. Richardson, H. H., Carlson, M. T., Tandler, P. J., Hernandez, P. & Govorov, A. O. Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett. 9, 1139–46 (2009). Cerca con Google

98. Dengler, S., Kübel, C., Schwenke, A., Ritt, G. & Eberle, B. Near- and off-resonant optical limiting properties of gold–silver alloy nanoparticles for intense nanosecond laser pulses. J. Opt. 14, 075203 (2012). Cerca con Google

99. Eslamifar, M. & Mansour, N. Optical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Thermal Nonlinear Refraction. Int. J. Opt. Photonics 6, 49–56 (2012). Cerca con Google

100. Nadjari, H., Hajiesmaeilbaigi, F. & Motamedi, a. Thermo optical response and optical limiting in Ag and Au nanocolloid prepared by laser ablation. Laser Phys. 20, 859–864 (2010). Cerca con Google

101. Dawson, J. Optical limiting materials based on gold nanoparticles. 1–12 (2014). Cerca con Google

102. Nordwall, B. D. Laser advance spur Pentagon efforts to protect flight Crewmembers’ Eyes. Aviat. Week Sp. Technol. 73 (1988). Cerca con Google

103. Zhou, J., Ralston, J., Sedev, R. & Beattie, D. a. Functionalized gold nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 331, 251–62 (2009). Cerca con Google

104. Cao, G. Nanostructures and nanomaterials: synthesis, properties and applications. (2004). at <http://www.worldscientific.com/doi/pdf/10.1142/9781860945960_fmatter> Vai! Cerca con Google

105. Jana, N. R., Gearheart, L. & Murphy, C. J. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 13, 1389–1393 (2001). Cerca con Google

106. Nikoobakht, B. & El-sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods ( NRs ) Using Seed-Mediated Growth Method. Chem. Mater. 15, 1957–1962 (2003). Cerca con Google

107. Israelachvili, J. Intermolecular and Surface Forces. (Elsevier, 2004). at <https://www.elsevier.com/books/intermolecular-and-surface-forces/israelachvili/978-0-12-391927-4> Vai! Cerca con Google

108. Israelachvili, J. Intermolecular and Surface Forces. (1992). Cerca con Google

109. Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951). Cerca con Google

110. Weber, V. PLASMONIC NANOSTRUCTURES FOR THE REALIZATION OF SENSORS BASED ON SURFACE ENHANCED RAMAN SPECTROSCOPY. (2013). Cerca con Google

111. Amendola, V. & Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV - vis Spectroscopy. J. Phys. Chem. 113, 4277–4285 (2009). Cerca con Google

112. Goris, B. et al. Atomic-scale determination of surface facets in gold nanorods. Nat. Mater. 11, 930–5 (2012). Cerca con Google

113. Perezjuste, J., Pastorizasantos, I., Lizmarzan, L. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005). Cerca con Google

114. Gans, R. On the shape of ultramicroscopic gold particles. Ann. Phys. 37, 881–900 (1972). Cerca con Google

115. Yu, Y.-Y., Chang, S.-S., Lee, C.-L. & Wang, C. R. C. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B 101, 6661–6664 (1997). Cerca con Google

116. Placido, T. et al. Photochemical Synthesis of Water-Soluble Gold Nanorods: The Role of Silver in Assisting Anisotropic Growth. Chem. Mater. 21, 4192–4202 (2009). Cerca con Google

117. Pham, T., Jackson, J. B., Halas, N. J. & Lee, T. R. Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers. Langmuir 18, 4915–4920 (2002). Cerca con Google

118. Oldenburg, S. ., Averitt, R. ., Westcott, S. . & Halas, N. . Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998). Cerca con Google

119. Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). Cerca con Google

120. Brinson, B. E. et al. Nanoshells Made Easy : Improving Au Layer Growth on Nanoparticle Surfaces. 120, 14166–14171 (2008). Cerca con Google

121. Sastry, M. Phase transfer protocols in nanoparticle synthesis. Curr. Sci. 85, 1735–1745 (2003). Cerca con Google

122. McMahon, J. M. & Emory, S. R. Phase transfer of large gold nanoparticles to organic solvents with increased stability. Langmuir 23, 1414–8 (2007). Cerca con Google

123. Hostetler, M. J., Templeton, A. C. & Murray, R. W. Dynamics of Place-Exchange Reactions on Monolayer-Protected Gold Cluster Molecules. Langmuir 15, 3782–3789 (1999). Cerca con Google

124. Della Gaspera, E. et al. CO optical sensing properties of nanocrystalline ZnO–Au films: Effect of doping with transition metal ions. Sensors Actuators B Chem. 161, 675–683 (2012). Cerca con Google

