Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Minotto, Alessandro (2014) Characterization of CdSe-CdxZn1-xS core-shell QDs as active materials for compact micro-cavity lasers. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
39Mb

Abstract (inglese)

Innovation within the field of nanophotonics is fostering the progress in diverse technological fields, spanning light emitting, communication technologies, renewable energies, medical diagnostic and therapy. Among the different classes of nanomaterials that are contributing to such evolution, semiconductor nanocrystals, a.k.a Quantum Dots (QDs), are the most versatile ones. QDs are inorganic semiconductor nanostructures, whose outstanding light emitting performances make them promising competitors to more “conventional” bulk solid-state materials in many commercial applications. The interest on developing QD-based devices spread on a large scale with the development of colloidal synthesis methods. The colloidal approach expedites their processability and integration in light emitting devices with dimensions ranging from the macro- to the nano-scale. In particular, colloidal QDs are suitable active media for the fabrication of compact and flexible solid-state laser sources.
Optical properties of QDs are ruled by the Quantum Confinement (QC) regime. The latter occurs when the size of the material is reduced to levels comparable with the exciton Bohr radius. QC is a size-effect and consequently leads to size-dependent absorption and emission properties. Thanks to QC, QDs exhibit well-defined electronic levels, which enable molecular-like optically allowed absorption transitions. At the same, high absorption cross-sections and stabilities typical of bulk semiconductor materials are preserved.
In this thesis work an emerging class of colloidal QDs, namely CdSe-CdXZn1-XS core-shell QDs, is investigated. The attention is mainly focused on the optical gain, which represents one of the most inspected and promising applications for QDs. By investigating the Amplified Spontaneous Emission (ASE) of different series of CdSe-CdXZn1-XS heterostructures, this work demonstrates that key properties such as the ASE activation threshold and photo-stability can be optimized by a careful design of the core-shell heterostructure. Guidelines for the synthesis of such best performing optical gain QDs are drawn by means of optical spectroscopy, which provides insights into the correlation between the excitation and relaxation dynamics with the shell thickness, composition and, ultimately, the structure.
Basic parameters such as QD dimensions, size dispersion and photoluminescence quantum yield (QY) can be easily extracted from steady-state absorption and emission spectra. Steady-state absorption and phtoluminescence studies on CdSe-CdXZn1-XS QDs were employed as preliminary tools to prove that different shell materials induce distinct exciton confinement, size dispersion and QY.
In a second step, Surface Enhanced Raman Scattering (SERS) technique has been employed, for the first time, as a local probe for the study of the core-shell interfaces. SERS permits the analysis of the nanocrystals with the same structural features and lattice dynamics present when the QDs are employed as emitters in photonic devices. Results of this study revealed that the composition of the CdXZn1-XS shell entails a significant structural difference at the core-shell interface. This structural difference modifies the electronic structure within the QDs, since it directly tailors the QC of the electrons and holes.
The effect of the core-shell interface on optical properties has been unambiguously detected with the use of transient optical spectroscopy. In this thesis work, transient absorption (TA) and transient PL (tPL) techniques were employed to probe the exciton generation and recombination dynamics. The evolution of the exciton population was compared with kinetic models. Differently from steady-state techniques, transient techniques are sensitive to the nature and time-scales of the different radiative and non-radiative relaxation paths, whose control is crucial for guiding the heterostructure engineering process. The kinetic rates obtained revealed a clear dependence on the core-shell interface and the correlation with SERS results is discussed.
The correlation between structure and dynamics was detected from the nanosecond (tPL analysis) down to the sub-nanosecond time scales (TA analysis). A secondary mission of this thesis was also to find a global interpretation of the dynamics of all signals present in TA spectra of the different CdSe-CdXZn1-XS QD series. Pump fluence, shell thickness and composition are the coordinates along which the global analysis has been developed. This step is of pivotal importance in order to identify the mechanisms involved in the optical gain process, whose temporal evolution for QDs systems spans from the picosecond to the few nanosecond time-scale.
From the discussion of the results obtained from the different characterization techniques, it emerges that the most efficient way to boost the optical properties of CdSe QDs is the realization of a “graded” CdXZn1-XS shell, with Zn concentration (and confinement potential) gradually increasing along the radial direction. In a single entity, this solution should provide suitable confinement of the charge-carriers from the defective outer surface, prevent defect formation at the core-shell interface due the mismatch between the different materials and, eventually, limit the dot dimensions. Low QD dimensions increase the packing density and limits the scattering losses when QDs are included in a thin film and/or in a solid-state matrix. Such aspects have to be taken into serious consideration in order to increase the performances of a QD-based optical amplifier.
Finally, the validity of the hypothesis formulated is experimentally verified by characterizing the bi-exciton radiative recombination, which represents the photo-physical origin of ASE and thus defines the optical gain performances of differently engineered nano-heterostructures. As predicted, best optical gain performances have been achieved from ASE experiments by using CdSe QDs covered with a graded CdS-Cd0.5Zn0.5S-ZnS shell. Therefore, the results obtained from the spectroscopic characterization provide a guideline for the engineering of new synthetic approaches, addressed to the preparation of highly stable core-shell QDs with minimal optical gain activation threshold. Moreover, the rationalization of the dynamics involved in exciton and multi-exciton generation and recombination in core-shell QDs expedites their application in all types of light emitting devices.

Abstract (italiano)

