Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Jayaswal, Gaurav (2015) Spatial confinement of bacterial communities. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
9Mb

Abstract (inglese)

The subject of bacterial swimming has intrigued scientists for decades and recently there has been a growing interest in the study of collective swimming behavior of bacteria in a confined geometry. This thesis deals with a systematic experimental investigation of the density distribution of bacterial solutions of different concentration.
Two different types of bacteria, Pseudomonas and E. coli, have been used owing to their diverse propelling mechanism. E. coli behavior has been studied in detail, instead there are no reports in the literature regarding Pseudomonas, to the best of our knowledge.
The experimental set up consisted of two glass plates separated by spacers which define the confinement region. The separation distance ranged from 100 to 250 microns. The two plates were functionalized with bovine serum albumin (BSA) to avoid bacterial adhesion to the glass. The bacterial suspension was subjected to adjustment of buoyancy by addition of a density matching fluid like Percoll.
In agreement with previous studies, we found a significant enhancement of density close to the walls for both bacteria. This effect does not seem to be affected by either the separation distance or the solution concentration. These results were compared with those obtained by numerical simulations of self-propelled rod like particles which do not interact with each other apart from steric interactions. The preliminary data support the experimental outcome suggesting that steric interactions alone are sufficient to produce the observed enhancement effect.

Abstract (italiano)

Il moto di batteri ha attratto gli scienziati da decenni e, ultimamente, c’è stato un crescente interesse nello studio del moto collettivo di batteri in geometrie confinate. Questa tesi descrive uno studio sperimentale della distribuzione di densità di soluzioni di batteri di concentrazione diversa confinate tra due pareti parallele.
Si sono usati due tipi di batteri, Pseudomonas ed E. coli, che presentano diversi meccanismi di propulsione. Il comportamento di E. coli è stato studiato in dettaglio, invece non ci sono lavori in letteratura riguardanti Pseudomonas, per quello che sappiamo.
L’apparato sperimentale consisteva di due vetrini separati da spaziatori che definivano la regione confinante. La distanza di separazione variava da 100 a 250 micron. I due vetrini erano funzionalizzati con albumina di serio bovino per evitare l’adesione dei batteri al vetro. Alla sospensione era stato aggiunto del percoll per aggiustare la spinta idrostatica agente sui batteri.
In accordo con precedenti studi, abbiamo trovato un significativo aumento di densità in prossimità delle pareti per entrambi i tipi di batteri. Questo effetto non sembra essere influenzato né dalla distanza di separazione, né dalla concentrazione della soluzione. Questi risultati sono stati confrontati con quelli ottenuti da simulazioni numeriche di particelle auto-propellenti c he interagiscono solo mediante interazioni steriche. I dati preliminari supportano l’osservazione sperimentale suggerendo che le sole interazioni steriche sono sufficienti a produrre addensamento dei batteri alle pareti.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mistura, Giampaolo
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > FISICA
Data di deposito della tesi:16 Gennaio 2015
Anno di Pubblicazione:16 Gennaio 2015
Parole chiave (italiano / inglese):Bacteria confinement, Steric interaction, Biophysics, Active Matter
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:7482
Depositato il:12 Nov 2015 16:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

. [1]  G. Li and J. X. Tang, “Accumulation of microswimmers near a surface mediated by collision and rotational brownian motion,” Physical Review Letters 103, 078101 (2009). Cerca con Google

. [2]  A.P.Berke,L.Turner,H.C.Berg,andE.Lauga,“Hydrodynamicattractionofswim- ming microorganisms by surfaces,” Physical Review Letters 101, 038102 (2008). Cerca con Google

. [3]  T. Vicsek and A. Zafeiris, “Collective motion,” Physics Reports 517, 71–140 (2012). Cerca con Google

. [4]  G. I. Menon, “Active matter,” pp. 193–218 (2010). Cerca con Google

. [5]  F.Jülicher,A.Ajdari,andJ.Prost,“Modelingmolecularmotors,”ReviewsofModern Physics 69, 1269 (1997). Cerca con Google