125. Dresselhaus, M. S., Dresselhaus, G. & Eklund, P. C. Raman Scattering in Fullerenes. J. Raman Spectrosc. 27, 351–371 (1996). Cerca con Google

126. Geng, M. et al. Functionalization of C60 with gold nanoparticles. Carbon N. Y. 48, 3570–3574 (2010). Cerca con Google

127. Walker, C. H., John, J. V. S. & Wisian-Neilson, P. Synthesis and Size Control of Gold Nanoparticles Stabilized by Poly (methylphenylphosphazene). Am. Chem. Soc. 123, 3846–3847 (2001). Cerca con Google

128. Wisian-Neilson, P. & Garcìa-Alonso, F. J. Coordination of Poly(methylpheny1phosphazene) and Poly( dimethylphosphazene). Macromolecules 26, 7156–7160 (1993). Cerca con Google

129. Delgado, J. L., Oswald, F., Cardinali, F., Langa, F. & Martìn, N. On the Thermal Stability of [60] Fullerene Cycloadducts : Retro-Cycloaddition Reaction of 2-Pyrazolino [4,5:1,2][60] fullerenes. J. Org. Chem. 73, 3184–3188 (2008). Cerca con Google

130. Martín, N. et al. Retro-Cycloaddition Reaction of Pyrrolidinofullerenes. Angew. Chemie 118, 116–120 (2006). Cerca con Google

131. Sudeep, P. K. et al. Fullerene-Functionalized Gold Nanoparticles. A Self-Assembled Photoactive Antenna-Metal Nanocore Assembly. Nano Lett. 2, 29–35 (2002). Cerca con Google

132. Hasell, T. et al. Silver Nanoparticle Impregnated Polycarbonate Substrates for Surface Enhanced Raman Spectroscopy. Adv. Funct. Mater. 18, 1265–1271 (2008). Cerca con Google

133. He, T., Wang, C., Pan, X. & Wang, Y. Nonlinear optical response of Au and Ag nanoparticles doped polyvinylpyrrolidone thin films. Phys. Lett. A 373, 592–595 (2009). Cerca con Google

134. Mathews, S. J., Kumar, S. C., Giribabu, L. & Rao, S. V. Nonlinear optical and optical limiting properties of phthalocyanines in solution and thin films of PMMA at 633 nm studied using a cw laser. Mater. Lett. 61, 4426–4431 (2007). Cerca con Google

135. Alexandrov, A. et al. UV-initiated growth of gold nanoparticles in PMMA matrix. Appl. Surf. Sci. 248, 181–184 (2005). Cerca con Google

136. Jia, T., He, T., Li, P., Mo, Y. & Cui, Y. A study of the thermal-induced nonlinearity of Au and Ag colloids prepared by the chemical reaction method. Opt. Laser Technol. 40, 936–940 (2008). Cerca con Google

137. Cited, R. & Alon, U. GOGGLES‘ LENSES. (1992). Cerca con Google

138. Glass, L. & Ski, F. O. R. LOOKING GLASS FOR SKI GOGGLES. 1, (2001). Cerca con Google

139. He, J. & Kunitake, T. Preparation and Thermal Stability of Gold Nanoparticles in Silk-Templated Porous Filaments of Titania and. Chem. Mater. 10, 2656–2661 (2004). Cerca con Google

140. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. a. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol. 82, 412–7 (2006). Cerca con Google

141. Zhou, Y. et al. Preparation of a novel core–shell nanostructured gold colloid–silk fibroin bioconjugate by the protein. Chem. Commun. 2518–2519 (2001). doi:10.1039/b108013j Cerca con Google

142. Gogurla, N. et al. Transparent and flexible resistive switching memory devices with a very high ON/OFF ratio using gold nanoparticles embedded in a silk protein matrix. Nanotechnology 24, 345202 (2013). Cerca con Google

143. Cohen-karni, T. et al. Nanocomposite Gold-Silk Nano fi bers. Nano Lett. 12, 10–13 (2012). Cerca con Google

144. Kojic, N. et al. Focal Infection Treatment using Laser-Mediated Heating of Injectable Silk Hydrogels with Gold Nanoparticles. Adv. Funct. Mater. 22, 3793–3798 (2012). Cerca con Google

145. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. 111, (Springer Berlin Heidelberg, 1988). Cerca con Google

146. Smith, T. & Guild, J. The C.I.E. colorimetric standards and their use. Trans. Opt. Soc. 33, 73–134 (1931). Cerca con Google

147. Hwang, S.-W. et al. Materials for bioresorbable radio frequency electronics. Adv. Mater. 25, 3526–31 (2013). Cerca con Google

