Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Barbato, Marco (2015) Characterization, modeling and reliability of RF MEMS Switches and Photovoltaic Silicon Solar Cells. [Tesi di dottorato]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

Documento PDF (Tesi di dottorato - Documento principale)

Abstract (inglese)

The main goal of this thesis is the failure and reliability investigation of RF-MEMS switches and photovoltaic solar cells. For technical developer people the reliability issue is often consider a secondary problem in electronic devices since it is not considered an important factor in the production chain. This concept is changing is the last years because reliability studies are considered an important technological step to improve the production process. This fact is confirmed by the investments that companies adopt to test their products. In the particular case of this thesis, we can easily mention the solar cell production line where the cells are subjected to reliability tests that extrapolate the efficiency and the fill factor in order to study the performances and to consequently improve the production process.

Concerning RF MEMS
Wireless communication systems for space applications require electronic components with a high level of reliability, a low power consumption and they should be as small as possible in order to be better integrated in satellites. Radio Frequency Micro Electro Mechanical System (RF-MEMS) can be considered one of the best candidates to comply with previous requirements and, under certain conditions, they can completely replace an entire solid-state circuit. RF-MEM devices in general are characterized by a good miniaturization, an easily integration in a standard solid-state circuit, an almost zero power consumption, a good RF linearity and a high quality factor Q.
Concerning RF-MEMS switches RF performances, they exhibit a very low insertion loss, lower than 0.1 dBm up to 60 GHz and, at the same time, a good isolation, more than 20 dBm. From an electrical and mechanical point of view the power consumption of these switches is close to zero because of an “on-state” current around pA and they are almost unaffected by high level of acceleration or deceleration because of their mass that is extremely small. The possibility to integrate the production of these devices in the standard foundry silicon processes and their integration with mature semiconductor technology are a great advantage for their spread making possible to produce them in an easy and cheap way.
Over the last 10 years important developments on MEMS switches have been done all over the world. As a matter of fact, these switches are quite attractive since they combine excellent RF performances and low power consumption of mechanical switches with the small size and low weight of semiconductor devices. However, the appearance of MEMS switches on the market has been hindered by the need for specific packaging as well as by reliability issues. Reliability is a major issue for any satellite since it is almost impossible to envisage any repair work once the spacecraft has been launched. Hence, reliability is a key driver when designing any RF equipment. If we consider a RF-MEMS switch, we have to guarantee that his electromechanical performances will be the same after an intensive usage in harsh environment, for instance after millions or billions of cycles and after the exposure to different kind of radiations. In case of their application in a redundancy scheme, they have to be completely operative even after a long period of activity or inactivity.
The aim of this thesis is to perform an electrical characterization and several reliability tests on different kind of RF-MEMS switches in order to analyze which are the weaknesses and the strengths of this new technology. Electrical characterizations have been done using two different measurement systems. The first, based on a vector network analyzer and a power supply, has been used to test the RF performances of the devices and to extract the actuation and deactuation voltages. The second set up, based on the internal RF signal generator of the VNA, an 8-GHz digital signal oscilloscope and a profilometer (polytec MSA 500), has been used to characterize the electrical performances like actuation time, release delay and dynamic performances.
Cycling stress, one of the most common test used to understand the robustness of this kind of devices, has been performed on different topologies of switch in order to better understand how some parameters of the RF MEMS switch, such as the shape of the beams or the actuation voltage, impact on the reliability of the device. Furthermore, the influence of continuous actuation stress on the reliability of dielectric-less switches has been investigated, comparing different designs and studying the variation of the main electrical parameters induced by the stress and the successive recovery phase.

