Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Fiorindi, Alessandro (2008) Modelli murini di disfunzione midollare spinale basati sulla degenerazione transgenica o sulla rimozione neurotossica di popolazioni motoneuronali. Caratterizzazione e approcci preliminari di terapia cellulare. [Ph.D. thesis]

Full text disponibile come:

Documento PDF
Documento PDF

Abstract (english)

In this study we have identified two models of motor neuronal degeneration in which we attempted, in a second phase, a preliminary approach of cell transplantation.
First of all, we characterized from a pathological and functional point of view the G93A mouse, a transgenic animal model that develops a disease very similar to human amyotrophic lateral sclerosis, highlighting how the number and volume of motor neurons and the density of cholinergic processes are correlated one another and with the functional progressively deteriorating conditions of the animals. We transplanted, in the spinal cords of these mice, immortalized human precursors, but in none of the cases implanted cells survived, probably due to an improper immunosopressive protocol.
In the second model, we induced a lesion in healthy rats by the intramuscular injection of Volkensin, a neurotoxin that produces selective motor neuronal degeneration.
After assessing the goodness of the model, we performed transplantation, in newborn and adult animals, with immortalized human precursors and with rat neuroblasts. In both cases, we observed how implanted cells survived and integrated in the host tissue, although in the case of human precursors we could not identify to which cellular line they differentiated.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Angelini, Corrado
Supervisor:Leanza, Giampiero
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:Modello murino, topo G93A, sclerosi laterale amiotrofica (SLA), Volkensina, trapianto cellulare
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:740
Depositato il:31 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Akiyama, Y, Radtke, C, Honmou, O and Kocsis, JD. Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39: 229-36, 2002 Cerca con Google

2. Albrecht, PJ, Murtie, JC, Ness, JK, Redwine, JM, Enterline, JR, Armstrong, RC and Levison, SW. Astrocytes produce CNTF during the remyelination phase of viral-induced spinal cord demyelination to stimulate FGF-2 production. Neurobiol Dis 13: 89-101, 2003 Cerca con Google

3. Al-Chalabi, A, Andersen, PM, Nilsson, P, Chioza, B, Andersson, JL, Russ, C, Shaw, CE, Powell, JF and Leigh, PN. Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet 8: 157-64, 1999 Cerca con Google

4. Alexianu ME, Kozovska M, Appel SH. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57:1282-1289, 2001 Cerca con Google

5. Alisky, JM and Tolbert. Differential labeling of converging afferent pathways using biotinylated dextran amine and cholera toxin subunit B J Neurosci Methods 52:143-8, 1994 Cerca con Google

6. Anderson, TE. A controlled pneumatic technique for experimental spinal cord contusion. J Neurosci Methods., 6: 327-33, 1982 Cerca con Google

7. Aoki M, Kato S, Nagai M, Itoyama Y. Development of a rat model of amyotrophic lateral sclerosis expressing a human SOD1 transgene. Neurophatology 25:365-370, 2005 Cerca con Google

8. Barami K, Diaz FG. Cellular Transplantation and Spinal Cord Injury. Neurosurgery 47(3): 691- 700, 2001 Cerca con Google

9. Barbeau, H and Rossignol, S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res 412:84-95 122, 1987 Cerca con Google

10. Basso, DM, Beattie, MS and Bresnahan, JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1-21, 1995 Cerca con Google

11. Beckman JS, Estèvez AG, Crow JP, Barbeito L. Superoxide dismutase and the death of motorneurons in ALS. TINS 24 Suppl 11:S15-S20, 2001 Cerca con Google

12. Beers, DR, Henkel, JS, Xiao, Q, Zhao, W, Wang, J, Yen, AA, Siklos, L, McKercher, SR and Appel, SH. Wild-type microglia extend survival in PU1 knockout mice with familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 103:16021-6, 2006 Cerca con Google

13. Bendotti C, Carrì MT. Lessons from models of SOD1-linked familial ALS. Trends in Molecular Medicine 10:393-399, 2004 Cerca con Google

14. Bennett, DJ, Sanelli, L, Cooke, CL, Harvey, PJ and Gorassini, MA. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. J Neurophysiol 91: 2247-58, 2004 Cerca con Google

15. Bernstein-Goral, H and Bregman, BS. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study. Exp Neurol 123:118-32,1993 Cerca con Google