. [6]  E. M. Purcell, “Life at low reynolds number,” Am. J. Phys 45, 3–11 (1977). Cerca con Google

. [7]  J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, “Self-motile colloidal particles: from directed propulsion to random walk,” Physical Review Letters 99, 048102 (2007). Cerca con Google

. [8]  H.-R. Jiang, N. Yoshinaga, and M. Sano, “Active motion of a janus particle by self- thermophoresis in a defocused laser beam,” Physical Review Letters 105, 268302 (2010). Cerca con Google

. [9]  J. L. Anderson, “Colloid transport by interfacial forces,” Annual Review of Fluid Mechanics 21, 61–99 (1989). Cerca con Google

. [10]  S. Ramaswamy, “The mechanics and statistics of active matter,” The Mechanics and Statistics of Active Matter 1, 323–345 (2010). Cerca con Google

. [11]  S. Rice, A. W. Lin, D. Safer, C. L. Hart, N. Naber, B. O. Carragher, S. M. Cain, E. Pechatnikova, E. M. Wilson-Kubalek, M. Whittaker et al., “A structural change in the kinesin motor protein that drives motility,” Nature 402, 778–784 (1999). Cerca con Google

. [12]  W. R. Schief and J. Howard, “Conformational changes during kinesin motility,” Cur- rent opinion in cell biology 13, 19–28 (2001). Cerca con Google

. Cerca con Google

. . [13]  M. Cates, D. Marenduzzo, I. Pagonabarraga, and J. Tailleur, “Arrested phase separa- tion in reproducing bacteria creates a generic route to pattern formation,” Proceedings of the National Academy of Sciences 107, 11715–11720 (2010). Cerca con Google

. [14]  H. H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R. E. Goldstein, H. Löwen, and J. M. Yeomans, “Meso-scale turbulence in living fluids,” Proceedings of the Na- tional Academy of Sciences 109, 14308–14313 (2012). Cerca con Google

. [15]  J. Dunkel, S. Heidenreich, K. Drescher, H. H. Wensink, M. Bär, and R. E. Gold- stein, “Fluid dynamics of bacterial turbulence,” Physical Review Letters 110, 228102 (2013). Cerca con Google

. [16]  A. Baskaran and M. C. Marchetti, “Statistical mechanics and hydrodynamics of bac- terial suspensions,” Proceedings of the National Academy of Sciences 106, 15567– 15572 (2009). Cerca con Google

. [17]  H. R. Brand, H. Pleiner, and F. Ziebert, “Macroscopic dynamics of polar nematic liquid crystals,” Physical Review E 74, 021713 (2006). Cerca con Google

. [18]  K.Anderson,Y.-L.Wang,andJ.Small,“Coordinationofprotrusionandtranslocation of the keratocyte involves rolling of the cell body.” The Journal of cell biology 134, 1209–1218 (1996). Cerca con Google

. [19]  R.Poincloux,O.Collin,F.Lizárraga,M.Romao,M.Debray,M.Piel,andP.Chavrier, “Contractility of the cell rear drives invasion of breast tumor cells in 3d matrigel,” Proceedings of the National Academy of Sciences 108, 1943–1948 (2011). Cerca con Google

. [20]  G. Salbreux, J. Prost, and J. Joanny, “Hydrodynamics of cellular cortical flows and the formation of contractile rings,” Physical Review Letters 103, 058102 (2009). Cerca con Google

. [21]  P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanisms,” Nature Reviews Cancer 3, 362–374 (2003). Cerca con Google

. [22]  M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, A. Or- landi, G. Parisi, A. Procaccini, M. Viale et al., “Empirical investigation of starling flocks: a benchmark study in collective animal behaviour,” Animal behaviour 76, 201–215 (2008). Cerca con Google

. [23]  J. W. Bradbury and S. L. Vehrencamp, Principles of animal communication (1998). Cerca con Google

. [24]  K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, “Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering,” Proceedings of the National Academy of Sciences 108, 10940–10945 (2011). Cerca con Google