148. Altman, G. H. et al. Silk-based biomaterials. Biomaterials 24, 401–416 (2003). Cerca con Google

149. Sagnella, A. et al. Bio-doping of regenerated silk fibroin solution and films: a green route for biomanufacturing. RSC Adv. 4, 33687 (2014). Cerca con Google

150. Tretinnikov, O. N. & Tamada, Y. Influence of Casting Temperature on the Near-Surface Structure and Wettability of Cast Silk Fibroin Films. Langmuir 17, 7406–7413 (2001). Cerca con Google

151. Sheik-Bahae, M., Said, A. A., Wei, T.-H., Hagan, D. J. & Van Stryland, E. W. Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). Cerca con Google

152. Guo, S. et al. Second Z-scan in materials with nonlinear refraction and nonlinear absorption. J. Opt. A Pure Appl. Opt. 4, 504–508 (2002). Cerca con Google

153. Chapple, P. B., Staromlynska, J., Hermann, J. A., Mckay, T. J. & Mcduff, R. G. Single-Beam Z-Scan: Measurement Techniques and Analysis. J. Nonlinear Opt. Phys. Mater. 6, 251–293 (1997). Cerca con Google

154. Hermann, J. A. & Wilson, P. J. FACTORS AFFECTING OPTICAL LIMITING AND SCANNING WITH THIN NONLINEAR SAMPLES. J. Nonlinear Opt. Phys. Mater. 2, 613–629 (1993). Cerca con Google

155. Tian, J. G., Zhang, C., Zhang, G. & Li, J. Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquid. Appl. Opt. 32, 6628–32 (1993). Cerca con Google

156. Ryasnyanskiy, I., Palpant, B., Debrus, S., Pal, U. & Stepanov, A. Third-order nonlinear-optical parameters of gold nanoparticles in different matrices. J. Lumin. 127, 181–185 (2007). Cerca con Google

157. Souza, R. F., Alencar, M. a. R. C., da Silva, E. C., Meneghetti, M. R. & Hickmann, J. M. Nonlinear optical properties of Au nanoparticles colloidal system: Local and nonlocal responses. Appl. Phys. Lett. 92, 201902 (2008). Cerca con Google

158. Ganeev, R. a., Baba, M., Ryasnyansky, a. I., Suzuki, M. & Kuroda, H. Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids. Opt. Commun. 240, 437–448 (2004). Cerca con Google

159. Seo, J. T. et al. Optical nonlinearities of Au nanoparticles and Au/Ag coreshells. Opt. Lett. 34, 307 (2009). Cerca con Google

160. Elim, H. I., Yang, J., Lee, J.-Y., Mi, J. & Ji, W. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods. Appl. Phys. Lett. 88, 083107 (2006). Cerca con Google

161. Sindhu Sukumaran, V. & Ramalingam, a. Spectral and nonlinear studies of night blue dye. Phys. Lett. A 359, 467–470 (2006). Cerca con Google

162. Kumar, G. S., Milka, B. V., Muneera, C. I., Sathiyamoorthy, K. & Vijayan, C. Nonlinear refraction and optical limiting in solid films of amido black dye under CW laser illumination. Opt. Mater. (Amst). 30, 311–313 (2007). Cerca con Google

163. Rekha and A . Optical Nonlinear Proreties and Optical Limiting Effect of Metanil Yellow. Sci. Appl. Publ. Sci. 2, 285–291 (2009). Cerca con Google

164. American National Standard for Safe Use of Lasers ANSI Z136.1– 2000. www.laserinstitute.org. Vai! Cerca con Google

165. Sathiyamoorthy, K., Vijayan, C. & Kothiyal, M. P. Low power optical limiting in ClAl-Phthalocyanine due to self defocusing and self phase modulation effects. Opt. Mater. (Amst). 31, 79–86 (2008). Cerca con Google

166. Cuppo, F. L. S., Neto, A. M. F., Gomez, S. L. & Palffy-Muhoray, P. Thermal-lens model compared with the Sheik-Bahae formalism in interpreting Z-scan experiments on lyotropic liquid crystals. J. Opt. Soc. Am. B 19, 1342–1348 (2002). Cerca con Google

167. Parker, J. G. Optical absorption in glass: investigation using an acoustic technique. Appl. Opt. 12, 2974–7 (1973). Cerca con Google

168. Rosencwaig, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 47, 64 (1976). Cerca con Google

169. Cuppo, F. L. S. & Neto, A. M. F. Laurate / Water Solutions at Amphiphilic Concentrations around the Critical Micellar Concentration : A Laser Gaussian Single Beam Experiment in Millisecond. Langmuir 18, 9647–9653 (2002). Cerca con Google