Il progresso in svariati settori tecnologici, a partire dai dispositivi emettitori di luce, passando per le aree delle telecomunicazioni e delle energie rinnovabili, fino alla diagnostica medica e alla terapia, è favorito dalla ricerca e dallo sviluppo nel campo della nanofotonica. Tra le diverse classi di nanomateriali che stanno contribuendo a questo avanzamento, i nanocristalli di materiale semiconduttore, alias Quantum Dots (QDs) o Punti Quantici, presentano le proprietà ottiche più versatili.
I QDs sono nanostrutture inorganiche di materiale semiconduttore le cui eccezionali prestazioni in termini di emissione di luce li rendono diretti concorrenti dei materiali a stato solido più "convenzionali" in molte applicazioni commerciali. L'interesse a sviluppare dispositivi basati su QDs si è diffuso su larga scala con lo sviluppo di metodi di sintesi di tipo colloidale. L'approccio colloidale facilita la processabilità e l'integrazione in dispositivi emittitori di luce con dimensioni che vanno dal micron a pochi nanometri. In particolare, i QDs colloidali si prestano alla realizzazione di sorgenti laser a stato solido compatte e su substrati flessibili.
Le proprietà ottiche dei QDs sono regolate dal confinamento quantistico (QC). Questo regime si instaura quando la dimensioni del materiale sono comparabili con il raggio eccitonico di Bohr. Il QC, in quanto effetto di taglia, rende le proprietà di assorbimento e di emissione di luce dipendenti dalle dimensioni. Grazie al QC, i QDs possiedono livelli elettronici ben definiti e interagiscono con la luce in maniera simile ai sistemi molecolari. Allo stesso tempo, i QDs dimostrano elevate sezioni d’urto di assorbimento e stabilità al danneggiamento, proprietà tipiche dei semiconduttori inorganici.
Questo lavoro di tesi è incentrato su una classe emergente di QDs colloidali, ossia QDs “core-shell” composti da CdSe-CdXZn1-XS, aventi cioè un nucleo (“core”) di CdSe, ricoperto da un guscio (“shell”) di CdXZn1-XS. L'attenzione è focalizzata principalmente sulle proprietà di guadagno ottico il quale rappresenta per i QDs una delle applicazioni più promettenti e maggiormente studiate. Attraverso la caratterizzazione dell'Emissione Spontanea Amplificata (ASE) di diverse serie di QDs di CdSe-CdXZn1-XS, questo lavoro dimostra che proprietà chiave come la soglia di attivazione ASE, nonché la stabilità all’irragiamento, possono essere ottimizzate mediante un’attenta progettazione dell’eterostruttura core-shell. Mediante diverse tecniche di spettrocopia ottica è possibile ricavare alcune linee guida per la sintesi di QDs con proprietà di guadagno ottico ottimali. Con queste tecniche è quindi possibile identificare la correlazione tra le dinamiche di eccitazione/rilassamento e la composizione, spessore e, in ultima analisi, struttura del materiale di shell.
Parametri di base come le dimensioni medie dei QDs, la dispersione di taglia e la resa quantica di luminescenza (QY) possono essere facilmente estratti dalle tecniche di assorbimento ed emissione in stato stazionario. Queste ultime sono state impiegate come strumenti preliminari per dimostrare che, variando la composizione e lo spessore del guscio esterno di CdXZn1-XS, si altera il grado di confinamento degli eccitoni nel nucleo di CdSe, la dispersione in dimensioni e la QY.
In una seconda fase, la tecnica SERS (Surface-Enhanced Raman Scattering o Scattering Raman amplificato da superfici) è stata impiegata per la prima volta come sonda locale per lo studio dell’interfaccia tra core e shell. La tecnica SERS permette la caratterizzazione dei nanocristalli nelle stesse condizioni strutturali e di dinamica reticolare presenti nei QDs quando impiegati come mezzi attivi in dispositivi fotonici. I risultati di questo studio hanno rivelato che la composizione del guscio di CdXZn1-XS comporta delle significative differenze strutturali all'interfaccia core-shell. Questa variazione strutturale modifica la struttura elettronica nei QDs in quanto influenza il grado di confinamento degli elettroni e delle lacune nel core.
L'effetto dell'interfaccia core-shell sulle proprietà ottiche è stato inequivocabilmente rilevato mediante l'uso di tecniche di spettroscopia ottica transiente. In particolare, in questo lavoro di tesi sono stati studiati sia l’assorbimento transiente (TA) sia la luminescenza transiente (tPL) ai fini di esaminare le dinamiche di generazione e di ricombinazione degli eccitoni. L’evoluzione della densità eccitonica è stata quindi confrontata con dei modelli cinetici. A differenza delle tecniche a regime stazionario, le tecniche transienti sono sensibili alla natura e ai tempi caratteristici relativi ai diversi percorsi di rilassamento, radiativi e non radiativi, il cui controllo è fondamentale ai fini dell’ingegnerizzazione dell’eterostruttura. I parametri cinetici ottenuti hanno rivelato una chiara dipendenza dall'interfaccia core-shell e la correlazione con i risultati ottenuti mediante SERS sono stati discussi.
La correlazione tra struttura e dinamica è stata rilevata a partire dalla scala temporale del nanosecondo (tPL) fino alla scala dei picosecondi (TA). Uno scopo secondario di questa tesi è anche quello di elaborare un'interpretazione globale delle dinamiche di tutti i segnali presenti negli spettri transienti per diverse serie di QDs CdSe-CdXZn1-XS. La densità di eccitazione, lo spessore del guscio e la sua composizione sono le coordinate lungo le quali si è sviluppata tale analisi globale. Questo passo è di cruciale importanza ai fini di identificare i parametri legati al processo di guadagno ottico, i cui tempi caratteristici in sistemi a base di QDs variano dai picosecondi fino a pochi nanosecondi.
Dalla discussione dei risultati ottenuti dalle diverse tecniche di caratterizzazione, emerge che il modo più efficace per aumentare le proprietà ottiche dei QDs di CdSe è la realizzazione di un guscio CdXZn1-XS a composizione graduale, in cui la concentrazione di Zn (e di conseguenza il potenziale di confinamento) aumenta gradualmente lungo la direzione radiale. In una sola entità, questa soluzione è in grado di fornire un adeguato confinamento dei portatori di carica dalla superficie esterna, limitare la formazione di difetti all'interfaccia e infine ridurre le dimensioni globali dei QDs. La minimizzazione delle dimensioni permette di aumentare la densità d’impaccamento e limita le perdite dovute allo scattering quando i QDs sono inclusi in una matrice solida e/o depositati come film sottile. Tali aspetti sono di fondamentale importanza ai fini di migliorare l’efficienza di un amplificatore ottico a quantum dots.
Infine, la validità delle ipotesi formulate è stata verificata sperimentalmente caratterizzando la ricombinazione radiativa bi-eccitonica, la quale rappresenta l’origine fotofisica dell’ASE e quindi definisce le prestazioni di guadagno ottico delle diverse nano-eterostrutture opportunamente ingegnerizzate. Come previsto, dalle misure di ASE le migliori performance dal punto di vista del guadagno ottico sono state raggiunte utilizzando QDs di CdSe ricoperti con uno shell a composizione graduata di CdS-Cd0.5Zn0.5S-ZnS. I risultati ottenuti mediante la caratterizzazione spettroscopica forniscono dunque una linea guida per la progettazione di nuove strategie di sintesi che siano orientate alla preparazione di QDs altamente foto-stabili e con una soglia di attivazione ASE minimale. In aggiunta, la razionalizzazione delle dinamiche coinvolte nella generazione e ricombinazione eccitonica e multi-eccitonica in QDs core-shell può accelerare la loro applicazione in tutti i tipi di dispositivi emettitori di luce.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Signorini, Raffaella
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:23 Dicembre 2014
Anno di Pubblicazione:14 Dicembre 2014
Parole chiave (italiano / inglese):punto quantico/quantum dot, spettroscopia/spectroscopy, interfaccia/interface, laser/laser
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/22 Scienza e tecnologia dei materiali
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:7396
Depositato il:04 Dic 2015 12:59
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

(1) Prasad, N. P. Nanophotonics; 1st ed.; Wiley, 2004. Cerca con Google

(2) Feldheim, D. L.; Colby, A. F. Metal Nanoparticles: Synthesis, Characterization and Applications; Feldheim, D. L.; Colby, A. F., Eds.; Marcel Dekker, 2002. Cerca con Google

(3) Klimov, V. I. Nanocrystal Quantum Dots; Klimov, V. I., Ed.; 2nd ed.; CRC Press Taylor & Francis Group, 2010; Vol. 40, pp. 214–220. Cerca con Google

(4) Reed, M. A.; Randall, J. N.; Aggarwal, R. J.; Matyi, R. J.; Moore, T. M.; Wetsel, A. E. Observation of Discrete Electronic States in a Zero-Dimensional Semiconductor Nanostructure.pdf. Phys. Rev. Lett. 1988, 60, 535–537. Cerca con Google

(5) Ekimov, A. I.; Efros, A. L.; Onushchenko, A. A. Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun. 1985, 56, 921–924. Cerca con Google

(6) Brus, L. E. A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites. J. Chem. Phys. 1983, 79, 5566. Cerca con Google

(7) Han, M.; Gao, X.; Su, J. Z.; Nie, S. Quantum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nat. Biotechnol. 2001, 19, 631–635. Cerca con Google

(8) Steckel, J. S.; Coe-Sullivan, S.; Bulović, V.; Bawendi, M. G. 1.3μm to 1.55μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device. Adv. Mater. 2003, 15, 1862–1866. Cerca con Google

(9) McBride, J.; Treadway, J.; Feldman, L. C.; Pennycook, S. J.; Rosenthal, S. J. Structural Basis for near Unity Quantum Yield Core/shell Nanostructures. Nano Lett. 2006, 6, 1496–1501. Cerca con Google

(10) Khon, E.; Lambright, S.; Khon, D.; Smith, B.; O’Connor, T.; Moroz, P.; Imboden, M.; Diederich, G.; Perez-Bolivar, C.; Anzenbacher, P.; et al. Inorganic Solids of CdSe Nanocrystals Exhibiting High Emission Quantum Yield. Adv. Funct. Mater. 2012, 22, 3714–3722. Cerca con Google