16. Bernstein-Goral, H and Bregman, BS. Axotomized rubrospinal neurons rescued by fetal spinal cord transplants maintain axon collaterals to rostral CNS targets. Exp Neurol 148:13-25, 1997 Cerca con Google

17. Blumenkopf, B and Lipman, JJ. Studies in autotomy: its pathophysiology and usefulness as a model of chronic pain. Pain 45:203-9, 1991 Cerca con Google

18. Bregman, BS and Reier, PJ. Neural tissue transplants rescue axotomized rubrospinal cells from retrograde death. J Comp Neurol 244: 86-95, 1986 Cerca con Google

19. Bregman, BS, Kunkel-Bagden, E, Reier, PJ, Dai, HN, McAtee, M and Gao, D. Recovery of function after spinal cord injury: mechanisms underlying transplant-mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol 123: 3-16, 1993 Cerca con Google

20. Bruijn, LI, Becher, MW, Lee, MK, Anderson, KL, Jenkins, NA, Copeland, NG, Sisodia, SS, Rothstein, JD, Borchelt, DR, Price, DL and Cleveland, DW. ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18: 327-38, 1997 Cerca con Google

21. Bruijn LI, Houseweart MK, Kato S, Anderson SD, Ohama E, Reaume AG, Scott RW, Cleveland DW. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wildtype SOD1. Science 281:1851-1854, 1998 Cerca con Google

22. Buitrago, MM, Schulz, JB, Dichgans, J and Luft, AR. Short and long-term motor skill learning in an accelerated rotarod training paradigm Neurobiol Learn Mem 81:211-6, 2004 Cerca con Google

23. Bunge, MB. Transplantation of purified populations of Schwann cells into lesioned adult rat spinal cord. J Neurol 242:S36-9,1994 Cerca con Google

24. Cacci, E, Villa, A, Parmar, M, Cavallaro, M, Mandahl, N, Lindvall, O, Martinez-Serrano, A and Kokaia, Z. Generation of human cortical neurons from a new immortal fetal neural stem cell line. Exp Cell Res 313:588-601, 2007 Cerca con Google

25. Campos, L, Meng, Z, Hu, G, Chiu, DT, Ambron, RT and Martin, JH. Engineering novel spinal circuits to promote recovery after spinal injury. J Neurosi 24:2090-101, 2004 Cerca con Google

26. Cao, QL, Zhang, YP, Howard, RM, Walters, WM, Tsoulfas, P and Whittemore, SR. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineare. Exp Neurol 167:48-58, 2001 Cerca con Google

27. Castro, RF, Jackson, KA, Goodell, MA, Robertson, CS, Liu, H and Shine, HD. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297:1299, 2002 Cerca con Google

28. Chyu AY, Zhai Ping, Dal Canto C, Peters TM, Kwon YW, Prattis SM, Gurney ME. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol Cell Neurosci 6:349-362, 1995 Cerca con Google

29. Corti, S, Locatelli, F, Donadoni, C, Strazzer, S, Salani, S, Del Bo, R, Caccialanza, M, Bresolin, N, Scarlato, G and Comi, GP. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J Neurosci Res 70, 721-33 (2002) Cerca con Google

30. Corti, S, Locatelli, F, Donadoni, C, Guglieri, M, Papadimitriou, D, Strazzer, S, Del Bo, R and Comi, GP. Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues. Brain 127:2518-32, 2004 Cerca con Google

31. Cova L, Ratti A, Volta M Fogh I, Cardin V, Corbo M, Silani V. Stem cell therapy for neurodegenerative diseases: the issue of transdifferentiation. Stem Cells Dev 13: 121-131, 2004 Cerca con Google

32. Cote, F, Collard, JF and Julien, JP. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell 73:35-46, 1993 Cerca con Google

33. Cusick, CG, Wall, JT, Whiting, JH, Jr and Wiley, RG. Temporal progression of cortical reorganization following nerve injury. Brain Res 537:355-8, 1990 Cerca con Google

34. Dal Canto MC, Gurney ME. Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. Am J Pathol 145:1271-1280, 1994 Cerca con Google

35. Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant Cu, Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 676:25-40 1995 Cerca con Google

36. Deng HX, Hentati A, Tainer JA, et al. Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261:1047-1051, 1993 Cerca con Google

37. Desnuelle C, Garrel C, Favier A. A double-blind, placebo-controlled randomized clinical trial of a-tocopherol (vitamin E) in the treatment of ALS. ALS Other Mot Neuron Disord 2:9-18, 2001 Cerca con Google