. [25]  L. Angelani, R. Di Leonardo, and G. Ruocco, “Self-starting micromotors in a bacte- rial bath,” Physical Review Letters 102, 048104 (2009). Cerca con Google

. . [26]  R. Di Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M. Conte, F. Mecarini, F. De Angelis, and E. Di Fabrizio, “Bacterial ratchet motors,” Proceedings of the National Academy of Sciences 107, 9541–9545 (2010). Cerca con Google

. [27]  R. P. Feynman, J. Hey, and R. W. Allen, Feynman lectures on computation (Addison- Wesley Longman Publishing Co., Inc., 1998). Cerca con Google

. [28]  H. C. Berg and L. Turner, “Chemotaxis of bacteria in glass capillary arrays. es- cherichia coli, motility, microchannel plate, and light scattering,” Biophysical Journal 58, 919–930 (1990). Cerca con Google

. [29]  G. Li, L.-K. Tam, and J. X. Tang, “Amplified effect of brownian motion in bacte- rial near-surface swimming,” Proceedings of the National Academy of Sciences 105, 18355–18359 (2008). Cerca con Google

. [30]  L. Rothschild, “Structure and movements of tick spermatozoa (arachnida, acari),” Quarterly Journal of Microscopical Science 3, 239–247 (1961). Cerca con Google

. [31]  H. Winet, G. Bernstein, and J. Head, “Observations on the response of human sper- matozoa to gravity, boundaries and fluid shear,” Journal of reproduction and fertility 70, 511–523 (1984). Cerca con Google

. [32]  P. D. Frymier and R. M. Ford, “Analysis of bacterial swimming speed approaching a solid–liquid interface,” AIChE journal 43, 1341–1347 (1997). Cerca con Google

. [33]  J. Männik, R. Driessen, P. Galajda, J. E. Keymer, and C. Dekker, “Bacterial growth and motility in sub-micron constrictions,” Proceedings of the National Academy of Sciences 106, 14861–14866 (2009). Cerca con Google

. [34]  W. R. DiLuzio, L. Turner, M. Mayer, P. Garstecki, D. B. Weibel, H. C. Berg, and G. M. Whitesides, “Escherichia coli swim on the right-hand side,” Nature 435, 1271– 1274 (2005). Cerca con Google

. [35]  S. E. Spagnolie and E. Lauga, “Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations,” Journal of Fluid Mechanics 700, 105–147 (2012). Cerca con Google

. [36]  P. D. Frymier, R. M. Ford, H. C. Berg, and P. T. Cummings, “Three-dimensional tracking of motile bacteria near a solid planar surface,” Proceedings of the National Academy of Sciences 92, 6195–6199 (1995). Cerca con Google

. [37]  H. Shum, E. Gaffney, and D. Smith, “Modelling bacterial behaviour close to a no- slip plane boundary: the influence of bacterial geometry,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science p. rspa20090520 (2010). Cerca con Google

. [38]  J. Elgeti and G. Gompper, “Self-propelled rods near surfaces,” EPL (Europhysics Letters) 85, 38002 (2009). Cerca con Google

. . [39]  G. Li, J. Bensson, L. Nisimova, D. Munger, P. Mahautmr, J. X. Tang, M. R. Maxey, and Y. V. Brun, “Accumulation of swimming bacteria near a solid surface,” Physical Review E 84, 041932 (2011). Cerca con Google

. [40]  E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A. Stone, “Swimming in circles: motion of bacteria near solid boundaries,” Biophysical journal 90, 400–412 (2006). Cerca con Google

. [41]  S. E. Hulme, W. R. DiLuzio, S. S. Shevkoplyas, L. Turner, M. Mayer, H. C. Berg, and G. M. Whitesides, “Using ratchets and sorters to fractionate motile cells of es- cherichia coli by length,” Lab on a Chip 8, 1888–1895 (2008). Cerca con Google

. [42]  J. v. Zuylen, “The microscopes of antoni van leeuwenhoek,” Journal of microscopy 121, 309–328 (1981). Cerca con Google

. [43]  B. Amos, “Lessons from the history of light microscopy,” Nature cell biology 2, E151–E152 (2000). Cerca con Google