(11) Greytak, A. B.; Allen, P. M.; Liu, W.; Zhao, J.; Young, E. R.; Popović, Z.; Walker, B. J.; Nocera, D. G.; Bawendi, M. G. Alternating Layer Addition Approach to CdSe/CdS Core/shell Quantum Dots with near-Unity Quantum Yield and High on-Time Fractions. Chem. Sci. 2012, 3, 2028. Cerca con Google

(12) Van Embden, J.; Jasieniak, J.; Mulvaney, P.; Embden, J. Van. Mapping the Optical Properties of CdSe/CdS Heterostructure Nanocrystals: The Effects of Core Size and Shell Thickness. J. Am. Chem. Soc. 2009, 131, 14299–14309. Cerca con Google

(13) Leatherdale, C. A.; Mikulec, F. V; Bawendi, M. G. On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots. J. Phys. Chem. B 2002, 106, 7619–7622. Cerca con Google

(14) Jasieniak, J. J.; Fortunati, I.; Gardin, S.; Signorini, R.; Bozio, R.; Martucci, a.; Mulvaney, P. Highly Efficient Amplified Stimulated Emission from CdSe-CdS-ZnS Quantum Dot Doped Waveguides with Two-Photon Infrared Optical Pumping. Adv. Mater. 2008, 20, 69–73. Cerca con Google

(15) Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal Semiconductor Nanocrystals: The Aqueous Approach. Chem. Soc. Rev. 2013, 42, 2905–2929. Cerca con Google

(16) Pietryga, J. M.; Werder, D. J.; Williams, D. J.; Casson, J. L.; Schaller, R. D.; Klimov, V. I.; Hollingsworth, J. a. Utilizing the Lability of Lead Selenide to Produce Heterostructured Nanocrystals with Bright, Stable Infrared Emission. J. Am. Chem. Soc. 2008, 130, 4879–4885. Cerca con Google

(17) Yang, W.; Li, J.; Zhang, Y.; Huang, P.-K.; Lu, T.-C.; Kuo, H.-C.; Li, S.; Yang, X.; Chen, H.; Liu, D.; et al. High Density GaN/AlN Quantum Dots for Deep UV LED with High Quantum Efficiency and Temperature Stability. Sci. Rep. 2014, 4, 5166. Cerca con Google

(18) Liu, A. Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J. M.; Liu, A. W. K.; Gossard, A. C.; Bowers, J. E. High Performance Continuous Wave 1.3 Μm Quantum Dot Lasers on Silicon. Appl. Phys. Lett. 2014, 104, 041104. Cerca con Google

(19) Holmes, M. J.; Choi, K.; Kako, S.; Arita, M.; Arakawa, Y. Room-Temperature Triggered Single Photon Emission from a III-Nitride Site-Controlled Nanowire Quantum Dot. Nano Lett. 2014, 14, 982–986. Cerca con Google

(20) Nanocrystallites, T. S.; Murray, C. B.; Noms, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715. Cerca con Google

(21) Dai, X.; Zhang, Z.; Jin, Y.; Niu, Y.; Cao, H.; Liang, X.; Chen, L.; Wang, J.; Peng, X. Solution-Processed, High-Performance Light-Emitting Diodes Based on Quantum Dots. Nature 2014, 515, 96–99. Cerca con Google

(22) Dang, C.; Lee, J.; Breen, C.; Steckel, J. S.; Coe-Sullivan, S.; Nurmikko, A. Red, Green and Blue Lasing Enabled by Single-Exciton Gain in Colloidal Quantum Dot Films. Nat. Nanotechnol. 2012, 7, 335–339. Cerca con Google

(23) Guilhabert, B.; Foucher, C.; Haughey, a-M.; Mutlugun, E.; Gao, Y.; Herrnsdorf, J.; Sun, H. D.; Demir, H. V; Dawson, M. D.; Laurand, N. Nanosecond Colloidal Quantum Dot Lasers for Sensing. Opt. Express 2014, 22, 7308–7319. Cerca con Google

(24) Howes, P. D.; Chandrawati, R.; Stevens, M. M. Colloidal Nanoparticles as Advanced Biological Sensors. Science (80-. ). 2014, 346, 1247390–1247390. Cerca con Google

(25) Cheng, X.; Lowe, S. B.; Reece, P. J.; Gooding, J. J. Colloidal Silicon Quantum Dots: From Preparation to the Modification of Self-Assembled Monolayers (SAMs) for Bio-Applications. Chem. Soc. Rev. 2014, 43, 2680–2700. Cerca con Google

(26) Clifford, J. P.; Konstantatos, G.; Johnston, K. W.; Hoogland, S.; Levina, L.; Sargent, E. H. Fast, Sensitive and Spectrally Tuneable Colloidal-Quantum-Dot Photodetectors. Nat. Nanotechnol. 2009, 4, 40–44. Cerca con Google

(27) Deng, Z.; Jeong, K. S.; Guyot-Sionnest, P. Colloidal Quantum Dots Intraband Photodetectors. ACS Nano 2014, 8, 11707–11714. Cerca con Google

(28) Chuang, C.-H. M.; Brown, P. R.; Bulović, V.; Bawendi, M. G. Improved Performance and Stability in Quantum Dot Solar Cells through Band Alignment Engineering. Nat. Mater. 2014, 13. Cerca con Google

(29) Meinardi, F.; Colombo, A.; Velizhanin, K. a.; Simonutti, R.; Lorenzon, M.; Beverina, L.; Viswanatha, R.; Klimov, V. I.; Brovelli, S. Large-Area Luminescent Solar Concentrators Based on “Stokes-Shift-Engineered” Nanocrystals in a Mass-Polymerized PMMA Matrix. Nat. Photonics 2014, 8, 392–399. Cerca con Google

(30) Zhang, W.; Feng, Y.; Zhang, H.; Zhon, X.; Zhong, X. Scalable Single-Step Noninjection Synthesis of High-Quality Core/shell Quantum Dots with Emission Tunable from Violet to near Infrared. ACS Nano 2012, 6, 11066–11073. Cerca con Google

(31) Zhang, W.; Jin, C.; Yang, Y.; Zhong, X. Noninjection Facile Synthesis of Gram-Scale Highly Luminescent CdSe Multipod Nanocrystals. Inorg. Chem. 2012, 51, 531–535. Cerca con Google

(32) Pan, J.; El-Ballouli, A. O.; Rollny, L.; Voznyy, O.; Burlakov, V. M.; Goriely, A.; Sargent, E. H.; Bakr, O. M. Automated Synthesis of Photovoltaic-Quality Colloidal Quantum Dots Using Separate Nucleation and Growth Stages. ACS Nano 2013, 7, 10158–10166. Cerca con Google

(33) Jones, M.; Lo, S. S.; Scholes, G. D. Quantitative Modeling of the Role of Surface Traps in CdSe/CdS/ZnS Nanocrystal Photoluminescence Decay Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3011–3016. Cerca con Google

(34) Quantum, C.; Photovoltaic, D. Charge Trapping Dynamics in PbS Devices. 2013, 8771–8779. Cerca con Google

(35) Minotto, A.; Todescato, F.; Fortunati, I.; Signorini, R.; Jacek, J. The Role of Core-Shell Interfaces on Exciton Recombination in CdSe – Cd X Zn 1-X S Quantum Dots. 1–33. Cerca con Google

(36) Klimov, V. I.; Mikhailovsky, A. A.; McBranch, D. W.; Leatherdale, C. A.; Bawendi, M. G. Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots. Science (80-. ). 2000, 287, 1011–1013. Cerca con Google