38. Deshpande, DM, Kim, YS, Martinez, T, Carmen, J, Dike, S, Shats, I, Rubin, LL, Drummond, J, Krishnan, C, Hoke, A, Maragakis, N, Shefner, J, Rothstein, JD and Kerr, DA. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60:32-44, 2006 Cerca con Google

39. DiStefano, PS, Schweitzer, JB, Taniuchi, M and Johnson, EM, Jr. Selective destruction of nerve growth factor receptor-bearing cells in vitro using a hybrid toxin composed of ricin A chain and a monoclonal antibody against the nerve growth factor receptor. J Cell Biol 101:1107-14, 1985 Cerca con Google

40. Drachman, DB, Frank, K, Dykes-Hoberg, M, Teismann, P, Almer, G, Przedborski, S, Rothstein, JD. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol 52:771-778, 2002 Cerca con Google

41. Eiklid, K, Olsnes, S and Pihl, A. Entry of lethal doses of abrin, ricin and modeccin into the cytosol of HeLa cells. Exp Cell Res 126:321-6, 1980 Cerca con Google

42. Elder, GA, Friedrich, VL, Jr, Margita, A and Lazzarini, RA. Age-related atrophy of motor axons in mice deficient in the mid-sized neurofilament subunit. J Cell Biol 146:181-92, 1999 Cerca con Google

43. Elliott, JL. Experimental models of amyotrophic lateral sclerosis . Neurobiol Dis 6:310-20, 1999 Cerca con Google

44. Figlewicz, DA, Krizus, A, Martinoli, MG, Meininger, V, Dib, M, Rouleau, GA and Julien, JP. Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet 3:1757-61 , 1994 Cerca con Google

45. Finkelstein, SD, Gillespie, JA, Markowitz, RS, Johnson, DD, Black, P. Experimental spinal cord injury: qualitative and quantitative histopathologic evaluation. J Neurotrauma 7:29-40, 1990 Cerca con Google

46. Fuchs, E, Tumbar, T and Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116:769-78, 2004 Cerca con Google

47. Garbossa, D, Fontanella, M, Fronda, C, Benevello, C, Muraca, G, Ducati, A, Vercelli. A New strategies for repairing the injured spinal cord: the role of stem cells. Neurol Res. 28(5):500-4, 2006 Cerca con Google

48. Garbuzova-Davis, S, Willing, AE, Zigova, T, Saporta, S, Justen, EB, Lane, JC, Hudson, JE, Chen, N, Davis, CD and Sanberg, PR. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 12:255-70, 2003 Cerca con Google

49. Gros-Louis, F, Gaspar, C and Rouleau, GA. Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:956-72, 2006 Cerca con Google

50. Gruner, JA. A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123-6; discussion 126-8, 1992 Cerca con Google

51. Gulino, R, Cataudella, T, Casamenti, F, Pepeu, G, Stanzani, S and Leanza, G. Acetylcholine release from fetal tissue homotopically grafted to the motoneuron-depleted lumbar spinal cord An in vivo microdialysis study in the awake rat. Exp Neurol 204:326-38, 2007 Cerca con Google

52. Guo, Y, Follo, M, Geiger, K, Lubbert, M and Engelhardt, M. Side-population cells from different precursor compartments. J Hematother Stem Cell Res 12:71-82, 2003 Cerca con Google

53. Gurney, ME, Pu, H, Chiu, AY, Dal Canto, MC, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264:1772-1775, 1994 [Erratum, Science 269:149, 1995] Cerca con Google

54. Gurney, ME, Cutting, FB, Zhai, P, et al. Benefit of vitamin E, riluzole, and gabapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann Neurol 39:147-157 , 1996 Cerca con Google

55. Han, SS, Kang, DY, Mujtaba, T, Rao, MS and Fischer, I. Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord. Exp Neurol 177:360-75, 2002 Cerca con Google

56. Hedreen, JC, Bacon, S, Price, D. A modified histochemical tecnique to visualize acetylcholinesterase-containing axons. J Histochem Cytochem 33:134-140, 1985 Cerca con Google

57. Helke, CJ, Charlton, CG and Wiley, RG. Suicide transport of ricin demonstrates the presence of substance P receptors on medullary somatic and autonomic motor neurons. Brain Res 328:190-5, 1985 Cerca con Google