170. Pramodini, S., Poornesh, P. & Nagaraja, K. K. Thermally induced nonlinear optical response and optical power limiting of acid blue 40 dye. Curr. Appl. Phys. 13, 1175–1182 (2013). Cerca con Google

171. Deng, L., He, K., Zhou, T. & Li, C. Formation and evolution of far-field diffraction patterns of divergent and convergent Gaussian beams passing through self-focusing and self-defocusing media. J. Opt. A Pure Appl. Opt. 7, 409–415 (2005). Cerca con Google

172. Yu, B., Gu, Y. & Mao, Y. Nonlinear optical properties of PbS nanoparticles under CW laser illumination. J. Nonlinear Opt. Phys. Mater. 9, 117–125 (2000). Cerca con Google

173. Chen, H. & Diebold, G. Chemical Generation of Acoustic Waves: A Giant Photoacoustic Effect. Science (80-. ). 270, 963–966 (1995). Cerca con Google

174. González, M. G., Liu, X., Niessner, R. & Haisch, C. Lead ion detection in turbid media by pulsed photoacoustic spectrometry based on dissolution of gold nanoparticles. Sensors Actuators B Chem. 150, 770–773 (2010). Cerca con Google

175. Feis, A., Gellini, C., Remigio, P. & Becucci, M. Photoacoustics Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics 2, 47–53 (2014). Cerca con Google

176. Cho, E. C. et al. Measuring the Optical Absorption Cross Sections of Au - Ag Nanocages and Au Nanorods by Photoacoustic Imaging. J. Phys. Chem. C 113, 9023–9028 (2009). Cerca con Google

177. Alabastri, A. et al. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature. Materials (Basel). 6, 4879–4910 (2013). Cerca con Google

178. Alabastri, A., De Angelis, F. & Proietti Zaccaria, R. Heating processes in plasmonic resonances: a non-linear temperature dependent permittivity model. in SPIE Nanosci. + Eng. (Cabrini, S., Lérondel, G., Schwartzberg, A. M. & Mokari, T.) 91610U (International Society for Optics and Photonics, 2014). doi:10.1117/12.2066155 Cerca con Google

179. Torquato, S., Lu, B. & Rubinstein, J. Nearest-Neighbor distribution function in many-body systems. Phys. Rev. A 41, 2059–2075 (1990). Cerca con Google

180. Evans, J. Simple forms for equations of rays in gradient-index lenses. Am. J. Phys. 58, 773–778 (1990). Cerca con Google

181. Santamato, E. & Shen, Y. R. Field-curvature effect on the diffraction ring pattern of a laser beam dressed by spatial self-phase modulation in a nematic film. Opt. Lett. 9, 564–566 (1984). Cerca con Google

182. Ramirez, E. V. G., Carrasco, M. L. A., Otero, M. M. M., Cerda, S. C. & Castillo, M. D. I. Far field intensity distributions due to spatial self phase modulation of a Gaussian beam by a thin nonlocal nonlinear media. Opt. Express 18, 22067–79 (2010). Cerca con Google

183. Qin, Z. & Bischof, J. C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191 (2012). Cerca con Google

184. Wang, J., Hernandez, Y., Lotya, M., Coleman, J. N. & Blau, W. J. Broadband Nonlinear Optical Response of Graphene Dispersions. Adv. Mater. 21, 2430–2435 (2009). Cerca con Google

185. Meneghetti, M. et al. Optical limiting of multilayer sol-gel structures containing fidlerenes. Synth. Met. 103, 2474–2475 (1999). Cerca con Google

186. Zhang, P. et al. The self-assembly of gold nanoparticles with C60 nanospheres: fabrication and optical liming effect. Chem. Phys. Lett. 382, 599–604 (2003). Cerca con Google

187. Palpant, B., Rashidi-Huyeh, M., Gallas, B., Chenot, S. & Fisson, S. Highly dispersive thermo-optical properties of gold nanoparticles. Appl. Phys. Lett. 90, 223105 (2007). Cerca con Google

188. Hanninen, P. E., Soini, E. & Hell, W. Continuous wave excitation two-photon fluorescence microscopy. J. Microsc. 176, 222–225 (1994). Cerca con Google

189. Liu, Y., Sonek, G. J., Berns, M. W., Konig, K. & Tromberg, B. J. Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Opt. Lett. 20, 2246 (1995). Cerca con Google

190. Xu, C. & Webb, W. W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J. Opt. Soc. Am. B 13, 481 (1996). Cerca con Google