(37) Frantsuzov, P.; Kuno, M.; Marcus, R. A.; Jank, O. Universal Emission Intermittency in Quantum Dots , Nanorods and Nanowires. Nat. Phys. 2008, 4, 519–522. Cerca con Google

(38) Galland, C.; Ghosh, Y.; Steinbrück, A.; Hollingsworth, J. a; Htoon, H.; Klimov, V. I. Lifetime Blinking in Nonblinking Nanocrystal Quantum Dots. Nat. Commun. 2012, 3, 908. Cerca con Google

(39) Xie, R.; Kolb, U.; Li, J.; Basche, T.; Mews, A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488. Cerca con Google

(40) García-santamaría, F.; Brovelli, S.; Viswanatha, R.; Hollingsworth, J. A.; Htoon, H.; Crooker, S. A.; Klimov, V. I. Breakdown of Volume Scaling in Auger Recombination in CdSe/CdS Heteronanocrystals: The Role of the Core-Shell Interface. Nano Lett. 2011, 11, 687–693. Cerca con Google

(41) Todescato, F.; Minotto, A.; Signorini, R.; Jasieniak, J. J.; Bozio, R. Investigation into the Heterostructure Interface of CdSe-Based Core-Shell Quantum Dots Using Surface-Enhanced Raman Spectroscopy. ACS Nano 2013, 7, 6649–6657. Cerca con Google

(42) Park, Y.; Bae, W. K.; Padilha, L. a; Pietryga, J. M.; Klimov, V. I.; Pietryga, M. Effect of the Core/shell Interface on Auger Recombination Evaluated by Single-Quantum-Dot Spectroscopy. Nano Lett. 2014, 14, 396–402. Cerca con Google

(43) Signorini, R.; Fortunati, I.; Todescato, F.; Gardin, S.; Bozio, R.; Jasieniak, J. J.; Martucci, A.; Della Giustina, G.; Brusatin, G.; Guglielmi, M. Facile Production of up-Converted Quantum Dot Lasers. Nanoscale 2011, 3, 4109–4113. Cerca con Google

(44) Todescato, F.; Fortunati, I.; Gardin, S.; Garbin, E.; Collini, E.; Bozio, R.; Jasieniak, J. J.; Della Giustina, G.; Brusatin, G.; Toffanin, S.; et al. Soft-Lithographed Up-Converted Distributed Feedback Visible Lasers Based on CdSe-CdZnS-ZnS Quantum Dots. Adv. Funct. Mater. 2012, 22, 337–344. Cerca con Google

(45) Javaux, C.; Mahler, B.; Dubertret, B.; Shabaev, a; Rodina, a V; Efros, A. L.; Yakovlev, D. R.; Liu, F.; Bayer, M.; Camps, G.; et al. Thermal Activation of Non-Radiative Auger Recombination in Charged Colloidal Nanocrystals. Nat. Nanotechnol. 2013, 8, 206–212. Cerca con Google

(46) Cragg, G. E.; Efros, A. L. Suppression of Auger Processes in Confined Structures. Nano Lett. 2010, 10, 313–317. Cerca con Google

(47) Di Stasio, F.; Grim, J. Q.; Lesnyak, V.; Rastogi, P.; Manna, L.; Moreels, I.; Krahne, R. Single-Mode Lasing from Colloidal Water-Soluble CdSe/CdS Quantum Dot-in-Rods. Small 2014, 1–7. Cerca con Google

(48) Liao, Y.; Xing, G.; Mishra, N.; Sum, T. C.; Chan, Y. Low Threshold, Amplified Spontaneous Emission from Core-Seeded Semiconductor Nanotetrapods Incorporated into a Sol-Gel Matrix. Adv. Mater. 2012, 24, OP159–OP164. Cerca con Google

(49) Guzelturk, B.; Kelestemur, Y.; Akgul, M. Z.; Sharma, V. K.; Demir, H. V. Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films. 2014, 6–10. Cerca con Google

(50) Wang, X.; Ren, X.; Kahen, K.; Hahn, M. a; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krauss, T. D. Non-Blinking Semiconductor Nanocrystals. Nature 2009, 459, 686–689. Cerca con Google

(51) Brovelli, S.; Bae, W. K.; Meinardi, F.; Santiago González, B.; Lorenzon, M.; Galland, C.; Klimov, V. I. Electrochemical Control of Two-Color Emission from Colloidal Dot-in-Bulk Nanocrystals. Nano Lett. 2014, 14, 3855–3863. Cerca con Google

(52) Chuang, C.-H.; Doane, T. L.; Lo, S. S.; Scholes, G. D.; Burda, C. Measuring Electron and Hole Transfer in Core/Shell Nanoheterostructures. ACS Nano 2011, 5, 6016–6024. Cerca con Google

(53) Tschirner, N.; Lange, H.; Schliwa, A.; Biermann, A.; Thomsen, C.; Lambert, K.; Gomes, R.; Hens, Z. Interfacial Alloying in CdSe/CdS Heteronanocrystals: A Raman Spectroscopy Analysis. Chem. Mater. 2012, 24, 311–318. Cerca con Google

(54) Margolin, G.; Barkai, E. Nonergodicity of Blinking Nanocrystals and Other Lévy-Walk Processes. Phys. Rev. Lett. 2005, 94, 080601. Cerca con Google

(55) Margolin, G.; Protasenko, V.; Kuno, M.; Barkai, E. Photon Counting Statistics for Blinking CdSe-ZnS Quantum Dots: A Lévy Walk Process. J. Phys. Chem. B 2006, 110, 19053–19060. Cerca con Google

(56) Petroff, P. M.; DenBaars, S. P. MBE and MOCVD Growth and Properties of Self-Assembling Quantum Dot Arrays in III-V Semiconductor Structures. Superlattices Microstruct. 1994, 15, 15. Cerca con Google

(57) Germann, T. D.; Strittmatter, A.; Kettler, T.; Posilovic, K.; Pohl, U. W.; Bimberg, D. MOCVD of InGaAs/GaAs Quantum Dots for Lasers Emitting close to 1.3μm. J. Cryst. Growth 2007, 298, 591–594. Cerca con Google

(58) Ekimov, A. I.; Efros, A. L. Nonlinear Optics of Semiconductor-Doped Glasses. Phys. status solidi 1988, 150, 627–633. Cerca con Google

(59) Kim, J. Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E. H. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances. Adv. Mater. 2013, 25, 4986–5010. Cerca con Google

(60) Rogach, A. Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications; Springer, 2008; p. 383. Cerca con Google

(61) Brus, L. E. Electron–electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. J. Chem. Phys. 1984, 80, 4403. Cerca con Google

(62) Weller, H.; Schmidt, H. M.; Koch, U.; Fojtik, A.; Baral, S.; Henglein, A.; Kunath, W.; Weiss, K.; Dieman, E. Photochemistry of Colloidal Semiconductors. Onset of Light Absorption as a Function of Size of Extremely Small CdS Particles. Chem. Phys. Lett. 1986, 124, 557–560. Cerca con Google

(63) LaMer, V. K.; Dinegar, R. H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854. Cerca con Google

(64) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. Rev. Mater. Reasearch 2000, 30, 545–610. Cerca con Google

(65) Sun, S. Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science (80-. ). 2000, 287, 1989–1992. Cerca con Google

(66) Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc. 2001, 123, 183–184. Cerca con Google

(67) Pradhan, N.; Reifsnyder, D.; Xie, R.; Aldana, J.; Peng, X. Surface Ligand Dynamics in Growth of Nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509. Cerca con Google

(68) Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Thayer, A. M.; Duncan, T. M.; Douglass, D. C.; Brus, L. E. Surface Derivatization and Isolation of Semiconductor Cluster Molecules. J. Am. Chem. Soc. 1988, 110, 3046–3050. Cerca con Google

(69) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmüller, A.; Weller, H. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B 2002, 106, 7177–7185. Cerca con Google