Concerning PV solar cells
A solar cell, or photovoltaic cell, is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. The operation of a photovoltaic (PV) cell requires 3 basic attributes: (i) the absorption of light, generating either electron-hole pairs or excitons, (ii) the separation of charge carriers of opposite types and (iii) the extraction of those carriers to an external circuit.
Over the last decades, many research groups have tried to improve the conversion processes in order to increase the efficiency of solar cells and to reduce the parasitic effects that limit the energy conversion. This has generated a real challenge to the best conversion efficiency. The average efficiency of multicrystalline silicon solar cells at the beginning of 2014 was about 16% but in research labs different solar cells have exceeded the 20% with records over 24%. The continuous growth of the solar cells efficiency has been achieved thanks to the reliability study of the single cells and to the degradation analysis of the real photovoltaic systems. These studies have revealed the critical points of PV solar cells and have led to a constant improvement of the production processes.
The aim of this thesis is the study of the reliability problems related to a single solar cell and to a string of solar cells subjected to different illumination conditions. Different characterization procedures have been developed in order to study the failure mechanisms and to study the weaknesses and the strengths of the technology. Four types of measurement set-ups have been utilized: (i) the first system is able to extract the IV curves in dark and light conditions. This simple measurement procedure has to be opportunely calibrated in order to obtain right results in term of efficiency and fill factor. (ii) The second system extracts the thermographic image of a single solar cell. It can be used to analyze hot spot and other failure mechanisms in the silicon structure. (iii) The third system extracts the electroluminescence and the photoluminescence of a single solar cell. It is able to extract and analyze the defects in the crystalline structure of the materials. (iv) The fourth is the LOANA system: a commercial tool able to extract the External Quantum Efficiency and the Internal Quantum Efficiency with the measurement of the reflectance.
All these characterization procedures have been utilized to study the evolution of the failure mechanisms when a single solar cell is subjected to reverse biasing stresses. The study of the catastrophic degradation of solar cells submitted to reverse current stress is of crucial importance since the failure can lead to the rapid increase of the temperature with a consequent risk of fire and to the breaking of the entire PV system. This particular situation can occur when the PV system is not uniformly illuminated and the solar cells of the system present not uniform shunt resistance.
Additional studies have been performed in the modelization of a solar cell with the two-diode model. The study and modeling of solar cells allow to obtain right results in term of efficiency and fill factor extrapolation. Moreover, the modelization allows the study of string of solar cells working in particular conditions in which the illumination level is not uniform in a whole panel. The simulations allow to predict the dangerous situations and to design appropriate prevention systems.

Abstract (italiano)

Lo scopo principale di questa tesi è investigare i meccanismi di rottura e l'affidabilità di interruttori RF MEMS e celle solari. I problemi affidabilistici sono spesso considerati dagli sviluppatori un problema secondario nei dispositivi elettronici dal momento che non sono considerati un fattore importante nella catena produttiva. Questo concetto sta cambiando negli ultimi anni visto che gli studi affidabilistici stanno diventando uno step tecnologico per migliorare i processi produttivi stessi. Questo fatto è confermato dagli innumerevoli investimenti che le aziende stanno elargendo per testare i loro prodotti. Nel caso particolare di questa tesi possiamo facilmente menzionare la linea produttiva di una cella solare dove le celle sono soggette a test di affidabilità che estrapolano l'efficienza e il fill factor. Questo permette di studiare le prestazioni delle celle e di conseguenza di migliorare il processo produttivo.

Interruttori RF MEMS
I sistemi di comunicazione Wireless per applicazioni spaziali richiedono componenti elettronici con un alto livello di affidabilità, un consumo di potenza basso e un’occupazione di spazio ridotta in modo da essere integrati in un satellite. Gli interruttori microelettromeccanici (RF-MEMS) possono essere considerati per sostituire i dispositivi meccanici attuali e, in determinate condizioni, possono sostituire un intero circuito a stato solido. I dispositivi RF MEMS in generale sono caratterizzati da una buona miniaturizzazione, una buona capacità di integrazione nei circuiti a stato solido, un consumo di potenza quasi nullo, una buona linearità e una alto fattore di qualità Q.
Riguardo le prestazioni, gli interruttori RF MEMS presentano una bassa perdita per inserzione, minore di 0.1 dBm fino a 60 GHz e, allo stesso tempo, un buon isolamento, maggiore di 20 dBm. Dal punto di vista elettro meccanico il consumo di potenza è vicino allo zero a causa della corrente di "on-state” vicina ai picoAmpere. Inoltre questi dispositivi non risultano disturbati dagli alti livelli di accelerazione e decelerazione (a causa della loro massa molto piccola). La possibilità di integrare la produzione di questi dispositivi nei processi standard di lavorazione del silicio e l'integrazione con tecnologie al silicio ormai mature sono dei grandi vantaggi per la loro diffusione su larga scala e per l'abbattimento dei costi di produzione.
Negli ultimi dieci anni molti miglioramenti sono stati fatti sugli switch MEMS da vari gruppi di ricerca. Gli switch RF MEMS stanno diventando interessanti per le loro prestazioni RF, per il loro basso consumo di potenza, per le piccole dimensioni e basso peso. Nonostante le loro prestazioni, la diffusione sul mercato è stata rallentata per la necessità di package specifici e per i loro problemi di affidabilità. L'affidabilità dei dispositivi RF MEMS è un fattore predominante in applicazioni spaziali dal momento che risulta impossibile qualsiasi intervento di manutenzione una volta che il satellite è stato lanciato. Quindi per applicazioni spaziali l'affidabilità deve essere considerata un fattore dominante nella fase di progettazione di ogni switch MEMS. Infatti dobbiamo garantire che le sue proprietà elettromagnetiche rimangano le stesse dopo un periodo di utilizzo prolungato in ambiente ostile, per esempio dopo milioni o bilioni di cicli e dopo la continua esposizione a diversi tipo di radiazioni. In caso di utilizzo di switch MEMS in schemi di ridondanza, devono essere completamente funzionanti anche dopo un lungo periodo di attività o inattività (mesi o anni).
Lo scopo di questa tesi è di effettuare caratterizzazioni di tipo elettrico e diverse tipologie di stress di affidabilità su switch RF MEMS in modo da studiare la tipologia di dispositivo più promettente e robusta. La caratterizzazione elettrica è stata eseguita utilizzando due diversi sistemi di misura. Il primo, basato su un "Vector network analyzer" e alimentatori, è stato utilizzato per verificare le prestazioni RF dei dispositivi ed estrapolare le tensioni di attuazione e disattuazione dei singoli dispositivi. Il secondo sistema di misura, composto dal generatore interno del "Vector network analyzer", da un oscilloscopio digitale con banda di 8-GHz e un profilometro ottico (polytec MSA 500), è stato utilizzato per caratterizzare le prestazioni elettriche e meccaniche come il tempo di attuazione, il ritardo introdotto in fase di rilascio e le prestazioni dinamiche dei dispositivi.
Lo stress di tipo "Cycling", uno dei test di affidabilità più comuni usato per comprendere la robustezza dei dispositivi, è stato eseguito su differenti tipologie di dispositivi per comprendere come le caratteristiche intrinseche dei dispositivi (per esempio la forma del ponte mobile) possano impattare sull'affidabilità del dispositivo stesso. Oltre a stress di tipo "Cycling" si è studiato l'influenza di stress di attuazione prolungata sull'affidabilità di dispositivi senza dielettrico, comparando differenti design e studiando la variazione dei parametri elettrici indotti dallo stress prolungato e dalle successive fasi di rilassamento dei dispositivi.