191. Niu, B., Pardy, P., Fortier, J., Ortega, M. & Eiles, T. Two-photon absorption laser assisted device alteration using continuous wave 1,340 nm laser. J. Mater. Sci. Mater. Electron. 22, 1542–1552 (2011). Cerca con Google

192. Doremus, R. H. Optical Properties of Small Gold Particles. J. Chem. Phys. 40, 2389 (1964). Cerca con Google

193. Ros, I., Schiavuta, P., Bello, V., Mattei, G. & Bozio, R. Femtosecond nonlinear absorption of gold nanoshells at surface plasmon resonance. Phys. Chem. Chem. Phys. 12, 13692–8 (2010). Cerca con Google

194. Tang, B., Sun, L., Kaur, J., Yu, Y. & Wang, X. In-situ synthesis of gold nanoparticles for multifunctionalization of silk fabrics. Dye. Pigment. 103, 183–190 (2014). Cerca con Google

195. Cohen-Karni, T. et al. Nanocomposite gold-silk nanofibers. Nano Lett. 12, 5403–6 (2012). Cerca con Google

196. Xia, Y. Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers. Compos. Sci. Technol. 68, 1471–1479 (2008). Cerca con Google

197. Frez, C. & Diebold, G. J. Laser generation of gas bubbles: Photoacoustic and photothermal effects recorded in transient grating experiments. J. Chem. Phys. 129, 184506 (2008). Cerca con Google

198. Nascimento, C. M. et al. Experimental demonstration of novel effects on the far-field diffraction patterns of a Gaussian beam in a Kerr medium. J. Opt. A Pure Appl. Opt. 8, 947 (2006). Cerca con Google

199. Wang, X. & Mujumdar, A. S. Heat transfer characteristics of nanofluids : a review. Int. J. Therm. Sci. 46, 1–19 (2007). Cerca con Google

200. Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84, 4023–32 (2003). Cerca con Google

201. Ribeiro, L. S. et al. Silica nanoparticles functionalized with a thermochromic dye for textile applications. J. Mater. Sci. 48, 5085–5092 (2013). Cerca con Google

202. Saeli, M., Piccirillo, C., Warwick, M. E. A. & Binions, R. Thermochromic Thin Films : Synthesis , Properties and Energy Consumption Modelling. 736–746 (2013). Cerca con Google

203. Kamalisarvestani, M., Saidur, R., Mekhilef, S. & Javadi, F. S. Performance , materials and coating technologies of thermochromic thin fi lms on smart windows. Renew. Sustain. Energy Rev. 26, 353–364 (2013). Cerca con Google

204. Rodrigues Ribeiro, R. S. et al. Rapid fabrication of polymeric micro lenses for optical fiber trapping and beam shaping. in SPIE Nanosci. + Eng. (Dholakia, K. & Spalding, G. C.) 91642M (International Society for Optics and Photonics, 2014). doi:10.1117/12.2060374 Cerca con Google

205. Chang, C.-Y., Yang, S.-Y. & Chu, M.-H. Rapid fabrication of ultraviolet-cured polymer microlens arrays by soft roller stamping process. Microelectron. Eng. 84, 355–361 (2007). Cerca con Google

206. Wen, T.-T. & Hocheng, H. Innovative rapid replication of microlens arrays using electromagnetic force-assisted UV imprinting. J. Micromechanics Microengineering 19, 025012 (2009). Cerca con Google

207. Guo, R., Yuan, D. & Das, S. Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation. J. Micromechanics Microengineering 21, 015010 (2011). Cerca con Google

208. Meunier, T., Villafranca, A. B., Bhardwaj, R. & Weck, A. Fabrication of microlens arrays in polycarbonate with nanojoule energy femtosecond laser pulses. Opt. Lett. 37, 4266–8 (2012). Cerca con Google

209. Xie, D., Zhang, H., Shu, X. & Xiao, J. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology. Opt. Express 20, 15186–95 (2012). Cerca con Google

210. Pavia, J. M., Wolf, M. & Charbon, E. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery. Opt. Express 22, 4202–13 (2014). Cerca con Google

211. Suzuki, M., Uchida, T. & Matsuura, K. Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same. (1995). at <http://www.google.com/patents/EP0640850A2?cl=en> Vai! Cerca con Google

212. Segawa, M., Sugiyama, M. & Nakatani, Y. Microlens array sheet and method of producing the same. (2011). at <http://www.google.co.in/patents/US7864450> Vai! Cerca con Google

213. Peterson, C. & Koch, G. Polarized light emitting devices and methods. (2005). at <https://www.google.com/patents/US20050035361> Vai! Cerca con Google

Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record