. [44]  N. This, “National institutes of health consensus development conference statement: management of hepatitis c: 2002—june 10-12, 2002,” Management 2002 (2002). Cerca con Google

. [45]  J.Willey,Prescott,Harley,andKlein’sMicrobiology-7thinternationaled./JoanneM. Willey, Linda M. Sherwood, Christopher J. Woolverton (New York [etc.]: McGraw- Hill Higher Education, 2008). Cerca con Google

. [46]  P. R. Murray, W. L. Drew, G. S. Kobayashi, J. Thompson Jr et al., Medical microbi- ology. (Wolfe Medical Publications Ltd, 1990). Cerca con Google

. [47]  E. Jawetz, J. L. Melnick, and E. A. Adelberg, “Review of medical microbiology,” (1980). Cerca con Google

. [48]  M. Alexander et al., Introduction to soil microbiology., Ed. 2 (John Wiley & Sons., 1977). Cerca con Google

. [49]  M. T. Madigan, J. M. Martinko, J. Parker, and T. D. Brock, Biology of microorgan- isms, vol. 985 (prentice hall Upper Saddle River, NJ, 1997). Cerca con Google

. [50]  L. Gan, S. Chen, and G. J. Jensen, “Molecular organization of gram-negative pep- tidoglycan,” Proceedings of the National Academy of Sciences 105, 18953–18957 (2008). Cerca con Google

. [51]  M. Bayer, “Areas of adhesion between wall and membrane of escherichia coli,” Jour- nal of general microbiology 53, 395–404 (1968). Cerca con Google

. [52]  M. Wheelis, Principles of modern microbiology (Jones & Bartlett Publishers, 2011). Cerca con Google

. [53]  G. B. Johnson, G. J. Brusca, and R. Holt, Biology, visualizing life (Holt, Rinehart and Winston Austin, 1994). Cerca con Google

. [54]  C. Branden, J. Tooze et al., Introduction to protein structure, vol. 2 (Garland New Cerca con Google

York, 1991). Cerca con Google

. [55]  B. Eddy, “The use and meaning of the term ‘psychrophilic’,” Journal of Applied Cerca con Google

Bacteriology 23, 189–190 (1960). Cerca con Google

. [56]  P. H. Sneath, “Some thoughts on bacterial classification,” Journal of general microbi- Cerca con Google

ology 17, 184–200 (1957). Cerca con Google

. [57]  H. C. Berg, E. coli in Motion (Springer, 2004). Cerca con Google

. [58]  H. O. M. Al-Dahmoshi, “Genotypic and phenotypic investigation of alginate biofilm formation among pseudomonas aeruginosa isolated from burn victims in babylon, iraq,” Science Journal of Microbiology 2013 (2013). Cerca con Google

. [59]  T. Strateva and D. Yordanov, “Pseudomonas aeruginosa–a phenomenon of bacterial resistance,” Journal of medical microbiology 58, 1133–1148 (2009). Cerca con Google

. [60]  S. A. Ochoa, F. López-Montiel, G. Escalona, A. Cruz-Córdova, L. B. Dávila, B. López-Martínez, Y. Jiménez-Tapia, S. Giono, C. Eslava, R. Hernández-Castro et al., “Pathogenic characteristics of pseudomonas aeruginosa strains resistant to car- bapenems associated with biofilm formation,” Bol Med Hosp Infant Mex 70, 133–144 (2013). Cerca con Google

. [61]  E. Drenkard and F. M. Ausubel, “Pseudomonas biofilm formation and antibiotic re- sistance are linked to phenotypic variation,” Nature 416, 740–743 (2002). Cerca con Google

. [62]  M. Zwietering, I. Jongenburger, F. Rombouts, and K. Van’t Riet, “Modeling of the bacterial growth curve,” Applied and environmental microbiology 56, 1875–1881 (1990). Cerca con Google

. [63]  R.M.MacnabandS.-I.Aizawa,“Bacterialmotilityandthebacterialflagellarmotor,” Annual review of biophysics and bioengineering 13, 51–83 (1984). Cerca con Google