(70) Qu, L.; Peng, X. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc. 2002, 124, 2049–2055. Cerca con Google

(71) Hines, M. a.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys. Chem. 1996, 100, 468–471. Cerca con Google

(72) Reiss, P.; Protière, M.; Li, L. Core/Shell Semiconductor Nanocrystals. Small 2009, 5, 154–168. Cerca con Google

(73) Wei, S.-H.; Zunger, A. Calculated Natural Band Offsets of All II–VI and III–V Semiconductors: Chemical Trends and the Role of Cation D Orbitals. Appl. Phys. Lett. 1998, 72, 2011. Cerca con Google

(74) Mekis, I.; Talapin, D. V; Kornowski, A.; Haase, M.; Weller, H. One-Pot Synthesis of Highly Luminescent CdSe/CdS Core-Shell Nanocrystals via Organometallic and “Greener” Chemical Approaches. J. Phys. Chem. B 2003, 107, 7454–7462. Cerca con Google

(75) Dabbousi, B. O.; Mikulec, F. V; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core - Shell Quantum Dots : Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. Cerca con Google

(76) Ivanov, S. a.; Nanda, J.; Piryatinski, A.; Achermann, M.; Balet, L. P.; Bezel, I. V.; Anikeeva, P. O.; Tretiak, S.; Klimov, V. I. Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime. J. Phys. Chem. B 2004, 108, 10625–10630. Cerca con Google

(77) Itzhakov, S.; Shen, H.; Buhbut, S.; Lin, H.; Oron, D. Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. J. Phys. Chem. C 2012, 117, 22203–22210. Cerca con Google

(78) Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. Large-Scale Synthesis of Nearly Monodisperse CdSe/CdS Core/shell Nanocrystals Using Air-Stable Reagents via Successive Ion Layer Adsorption and Reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575. Cerca con Google

(79) Chen, Y.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. a; Klimov, V. I.; Hollingsworth, J. a. “Giant” Multishell CdSe Nanocrystal Quantum Dots with Suppressed Blinking. J. Am. Chem. Soc. 2008, 130, 5026–5027. Cerca con Google

(80) Bae, W. K.; Padilha, L. a; Park, Y.-S.; McDaniel, H.; Robel, I.; Pietryga, J. M.; Klimov, V. I. Controlled Alloying of the Core-Shell Interface in CdSe/CdS Quantum Dots for Suppression of Auger Recombination. ACS Nano 2013, 7, 3411–3419. Cerca con Google

(81) Alivisatos, A. P. Cation Exchange Reactions in Ionic Nanocrystals. Science (80-. ). 2004, 306, 1009–1012. Cerca con Google

(82) Peng, X.; Manna, L.; Yang, W.; Wickham, J. Shape Control of CdSe Nanocrystals. Nature 2000, 404, 59–61. Cerca con Google

(83) Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, a P. Controlled Growth of Tetrapod-Branched Inorganic Nanocrystals. Nat. Mater. 2003, 2, 382–385. Cerca con Google

(84) Li, H.; Kanaras, A. G.; Manna, L. Colloidal Branched Semiconductor Nanocrystals: State of the Art and Perspectives. Acc. Chem. Res. 2013, 46, 1387–1396. Cerca con Google

(85) Peng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395. Cerca con Google

(86) Peng, X. Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanocrystals. Adv. Mater. 2003, 15, 459–463. Cerca con Google

(87) Nanoplatelets, C.; Guzelturk, B.; Kelestemur, Y.; Olutas, M.; Delikanli, S.; Demir, H. V. Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano 2014, 8, 6599–6605. Cerca con Google

(88) Kittel, C. Introduction to Solid State Physics; 8th ed.; Wiley, 2004. Cerca con Google

(89) Ibach, H.; Lüth, H. Solid-State Physics; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009. Cerca con Google

(90) Sapoval, B.; Hermann, C.; Hermann, C. Physics of Semiconductors; Springer-Verlag, 1995. Cerca con Google

(91) Grosso, G.; Parravicini, G. P. Solid State Physics; Academic Press, 2000. Cerca con Google

(92) Klimov, V. I. Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annu. Rev. Phys. Chem. 2007, 58, 635–673. Cerca con Google

(93) Efros, A.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D.; Bawendi, M. Band-Edge Exciton in Quantum Dots of Semiconductors with a Degenerate Valence Band: Dark and Bright Exciton States. Phys. Rev. B 1996, 54, 4843–4856. Cerca con Google

(94) Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R.; Klimov, V. Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals. Phys. Rev. Lett. 2009, 102, 177404. Cerca con Google

(95) Park, Y.; Bae, W. K.; Pietryga, J. M.; Klimov, V. I. Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots. ACS Nano 2014, 8, 7288–7296. Cerca con Google

(96) Galland, C.; Ghosh, Y.; Steinbrück, A.; Sykora, M.; Hollingsworth, J. a; Klimov, V. I.; Htoon, H. Two Types of Luminescence Blinking Revealed by Spectroelectrochemistry of Single Quantum Dots. Nature 2011, 479, 203–207. Cerca con Google

(97) Minotto, A.; Todescato, F.; Fortunati, I.; Jasieniak, J. J.; Bozio, R. Role of Core − Shell Interfaces on Exciton Recombination in CdSe − Cd. 2014. Cerca con Google

(98) Padilha, L. a; Stewart, J. T.; Sandberg, R. L.; Bae, W. K.; Koh, W.-K.; Pietryga, J. M.; Klimov, V. I. Carrier Multiplication in Semiconductor Nanocrystals: Influence of Size, Shape, and Composition. Acc. Chem. Res. 2013, 46, 1261–1269. Cerca con Google

(99) Einstein, A. On the Quantum Theory of Radiation. Phys. Zeitschrift 1917, 18, 121–128. Cerca con Google

(100) Hall, R. N.; Fenner, G. E.; Kingsley, J. D.; Soltys, T. J. Coherent Light Emission From GaAs Junctions. Phys. Rev. Lett. 1962, 9, 366–369. Cerca con Google

(101) Vahala, K. J. Optical Microcavities. Nature 2003, 424, 839–846. Cerca con Google

(102) Wang, Z. M. Quantum Dot Devices; Springer, 2012. Cerca con Google

(103) Malko, a. V.; Mikhailovsky, a. a.; Petruska, M. a.; Hollingsworth, J. a.; Klimov, V. I. Interplay between Optical Gain and Photoinduced Absorption in CdSe Nanocrystals. J. Phys. Chem. B 2004, 108, 5250–5255. Cerca con Google

(104) García-santamaría, F.; Chen, Y.; Vela, J.; Schaller, R. D.; Hollingsworth, J. A.; Klimov, V. I.; Jennifer, A. Suppressed Auger Recombination in “ Giant ” Nanocrystals Boosts Optical. Nano Lett. 2009, 9, 3482–3488. Cerca con Google

(105) Jasieniak, J.; Smith, L.; Embden, J. Van; Mulvaney, P.; Califano, M. Re-Examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots. J. Phys. Chem. C 2009, 113, 19468–19474. Cerca con Google

(106) Hoy, J.; Morrison, P. J.; Steinberg, L. K.; Buhro, W. E.; Loomis, R. a. Excitation Energy Dependence of the Photoluminescence Quantum Yields of Core and Core/Shell Quantum Dots. J. Phys. Chem. Lett. 2013, 4, 2053–2060. Cerca con Google

(107) Demas, J. N.; Crosby, G. A. The Measurement of Photoluminescence Quantum Yields. A Review. J. Phys. Chem. 1971, 75, 991–1024. Cerca con Google

(108) Würth, C.; Grabolle, M.; Pauli, J.; Spieles, M.; Resch-Genger, U. Relative and Absolute Determination of Fluorescence Quantum Yields of Transparent Samples. Nat. Protoc. 2013, 8, 1535–1550. Cerca con Google