58. Hemendinger, R, Wang, J, Malik, S, Persinski, R, Copeland, J, Emerich, D, Gores, P, Halberstadt, C and Rosenfeld, J. Sertoli cells improve survival of motor neurons in SOD1 transgenic mice, a model of amyotrophic lateral sclerosis. Exp Neurol 196:235-43, 2005 Cerca con Google

59. Himes, BT and Tessler, A. Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal rats. J Comp Neurol 284:215-230, 1989 Cerca con Google

60. Hirano, A. Cytopathology of amyotrophic lateral sclerosis. Adv Neurol 56:91-101, 1991 Cerca con Google

61. Horvat, J-C, Baillet-Derbin, C, Ye, JH, Rhrich, F and Affane, F. Co-transplantation of embryonic neural tissue and autologous peripheral nerve segments to severe spinal cord injury of the adult rat Guided axiogenesis from transplanted neurons. Restor Neurol Neurosci 2:289-298, 1991 Cerca con Google

62. Howard, MJ, Liu, S, Schottler, F, Joy Snider, B and Jacquin, MF. Transplantation of apoptosis-resistant embryonic stem cells into the injured rat spinal cord. Somatosens Mot Res 22:37-44, 2005 Cerca con Google

63. Iwanami, A, Kaneko, S, Nakamura, M, Kanemura, Y, Mori, H, Kobayashi, S, Yamasaki, M, Momoshima, S, Ishii, H, Ando, K, Tanioka, Y, Tamaoki, N, Nomura, T, Toyama, Y and Okano, H. Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80:182-90, 2005 Cerca con Google

64. Julien, JP, Kriz, J. Transgenic mouse models of amyotrophic lateral sclerosis. Biochim Biophys Acta 1762: 1013-1024, 2006 Cerca con Google

65. Karnowsky MJ, Roots L. A direct coloring thiocholine method for cholinesterase. J Histochem Cytochem 12:219-221, 1964 Cerca con Google

66. Klein, SM, Behrstock, S, McHugh, J, Hoffmann, K, Wallace, K, Suzuki, M, Aebischer, P and Svendsen, CN. GDNF delivery using human neural progenitor cells in a rat model of ALS. Hum Gene Ther 16:509-21, 2005 Cerca con Google

67. Kriz, J, Zhu, Q, Julien, JP and Padjen, AL. Electrophysiological properties of axons in mice lacking neurofilament subunit genes: disparity between conduction velocity and axon diameter in absence of NF-H. Brain Res 885:32-44, 2000 Cerca con Google

68. Kriz, J, Nguyen, MD, Julien, JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 1:268-278, 2002 Cerca con Google

69. Kwon, BK, Oxland, TR and Tetzlaff, W. Animal models used in spinal cord regeneration research Spine 27:1504-10, 2002 Cerca con Google

70. Leanza, G, Stanzani, S. Extensive and permanent motoneuron loss in the rat lumbar spinal cord following neurotoxic lesion at birth: morphological evidence. Neurosciences Letters 244:89-92, 1998 Cerca con Google

71. Lepore, AC and Fischer, I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp Neurol 194:230-42, 2005 Cerca con Google

72. Lepore, AC, Neuhuber, B, Connors, TM, Han, SS, Liu, Y, Daniels, MP, Rao, MS and Fischer, I.(2006) Long-term fate of neural precursor cells following transplantation into developing and adult CNS. Neuroscience 142:287-304, 2006 Cerca con Google

73. Lieberman, AR. The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49-124, 1971 Cerca con Google

74. Liu, N, Han, S, Lu, PH and Xu, XM. Upregulation of annexins I, II, and V after traumatic spinal cord injury in adult rats. J Neurosci Res 77:391-401, 2004 Cerca con Google

75. Liu, S, Qu, Y, Stewart, TJ, Howard, MJ, Chakrabortty, S, Holekamp, TF and McDonald, JW. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc Natl Acad Sci U S A 97:6126-31, 2000 Cerca con Google

76. Llado, J, Haenggeli, C, Maragakis, NJ, Snyder, EY and Rothstein, JD. Neural stem cells protect against glutamate-induced excitotoxicity and promote survival of injured motor neurons through the secretion of neurotrophic factors. Mol Cell Neurosci 27:322-31, 2004 Cerca con Google

77. Lowrie, MB, Krishnan, S and Vrbova´, G. Permanent changes in muscle and motoneurones induced by nerve injury during a critical period of development of the rat. Dev Brain Res 31:91-101, 1987 Cerca con Google