. [64]  M. Li, “Experimental study of swimming flagellated bacteria and their collective behaviour in concentrated suspensions,” (2010). Cerca con Google

. [65]  R. M. Harshey, “Bacterial motility on a surface: many ways to a common goal,” Annual Reviews in Microbiology 57, 249–273 (2003). Cerca con Google

. [66]  H. C. Berg and R. A. Anderson, “Bacteria swim by rotating their flagellar filaments,” (1973). Cerca con Google

. [67]  Y. Magariyama, S. Sugiyama, and S. Kudo, “Bacterial swimming speed and rotation rate of bundled flagella,” FEMS microbiology letters 199, 125–129 (2001). Cerca con Google

. [68]  H. C. Berg, D. A. Brown et al., “Chemotaxis in escherichia coli analysed by three- dimensional tracking,” Nature 239, 500–504 (1972). Cerca con Google

. [69]  S. Chattopadhyay, R. Moldovan, C. Yeung, and X. Wu, “Swimming efficiency of bacterium escherichiacoli,” Proceedings of the National Academy of Sciences 103, 13712–13717 (2006). Cerca con Google

. [70]  K.J.DuffyandR.M.Ford,“Turnangleandruntimedistributionscharacterizeswim- ming behavior for pseudomonas putida.” Journal of bacteriology 179, 1428–1430 (1997). Cerca con Google

. [71]  T. B. Doyle, A. C. Hawkins, and L. L. McCarter, “The complex flagellar torque gen- erator of pseudomonas aeruginosa,” Journal of bacteriology 186, 6341–6350 (2004). Cerca con Google

. [72]  D. B. Kearns, “A field guide to bacterial swarming motility,” Nature Reviews Micro- biology 8, 634–644 (2010). Cerca con Google

. [73]  J.LiuandJ.S.Parkinson,“Geneticevidenceforinteractionbetweenthechewandtsr proteins during chemoreceptor signaling by escherichia coli.” Journal of bacteriology 173, 4941–4951 (1991). Cerca con Google

. [74]  J. E. Segall, M. D. Manson, and H. C. Berg, “Signal processing times in bacterial chemotaxis,” Nature 296, 855–857 (1982). Cerca con Google

. [75]  C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, “Non- linear elasticity in biological gels,” Nature 435, 191–194 (2005). Cerca con Google

. [76]  T. Surrey, F. Nédélec, S. Leibler, and E. Karsenti, “Physical properties determining self-organization of motors and microtubules,” Science 292, 1167–1171 (2001). Cerca con Google

. [77]  T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of phase transition in a system of self-driven particles,” Physical review letters 75, 1226 (1995). Cerca con Google

. [78]  A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, “Concentration depen- dence of the collective dynamics of swimming bacteria,” Physical Review Letters 98, 158102 (2007). Cerca con Google

. [79]  R. Albert and A.-L. Barabási, “Statistical mechanics of complex networks,” Reviews of modern physics 74, 47 (2002). Cerca con Google

. [80]  H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, and F. Raynaud, “Modeling collec- tive motion: variations on the vicsek model,” The European Physical Journal B- Condensed Matter and Complex Systems 64, 451–456 (2008). Cerca con Google

. [81]  M. Aldana, V. Dossetti, C. Huepe, V. Kenkre, and H. Larralde, “Phase transitions in systems of self-propelled agents and related network models,” Physical Review Letters 98, 095702 (2007). Cerca con Google

. [82]  G. Baglietto and E. V. Albano, “Nature of the order-disorder transition in the vicsek model for the collective motion of self-propelled particles,” Physical Review E 80, 050103 (2009). Cerca con Google

. [83]  D. Saintillan, “The dilute rheology of swimming suspensions: A simple kinetic Cerca con Google

model,” Experimental Mechanics 50, 1275–1281 (2010). Cerca con Google

. [84]  D. J. Sumpter, Collective animal behavior (Princeton University Press, 2010). Cerca con Google

. [85]  D. J. Stephens and V. J. Allan, “Light microscopy techniques for live cell imaging,” Science 300, 82–86 (2003). Cerca con Google