(109) Raman, C. V. A New Radiation. Indian J. Phys. 1928, 2, 387–398. Cerca con Google

(110) Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. Cerca con Google

(111) Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. Cerca con Google

(112) Moskovits, M. Surface Roughness and the Enhanced Intensity of Raman Scattering by Molecules Adsorbed on Metals. J. Chem. Phys. 1978, 69, 4159. Cerca con Google

(113) Mie, G. Beiträge Zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. Cerca con Google

(114) Maier, S. A. Plasmonics: Fundamentals and Applications; Springer, 2007. Cerca con Google

(115) Meulenberg, R.; Jennings, T.; Strouse, G. Compressive and Tensile Stress in Colloidal CdSe Semiconductor Quantum Dots. Phys. Rev. B 2004, 70, 235311. Cerca con Google

(116) Richter, H.; Wang, Z. P.; Ley, L. The One Phonon Raman Spectrum in Microcrystalline Silicon. Solid State Commun. 1981, 39, 625–629. Cerca con Google

(117) Lange, H.; Artemyev, M.; Woggon, U.; Thomsen, C. Geometry Dependence of the Phonon Modes in CdSe Nanorods. Nanotechnology 2009, 20, 045705. Cerca con Google

(118) Nesheva, D.; Kotsalas, I. .; Raptis, C.; Vateva, E. On the Structural Stability of Amorphous Se/CdSe Multilayers: A Raman Study. J. Non. Cryst. Solids 1998, 224, 283–290. Cerca con Google

(119) Zielony, E.; Płaczek-Popko, E.; Henrykowski, a.; Gumienny, Z.; Kamyczek, P.; Jacak, J.; Nowakowski, P.; Karczewski, G. Laser Irradiation Effects on the CdTe/ZnTe Quantum Dot Structure Studied by Raman and AFM Spectroscopy. J. Appl. Phys. 2012, 112, 063520. Cerca con Google

(120) Itoh, T.; Yoshida, K.; Biju, V.; Kikkawa, Y.; Ishikawa, M.; Ozaki, Y. Second Enhancement in Surface-Enhanced Resonance Raman Scattering Revealed by an Analysis of Anti-Stokes and Stokes Raman Spectra. Phys. Rev. B 2007, 76, 085405. Cerca con Google

(121) Van Duyne, R. P.; Hulteen, J. C.; Treichel, D. a. Atomic Force Microscopy and Surface-Enhanced Raman Spectroscopy. I. Ag Island Films and Ag Film over Polymer Nanosphere Surfaces Supported on Glass. J. Chem. Phys. 1993, 99, 2101. Cerca con Google

(122) Dieringer, J. a.; McFarland, A. D.; Shah, N. C.; Stuart, D. a.; Whitney, A. V.; Yonzon, C. R.; Young, M. a.; Zhang, X.; Van Duyne, R. P. Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications. Faraday Discuss. 2006, 132, 9. Cerca con Google

(123) Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. Cerca con Google

(124) Stiles, P. L.; Dieringer, J. a; Shah, N. C.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy. Annu. Rev. Anal. Chem. 2008, 1, 601–626. Cerca con Google

(125) Becker, W. Advanced Time-Correlated Single Photon Counting Techniques; Castleman, A. W.; Toennies, J. P.; Zinth, W., Eds.; Springer Series in Chemical Physics; Springer: Berlin, Heidelberg, 2005; Vol. 81. Cerca con Google

(126) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press, 1999. Cerca con Google

(127) Lanzani, G. The Photophysics behind Photovoltaics and Photonics; Wiley, 2012. Cerca con Google

(128) Klimov, V.; McBranch, D.; Leatherdale, C.; Bawendi, M. Electron and Hole Relaxation Pathways in Semiconductor Quantum Dots. Phys. Rev. B 1999, 60, 13740–13749. Cerca con Google

(129) Jasieniak, J.; Pacifico, J.; Signorini, R.; Chiasera, a.; Ferrari, M.; Martucci, a.; Mulvaney, P. Luminescence and Amplified Stimulated Emission in CdSe–ZnS-Nanocrystal-Doped TiO2 and ZrO2 Waveguides. Adv. Funct. Mater. 2007, 17, 1654–1662. Cerca con Google

(130) Kogelnik, H.; Ramaswamy, V. Scaling Rules for Thin-Film Optical Waveguides. Appl. Opt. 1974, 13, 1857–1862. Cerca con Google

(131) Van Embden, J.; Mulvaney, P. Nucleation and Growth of CdSe Nanocrystals in a Binary Ligand System. Langmuir 2005, 21, 10226–10233. Cerca con Google

(132) Jasieniak, J.; Mulvaney, P. From Cd-Rich to Se-Rich--the Manipulation of CdSe Nanocrystal Surface Stoichiometry. J. Am. Chem. Soc. 2007, 129, 2841–2848. Cerca con Google

(133) Davies, J. H. The Physics of Low Dimensional Semiconductors. An Introduction; Cambridge University Press, 1998. Cerca con Google

(134) Zavelani-Rossi, M.; Lupo, M. G.; Tassone, F.; Manna, L.; Lanzani, G. Suppression of Biexciton Auger Recombination in CdSe/CdS Dot/rods: Role of the Electronic Structure in the Carrier Dynamics. Nano Lett. 2010, 10, 3142–3150. Cerca con Google

(135) Antognazza, M. R.; Scotognella, F.; Miszta, K.; Dorfs, D.; Zanella, M.; Zavelani-Rossi, M.; Manna, L.; Lanzani, G.; Tassone, F. Steady-State Photoinduced Absorption of CdSe/CdS Octapod Shaped Nanocrystals. Phys. Chem. Chem. Phys. 2011, 13, 15326–15330. Cerca con Google

(136) Comas, F.; Studart, N.; Marques, G. E. Optical Phonons in Semiconductor Quantum Rods. Solid State Commun. 2004, 130, 477–480. Cerca con Google

(137) Trallero-Giner, C.; Debernardi, A.; Cardona, M.; Menéndez-Proupin, E.; Ekimov, A. I. Optical Vibrons in CdSe Dots and Dispersion Relation of the Bulk Material. Phys. Rev. B 1998, 57, 4664–4669. Cerca con Google

(138) Campbell, I. H.; Fauchet, P. M. The Effects of Microcrystal Size and Shape on the One Phonon Raman Spectra of Crystalline Semiconductors. Solid State Commun. 1986, 58, 739–741. Cerca con Google

(139) Szleifer, I.; Kramer, D.; Ben-Shaul, A.; Gelbart, W. M.; Safran, S. a. Molecular Theory of Curvature Elasticity in Surfactant Films. J. Chem. Phys. 1990, 92, 6800. Cerca con Google

(140) Hwang, Y.; Shin, S.; Park, H.; Park, S.; Kim, U.; Jeong, H.; Shin, E.; Kim, D. Effect of Lattice Contraction on the Raman Shifts of CdSe Quantum Dots in Glass Matrices. Phys. Rev. B. Condens. Matter 1996, 54, 15120–15124. Cerca con Google

(141) Zhang, J.-Y.; Wang, X.-Y.; Xiao, M.; Qu, L.; Peng, X. Lattice Contraction in Free-Standing CdSe Nanocrystals. Appl. Phys. Lett. 2002, 81, 2076. Cerca con Google

(142) Dzhagan, V. M.; Valakh, M. Y.; Raevskaya, a. E.; Stroyuk, a. L.; Kuchmiy, S. Y.; Zahn, D. R. T. Characterization of Semiconductor Core–shell Nanoparticles by Resonant Raman Scattering and Photoluminescence Spectroscopy. Appl. Surf. Sci. 2008, 255, 725–727. Cerca con Google