78. Lu, P, Jones, LL, Snyder, EY and Tuszynski, MH. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 181:115-29, 2003 Cerca con Google

79. Manetto, V, Sternberger, NH, Perry, G, Sternberger, LA and Gambetti, P. Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 47:642-53, 1988 Cerca con Google

80. Mantyh, PW, Rogers, SD, Honore, P, Allen, BJ, Ghilardi, JR, Li, J, Daughters, RS, Lappi, DA, Wiley, RG and Simone, DA. Inhibition of hyperalgesia by ablation of lamina I spinal neurons expressing the substance P receptor. Science 278:275-9, 1997 Cerca con Google

81. McDonald, JW, Liu, XZ, Qu, Y, Liu, S, Mickey, SK, Turetsky, D, Gottlieb, DI and Choi, DW . Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 5:1410-2, 1999 Cerca con Google

81bis McKerracher L. Spinal cord repair: strategies to promote axon regeneration. Neurobiol Dis 8:11-18, 2001 Cerca con Google

82. Metz, GAS. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 17:1-17, 2000 Cerca con Google

83. Miller, R, Gelinas, D, Moore, D, et al. A phase III placebo-controlled trial of gabapentin in amyotrophic lateral sclerosis. Ann Neurol 46:494, abstract, 1999 Cerca con Google

84. Mitsumoto, H and Bradley, WG. Murine motor neuron disease (the wobbler mouse): degeneration and regeneration of the lower motor neuron. Brain 105:811-34, 1982 Cerca con Google

85. Monani, UR. Spinal muscular atrophy: a deficiency in a ubiquitous protein; a motor neuron-specific disease. Neuron 48:885-96, 2005 Cerca con Google

86. Noble, LJ, and Wrathall, JR. Spinal cord contusion in the rat: morphometric analyses of alterations in the spinal cord. Exp Neurol 88:135-49, 1985 Cerca con Google

87. Nogradi, A and Vrbova´, G. The use of a neurotoxic lectin, volkensin, to induce loss of identified motoneuron pools. Neuroscience 50:975-986, 1992 Cerca con Google

88. Nogradi, A and Vrbova´, G. The use of embryonic spinal cord grafts to replace identified motoneuron pools depleted by a neurotoxic lectin, volkensin. Exp Neurol 129:130-141, 1994 Cerca con Google

89. Nothias, F, Horvat, J-C, Mira, J-C, Pe´cot-Devachassine, M and Peschanski, M. Double step neural transplants to replace degenerated motoneurons. Prog Brain Res 82:239-246, 1990 Cerca con Google

90. Nothias, F, Cadusseau, J, Dusart, I and Peschanski, M, Fetal neural transplants into an area of neurodegeneration in the spinal cord of the adult rat. Restor Neurol Neurosci, 2:283-288, 1991 Cerca con Google

91. Noyes, DH. Electromechanical impactor for producing experimental spinal cord injury in animals. Med Biol Eng Comput 25:335-40, 1987 Cerca con Google

92. Okano, H, Ogawa, Y, Nakamura, M, Kaneko, S, Iwanami, A and Toyama, Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 14:191-8, 2003 Cerca con Google

93. Oudega, M. Schwann cell and olfactory ensheathing cell implantation for repair of the contused spinal cord. Acta Physiol (Oxf) 189:181-9, 2007 Cerca con Google

94. Pallini, R, Vitiani, LR, Bez, A, Casalbore, P, Facchiano, F, Di Giorgi Gerevini, V, Falchetti, ML, Fernandez, E, Maira, G, Peschle, C and Parati, E. Homologous transplantation of neural stem cells to the injured spinal cord of mice. Neurosurgery 57:1014-25; discussion 1014-25, 2005 Cerca con Google

95. Perez-Bouza, A, Glaser, T and Brustle, O. ES cell-derived glial precursors contribute to remyelination in acutely demyelinated spinal cord lesions. Brain Pathol 15:208-16, 2005 Cerca con Google

96. Pinzon, A, Calancie, B, Oudega, M and Noga, BR. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. J Neurosci Res 64:533-41, 2001 Cerca con Google

97. Pluchino, S, Zanotti, L, Deleidi, M and Martino, G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 48:211-9, 2005 Cerca con Google

98. Ramon-Cueto, A and Santos-Benito, FF. Cell therapy to repair injured spinal cords: olfactory ensheathing glia transplantation. Restor Neurol Neurosci 19:149-56, 2001 Cerca con Google