. [86]  E. Hecht and A. Zajac, “Optics,” (1974). Cerca con Google

. [87]  D. Gabor et al., “A new microscopic principle,” Nature 161, 777–778 (1948). Cerca con Google

. [88]  G. O. Reynolds, J. B. Develis, G. B. Parrent, and B. Thompson, “The new physical optics notebook: tutorials in fourier optics,” 61 (1989). Cerca con Google

. [89]  M. Born and E. Wolf, “Principles of optics: electromagnetic theory of propagation, interference and diffraction of light,” (1999). Cerca con Google

. [90]  E. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” (1972). Cerca con Google

. [91]  D. B. Schmolze, C. Standley, K. E. Fogarty, and A. H. Fischer, “Advances in mi- croscopy techniques,” Archives of pathology & laboratory medicine 135, 255–263 (2011). Cerca con Google

. [92]  L. Bertucco, G. Nunnari, C. Randieri, V. Rizza, and A. Sacco, “A cellular neural network based system for cell counting in culture of biological cells,” 1, 341–345 (1998). Cerca con Google

. [93]  E. Rosenberg, K. H. Keller, and M. Dworkin, “Cell density-dependent growth of myxococcus xanthus on casein.” Journal of Bacteriology 129, 770–777 (1977). Cerca con Google

. [94]  F.Widdel,“Theoryandmeasurementofbacterialgrowth,”DidalamGrundpraktikum Mikrobiologie 4 (2007). Cerca con Google

. [95]  K. Fuwa and B. Valle, “The physical basis of analytical atomic absorption spec- trometry. the pertinence of the beer-lambert law.” Analytical Chemistry 35, 942–946 (1963). Cerca con Google

. [96]  D. Swinehart, “The beer-lambert law,” Journal of chemical education 39, 333 (1962). Cerca con Google

. [97]  A. Fernandez-Barbero, A. Fernandez-Nieves, I. Grillo, and E. Lopez-Cabarcos, “Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering,” Physical Review E 66, 051803 (2002). Cerca con Google

. [98]  E. Molina Grima, F. García Camacho, J. Sánchez Pérez, F. Acién Fernández, and J. Fernández Sevilla, “Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance,” Enzyme and microbial technology 21, 375–381 (1997). Cerca con Google

. [99]  C. W. Park, K. Y. Yoon, J. H. Byeon, K. Kim, and J. Hwang, “Development of rapid assessment method to determine bacterial viability based on ultraviolet and visible (uv-vis) spectroscopy analysis including application to bioaerosols,” Aerosol and Air Quality Research 12, 399–408 (2012). Cerca con Google

. [100]  J. Adler and B. Templeton, “The effect of environmental conditions on the motility of escherichia coli,” Journal of general microbiology 46, 175–184 (1967). Cerca con Google

. [101]  A. Biosciences, “Percoll methodology and applications. amersham biosciences,” (2001). Cerca con Google

. [102]  R. Bhalla, Q. Chen, Q. Cheng, N. Pandey, P. E. Rouviere, K. Ruebling-Jass, and A. Sachan, “Recombinant host cells having an increase in buoyant density,” (2011). US Patent App. 13/164,990. Cerca con Google

. [103]  C. Solà, R. Cristòfol, C. Suñol, and C. Sanfeliu, “Primary cultures for neurotoxicity testing,” pp. 87–103 (2011). Cerca con Google

. [104]  M. D. Hoover, G. L. Finch, and B. T. Castorina, “Sodium metatungstate as a medium for measuring particle density using isopycnic density gradient ultracentrifugation,” Journal of Aerosol Science 22, 215–221 (1991). Cerca con Google

. [105]  D. A. Forsyth and J. Ponce, “Computer vision: a modern approach,” (2002). Cerca con Google

. [106]  G. R. Bradski, “Computer vision face tracking for use in a perceptual user interface,” (1998). Cerca con Google

. [107]  G. Bradski and A. Kaehler, “Learning opencv: Computer vision with the opencv library,” (2008). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record