(143) Lu, L.; Xu, X.-L.; Liang, W.-T.; Lu, H.-F. Raman Analysis of CdSe/CdS Core-Shell Quantum Dots with Different CdS Shell Thickness. J. Phys. Condens. Matter 2007, 19, 406221. Cerca con Google

(144) Dzhagan, V. M.; Valakh, M. Y.; Raevska, O. E.; Stroyuk, O. L.; Kuchmiy, S. Y.; Zahn, D. R. T. The Influence of Shell Parameters on Phonons in Core-Shell Nanoparticles: A Resonant Raman Study. Nanotechnology 2009, 20, 365704. Cerca con Google

(145) Scamarcio, G.; Lugarà, M.; Manno, D. Size-Dependent Lattice Contraction in CdS1‐xSex Nanocrystals Embedded in Glass Observed by Raman Scattering. Phys. Rev. B 1992, 45, 13792–13795. Cerca con Google

(146) Dzhagan, V. M.; Valakh, M. Y.; Raevskaya, a E.; Stroyuk, a L.; Kuchmiy, S. Y.; Zahn, D. R. T. Resonant Raman Scattering Study of CdSe Nanocrystals Passivated with CdS and ZnS. Nanotechnology 2007, 18, 285701. Cerca con Google

(147) Zhong, X.; Han, M.; Dong, Z.; White, T. J.; Knoll, W. Composition-Tunable ZnxCd1-X Se Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc. 2003, 125, 8589–8594. Cerca con Google

(148) Lide, D. R. Handbook of Chemistry and Physics; 84th Editi.; CRC Press, 2003; p. 2616. Cerca con Google

(149) Califano, M.; Gómez-Campos, F. M. Universal Trapping Mechanism in Semiconductor Nanocrystals. Nano Lett. 2013, 13, 2047–2052. Cerca con Google

(150) Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine−Trioctylphosphine Oxide−Trioctylphospine Mixture. Nano Lett. 2001, 1, 207–211. Cerca con Google

(151) Carter, a. C.; Bouldin, C. E.; Kemner, K. M.; Bell, M. I.; Woicik, J. C.; Majetich, S. a. Surface Structure of Cadmium Selenide Nanocrystallites. Phys. Rev. B 1997, 55, 13822–13828. Cerca con Google

(152) Eijt, S. W. H.; van Veen, A. T.; Schut, H.; Mijnarends, P. E.; Denison, A. B.; Barbiellini, B.; Bansil, A. Study of Colloidal Quantum-Dot Surfaces Using an Innovative Thin-Film Positron 2D-ACAR Method. Nat. Mater. 2006, 5, 23–26. Cerca con Google

(153) Califano, M.; Franceschetti, A.; Zunger, A. Temperature Dependence of Excitonic Radiative Decay in CdSe Quantum Dots: The Role of Surface Hole Traps. Nano Lett. 2005, 5, 2360–2364. Cerca con Google

(154) Gómez-Campos, F. M.; Califano, M. Hole Surface Trapping in CdSe Nanocrystals: Dynamics, Rate Fluctuations, and Implications for Blinking. Nano Lett. 2012, 12, 4508–4517. Cerca con Google

(155) Jones, M.; Lo, S. S.; Scholes, G. D. Signatures of Exciton Dynamics and Carrier Trapping in the Time-Resolved Photoluminescence of Colloidal CdSe Nanocrystals. J. Phys. Chem. C 2009, 18632–18642. Cerca con Google

(156) Jones, M.; Scholes, G. D. On the Use of Time-Resolved Photoluminescence as a Probe of Nanocrystal Photoexcitation Dynamics. J. Mater. Chem. 2010, 20, 3533. Cerca con Google

(157) Mooney, J.; Krause, M.; Saari, J.; Kambhampati, P. Challenge to the Deep-Trap Model of the Surface in Semiconductor Nanocrystals. Phys. Rev. B 2013, 87, 081201. Cerca con Google

(158) Mooney, J.; Krause, M. M.; Saari, J. I.; Kambhampati, P. A Microscopic Picture of Surface Charge Trapping in Semiconductor Nanocrystals. J. Chem. Phys. 2013, 138, 204705. Cerca con Google

(159) Marcus, R. A.; Sutin, N. Electron Transfers in Chemistry and Biology. Biochim. Biophys. Acta - Rev. Bioenerg. 1985, 811, 265–322. Cerca con Google

(160) Verberk, R.; van Oijen, A.; Orrit, M. Simple Model for the Power-Law Blinking of Single Semiconductor Nanocrystals. Phys. Rev. B 2002, 66, 233202. Cerca con Google

(161) Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature 1996, 383, 802–804. Cerca con Google

(162) Kharchenko, V. A.; Rosen, M. Auger Relaxation Processes in Semiconductor Nanocrystals and Quantum Wells. J. Lumin. 1996, 70, 158–169. Cerca con Google

(163) Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B. Towards Non-Blinking Colloidal Quantum Dots. Nat. Mater. 2008, 7, 659–664. Cerca con Google

(164) Gong, K.; Zeng, Y.; Kelley, D. F. Extinction Coefficients, Oscillator Strengths and Radiative Lifetimes of CdSe, CdTe and CdTe/CdSe Nanocrystals. J. Phys. Chem. C 2013, 117, 20268–20279. Cerca con Google

(165) Galland, C.; Brovelli, S.; Bae, W. K.; Padilha, L. a; Meinardi, F.; Klimov, V. I. Dynamic Hole Blockade Yields Two-Color Quantum and Classical Light from Dot-in-Bulk Nanocrystals. Nano Lett. 2013, 13, 321–328. Cerca con Google

(166) Krasil’nik, Z. F.; Lytvyn, P.; Lobanov, D. N.; Mestres, N.; Novikov, A. V.; Pascual, J.; Valakh, M. Y.; Yukhymchuk, V. A. Microscopic and Optical Investigation of Ge Nanoislands on Silicon Substrates. Nanotechnology 2002, 13, 81–85. Cerca con Google

(167) Zhong, X.; Feng, Y.; Knoll, W.; Han, M. Alloyed Zn(x)Cd(1-x)S Nanocrystals with Highly Narrow Luminescence Spectral Width. J. Am. Chem. Soc. 2003, 125, 13559–13563. Cerca con Google

(168) Fisher, B. R.; Stott, N. E.; Bawendi, M. G. Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes. 2004, 11, 143–148. Cerca con Google

(169) Ebenstein, Y.; Mokari, T.; Banin, U. Fluorescence Quantum Yield of CdSe/ZnS Nanocrystals Investigated by Correlated Atomic-Force and Single-Particle Fluorescence Microscopy. Appl. Phys. Lett. 2002, 80, 4033. Cerca con Google

(170) Lakowicz, J. R. Principles of Fluorescence Spectroscopy; 3rd Editio.; Springer: Singapore, 2006. Cerca con Google

(171) Brovelli, S.; Schaller, R. D.; Crooker, S. a; García-Santamaría, F.; Chen, Y.; Viswanatha, R.; Hollingsworth, J. a; Htoon, H.; Klimov, V. I. Nano-Engineered Electron-Hole Exchange Interaction Controls Exciton Dynamics in Core-Shell Semiconductor Nanocrystals. Nat. Commun. 2011, 2, 280. Cerca con Google

(172) Pal, B. N.; Ghosh, Y.; Brovelli, S.; Laocharoensuk, R.; Klimov, V. I.; Hollingsworth, J. a; Htoon, H. “Giant” CdSe/CdS Core/shell Nanocrystal Quantum Dots as Efficient Electroluminescent Materials: Strong Influence of Shell Thickness on Light-Emitting Diode Performance. Nano Lett. 2012, 12, 331–336. Cerca con Google

(173) Jiang, Z.-J.; Kelley, D. F. Stranski–Krastanov Shell Growth in ZnTe/CdSe Core/Shell Nanocrystals. J. Phys. Chem. C 2013, 117, 6826–6834. Cerca con Google