99. Rao, MV, Houseweart, MK, Williamson, TL, Crawford, TO, Folmer, J and Cleveland, DW. Neurofilament-dependent radial growth of motor axons and axonal organization of neurofilaments does not require the neurofilament heavy subunit (NF-H) or its phosphorylation. J Cell Biol 143:171-81, 1998 Cerca con Google

100. Rapalino, O, Lazarov-Spiegler, O, Agranov, E, Velan, GJ, Yoles, E, Fraidakis, M, Solomon, A, Gepstein, R, Katz, A, Belkin, M, Hadani, M and Schwartz, M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814-21, 1998 Cerca con Google

101. Reaume AG, Elliott JL, Hoffman EK, et al. Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43-47, 1996 Cerca con Google

102. Renoncourt, Y, Carroll, P, Filippi, P, Arce, V and Alonso, S. Neurons derived in vitro from ES cells express homeoproteins characteristic of motoneurons and interneurons Mech Dev, 79:185-97, 1998 Cerca con Google

103. Rivlin, AS, Tator, CH. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surg Neurol 10:38-43, 1978 Cerca con Google

104. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59-62, 1993 Cerca con Google

105. Rothstein JD. Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clin Neurosci 3:348-359, 1995 Cerca con Google

106. Santos-Benito, FF and Ramon-Cueto, A. Olfactory ensheathing glia transplantation: a therapy to promote repair in the mammalian central nervous system. Anat Rec B New Anat 271:77-85 248, 2003 Cerca con Google

107. Sasaki, M, Honmou, O, Akiyama, Y, Uede, T, Hashi, K and Kocsis, JD. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35:26-34, 2001 Cerca con Google

108. Scadden, DT. The stem-cell niche as an entity of action Nature 441:1075-9 257, 2006 Cerca con Google

109. Schmalbruch, H, Jensen, HJ, Bjaerg, M, Kamieniecka, Z and Kurland, L. A new mouse mutant with progressive motor neuronopathy. J Neuropathol Exp Neurol 50:192-204, 1991 Cerca con Google

110. Scienza e Tecnica, mensile di informazione della Società  italiana per il progresso delle Scienze, n420, Ago 2005 Cerca con Google

111. Sekhon LH, Fehlings LG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 15(24 Suppl):2-12, 2001 Cerca con Google

112. Shea, TB, Jung, C and Pant, HC. Does neurofilament phosphorylation regulate axonal transport? Trends Neurosci 26:397-400, 2003 Cerca con Google

113. Shibata N. Transgenic mouse model for familial amyotrophic lateral sclerosis with superoxide dismutase-1 mutation. Neuropathology 21:82-92, 2001 Cerca con Google

114. Shihabuddin, LS, Horner, PJ, Ray, J and Gage, FH. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus J Neurosci 20:8727-35, 2000 Cerca con Google

115. Siddique T, Figlewicz DA, Pericak-Vance MA, Haines JL, Rouleau GA, Jeffers AJ, Sapp P, et al. Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity N Engl J Med 324:1381-1384, 1991 Cerca con Google

116. Silani, V, Cova, L, Corbo, M, Ciammola, A and Polli, E. Stem-cell therapy for amyotrophic lateral sclerosis Lancet 364:200-2, 2004 Cerca con Google

117. Smith, PM, Jeffery, ND. Histological and ultrastructural analysis of white matter damage after naturally-occurring spinal cord injury. Brain Pathol 16:99-109, 2006 Cerca con Google

118. Stieber A, Gonatas JO, Gonatas NK. Aggregates of mutant protein appear progressively in dendrites, in periaxonal process of oligodendrocytes, and in neuronal and astrocytic perikarya of mice expressing the SOD1G93A mutation of familial amyotrophic lateral sclerosis J Neurol Sci 177: 114-123, 2000 Cerca con Google

119. Stirpe F, Barbieri L, Abbondanza A, Falasca AI, Brown AN, Sandvig K, Olsnes S, Pihl A. Properties of volkensin, a toxic lectin from Adenia volkensii. J Biol Chem 260(27):14589-14595, 1985 Cerca con Google

120. Stokes BT, Noeys DH, Behrmann DI. An electromechanical spinal cord injury device with dynamic sensitivity. J Neurotrauma 9:187-95, 1992 Cerca con Google

121. Stokes BT, Jakeman LB. A murine model for experimental spinal cord injury. Spinal Cord 40:101-9, 2002 Cerca con Google

122. Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelsman S, et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS, Nat Neurosci 8:85-92, 2004 Cerca con Google

123. Subramaniam, JR, Lyons, WE, Liu, J, Bartnikas, TB, Rothstein, J, Price, DL, Cleveland, DW, Gitlin, JD and Wong, PC. Mutant SOD1 causes motor neuron disease independent of copper chaperone-mediated copper loading Nat Neurosci 5: 301-7, 2002 Cerca con Google

124. Talac R, Friedman JA, Moore MJ, Lu L, Jabbari E, Windebank AJ, Currier BL, Yaszemski MJ. Animal models of spinal cord injury for evaluation of tissue engineering treatment strategies. Biomaterials 25:1505-1510, 2004 Cerca con Google

125. Tetzlaff, W, Alexander, SW, Miller, FD and Bisby, MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43 J Neurosci 11:2528-44,1991 Cerca con Google

126. Vaccaro, AR, Ahmad, SS, Rauschning, W, et al. Anatomy and pathophysiology of spinal cord injury In Levine, AM, Eismont, GJ, Garfin, RR and al, Spine trauma WB Saunders, Philadelphia:, pp 75-86, 1998 Cerca con Google

127. Wang, J, Slunt, H, Gonzales, V, Fromholt, D, Coonfield, M, Copeland, NG, Jenkins, NA and Borchelt, DR. Copper-binding-site-null SOD1 causes ALS in transgenic mice: aggregates of non-native SOD1 delineate a common feature. Hum Mol Genet 12:2753-64, 2003 Cerca con Google

128. Wiedau-Pazos M, Goto JJ, Rabizadeh S, Gralla ED, Roe JA, Valentine JS, Bredesen DE. Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis. Science 271:515-518, 1996 Cerca con Google

129. Wiley, RG, Blessing, WW and Reis, DJ. Suicide transport: destruction of neurons by retrograde transport of ricin, abrin, and modeccin. Science 216:889-90, 1982 Cerca con Google

130. Wiley, RG and Stirpe, F. Neuronotoxicity of axonally transported toxic lectins, abrin, modeccin and volkensin in rat peripheral nervous system. Neuropathol Appl Neurobiol 13:39-53, 1987 Cerca con Google

131. Wiley, RG, Stirpe, F, Thorpe, P and Oeltmann, TN. Neuronotoxic effects of monoclonal anti-Thy 1 antibody (OX7) coupled to the ribosome inactivating protein, saporin, as studied by suicide transport experiments in the rat. Brain Res 505:44-54, 1989 Cerca con Google

132. Wiley, RG and Kline, IR. Neuronal lesioning with axonally transported toxins J Neurosci Methods 103:73-82, 2000 Cerca con Google

133. Wong, PC, Pardo, CA, Borchelt, DR, Lee, MK, Copeland, NG, Jenkins, NA, Sisodia, SS, Cleveland, DW and Price, DL. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria Neuron 14:1105-16, 1995 Cerca con Google

134. Wu, P, Tarasenko, YI, Gu, Y, Huang, LY, Coggeshall, RE and Yu, Y. Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat. Nat Neurosci 5:1271-8, 2002 Cerca con Google

135. Xu XM, Zhang SX, Li H, Aebischer P, Bunge MB. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 11:1723-40, 1999 Cerca con Google

136. Xu, L, Yan, J, Chen, D, Welsh, AM, Hazel, T, Johe, K, Hatfield, G and Koliatsos, VE. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 82:865-75, 2006 Cerca con Google

137. Yan, J, Welsh, AM, Bora, SH, Snyder, EY and Koliatsos, VE. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. J Comp Neurol 480: 101-14, 2004 Cerca con Google

138. Yan, J, Xu, L, Welsh, AM, Hatfield, G, Hazel, T, Johe, K and Koliatsos, VE. Extensive Neuronal Differentiation of Human Neural Stem Cell Grafts in Adult Rat Spinal Cord. PLoS Med, 4, e39, 2007 Cerca con Google

139. Young, W. Spinal cord contusion models. Prog Brain Res 137:231-55, 2002 Cerca con Google

140. Zompa, EA, Cain, LD, Everhart, AW, Moyer, MP, Hulsebosch, CE. Transplant therapy: recovery of function after spinal cord injury. J Neurotrauma 14:479-506, 1997 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record