(174) Norris, D. J.; Sacra, A.; Murray, C. B.; Bawendi, M. Measurement of the Size Dependent Hole Spectrum in CdSe Quantum Dots. Phys. Rev. Lett. 1994, 72, 2612–2615. Cerca con Google

(175) Mcguire, J. A.; Sykora, M.; Padilha, L. A.; Joo, J.; Pietryga, J. M.; Klimov, V. I. Spectroscopic Signatures of Photocharging due to Hot-Carrier Transfer in Solutions of Semiconductor Nanocrystals under Low-Intensity Ultraviolet Excitation. 2010, 4, 6087–6097. Cerca con Google

(176) Saari, J. I.; Dias, E. a; Reifsnyder, D.; Krause, M. M.; Walsh, B. R.; Murray, C. B.; Kambhampati, P. Ultrafast Electron Trapping at the Surface of Semiconductor Nanocrystals: Excitonic and Biexcitonic Processes. J. Phys. Chem. B 2013, 117, 4412–4421. Cerca con Google

(177) Tyagi, P.; Kambhampati, P. False Multiple Exciton Recombination and Multiple Exciton Generation Signals in Semiconductor Quantum Dots Arise from Surface Charge Trapping. J. Chem. Phys. 2011, 134, 094706. Cerca con Google

(178) Wind, O.; Gindele, F.; Woggon, U.; Klingshirn, C. Gain Processes in CdSe Quantum Dots. J. Cryst. Growth 1996, 159, 867–870. Cerca con Google

(179) Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingworth, J. A.; Leatherdale, C. A.; Eisler, H.-J.; Bawendi, M. G. Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots. Science (80-. ). 2000, 290, 314–317. Cerca con Google

(180) Sahin, M.; Koç, F. A Model for the Recombination and Radiative Lifetime of Trions and Biexcitons in Spherically Shaped Semiconductor Nanocrystals. Appl. Phys. Lett. 2013, 102, 183103. Cerca con Google

(181) Christodoulou, S.; Vaccaro, G.; Pinchetti, V.; De Donato, F.; Grim, J. Q.; Casu, a.; Genovese, a.; Vicidomini, G.; Diaspro, a.; Brovelli, S.; et al. Synthesis of Highly Luminescent Wurtzite CdSe/CdS Giant-Shell Nanocrystals Using a Fast Continuous Injection Route. J. Mater. Chem. C 2014, 2, 3439. Cerca con Google

(182) Brovelli, S.; Bae, W. K.; Galland, C.; Giovanella, U.; Meinardi, F.; Klimov, V. I. Dual-Color Electroluminescence from Dot-in-Bulk Nanocrystals. 2014. Cerca con Google

(183) Xu, S.; Mikhailovsky, a.; Hollingsworth, J.; Klimov, V. Hole Intraband Relaxation in Strongly Confined Quantum Dots: Revisiting the “phonon Bottleneck” Problem. Phys. Rev. B 2002, 65, 045319. Cerca con Google

(184) Furis, M.; Hollingsworth, J. a; Klimov, V. I.; Crooker, S. a. Time- and Polarization-Resolved Optical Spectroscopy of Colloidal CdSe Nanocrystal Quantum Dots in High Magnetic Fields. J. Phys. Chem. B B 2005, 109, 15332–15338. Cerca con Google

(185) Kambhampati, P. Unraveling the Structure and Dynamics of Excitons in Semiconductor Quantum Dots. Acc. Chem. Res. 2011, 44, 1–13. Cerca con Google

(186) Van Stokkum, I. H. M.; Larsen, D. S.; van Grondelle, R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta 2004, 1657, 82–104. Cerca con Google

(187) Van Wilderen, L. J. G. W.; Lincoln, C. N.; van Thor, J. J. Modelling Multi-Pulse Population Dynamics from Ultrafast Spectroscopy. PLoS One 2011, 6, e17373. Cerca con Google

(188) Vandyshev, Y. V.; Dneprovskii, V. S.; Klimov, V. I. Nonlinear-Transmission Dynamics and Nonlinear Susceptibilities of Semiconducting Microcrystals (quantum Dots). J. Exp. Theor. Phys. 1992, 74, 144–150. Cerca con Google

(189) Ledentsov, N. N. Quantum Dot Laser. Semicond. Sci. Technol. 2011, 26, 014001. Cerca con Google

(190) Petruska, M. a.; Malko, a. V.; Voyles, P. M.; Klimov, V. I. High-Performance, Quantum Dot Nanocomposites for Nonlinear Optical and Optical Gain Applications. Adv. Mater. 2003, 15, 610–613. Cerca con Google

(191) Olsson, Y. K.; Chen, G.; Rapaport, R.; Fuchs, D. T.; Sundar, V. C.; Steckel, J. S.; Bawendi, M. G.; Aharoni, A.; Banin, U. Fabrication and Optical Properties of Polymeric Waveguides Containing Nanocrystalline Quantum Dots. Appl. Phys. Lett. 2004, 85, 4469. Cerca con Google

(192) Fortunati, I.; Bozio, R.; Jasieniak, J. J.; Antonello, A.; Martucci, A.; Giustina, G. Della; Brusatin, G.; Guglielmi, M. CdSe Core - Shell Nanoparticles as Active Materials for Up-Converted Emission. 2011, 3840–3846. Cerca con Google

(193) Todescato, F.; Chesman, A. S. R.; Martucci, A.; Signorini, R.; Jasieniak, J. J. Highly Luminescent and Temperature Stable Quantum Dot Thin Films Based on a ZnS Composite. Chem. Mater. 2012, 24, 2117–2126. Cerca con Google

(194) Urlacher, C.; De Lucas, C. M.; Mugnier, J. Chemical and Physical Aspects of Sol—gel Process for Planar Waveguides Elaboration: Application to Zirconia Waveguides. Synth. Met. 1997, 90, 199–204. Cerca con Google

(195) Xing, G.; Liao, Y.; Wu, X.; Chakrabortty, S.; Liu, X.; Yeoh, E. K. L.; Chan, Y.; Sum, T. C. Ultralow-Threshold Two-Photon Pumped Amplified Spontaneous Emission and Lasing from Seeded CdSe/CdS Nanorod Heterostructures. ACS Nano 2012, 6, 10835–10844. Cerca con Google

(196) Crooker, S. a.; Barrick, T.; Hollingsworth, J. a.; Klimov, V. I. Multiple Temperature Regimes of Radiative Decay in CdSe Nanocrystal Quantum Dots: Intrinsic Limits to the Dark-Exciton Lifetime. Appl. Phys. Lett. 2003, 82, 2793. Cerca con Google

(197) Malko, a. V.; Mikhailovsky, a. a.; Petruska, M. a.; Hollingsworth, J. a.; Htoon, H.; Bawendi, M. G.; Klimov, V. I. From Amplified Spontaneous Emission to Microring Lasing Using Nanocrystal Quantum Dot Solids. Appl. Phys. Lett. 2002, 81, 1303. Cerca con Google

(198) Svelto, O. Principles of Lasers; 5th ed.; Springer, 2010. Cerca con Google

(199) Achermann, M.; Hollingsworth, J.; Klimov, V. Multiexcitons Confined within a Subexcitonic Volume: Spectroscopic and Dynamical Signatures of Neutral and Charged Biexcitons in Ultrasmall Semiconductor Nanocrystals. Phys. Rev. B 2003, 68, 245302. Cerca con Google

(200) Chan, Y.; Caruge, J.-M.; Snee, P. T.; Bawendi, M. G. Multiexcitonic Two-State Lasing in a CdSe Nanocrystal Laser. Appl. Phys. Lett. 2004, 85, 2460. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record