Celle Solari
Una cella solare, o cella fotovoltaica, è un dispositivo elettronico che converte l'energia della luce direttamente in energia elettrica attraverso l'effetto fotovoltaico. Il funzionamento delle celle fotovoltaiche richiede 3 principi di base: (i) l'assorbimento della luce, generando coppie elettrone lacuna, (ii) la separazione delle cariche generate e (iii) l'estrazione di queste cariche attraverso un circuito esterno opportunamente dimensionato.
Nelle ultime decadi molti gruppi di ricerca hanno provato ad incrementare il processo di conversione in modo da aumentare l'efficienza delle celle solari e ridurre così gli effetti parassiti che limitano il processo di conversione dell'energia. Tutto questo ha generato una vera e propria corsa alla migliore cella fotovoltaica in termini di efficienza di conversione. L'efficienza media di una cella solare multicristallina all'inizio del 2014 era di circa il 16% ma in alcuni laboratori di ricerca molte celle solari superavano il limite del 20% con record superiori al 24%. La continua crescita dell'efficienza delle celle solari è stata possibile anche grazie agli studi affidabilistici sulla cella solare singola e agli studi eseguiti sui meccanismi di degrado dei sistemi fotovoltaici esistenti. Questi studi hanno permesso di identificare i punti critici delle celle solari e hanno portato ad un costante aumento di prestazione dei processi produttivi.
Lo scopo di questa tesi è lo studio dell'affidabilità delle singole celle fotovoltaiche e di stringhe di celle sottoposte a differenti livelli di illuminazione. Diverse procedure di caratterizzazione sono state sviluppate per studiare i meccanismi di rottura e per studiare i punti di forza e i punti deboli di questa tecnologia. Quattro diversi sistemi di misura sono stati utilizzati: (i) il primi sistema è in grado di estrapolare le curve corrente tensione al buio e in condizione di illuminazione di una singola cella fotovoltaica. Questo sistema di misura apparentemente semplice deve essere opportunamente calibrato in modo da ottenere risultati corretti in termine di efficienza e fill factor. (ii) Il secondo sistema di misura permette di estrarre l'immagine termografica di una singola cella fotovoltaica. Può essere utilizzato per analizzare la presenza di "hot spot" e altri meccanismi di rottura nella struttura cristallina della cella solare. (iii) Il terzo sistema permette di estrarre l'elettroluminescenza e la fotoluminescenza di una singola cella solare. Questo sistema permette di analizzare la presenza di difetti nella struttura cristallina della cella stessa. (iv) Il quarto sistema di misura è il sistema commerciale LOANA (PVTools): questo strumento permette di estrarre l’efficienza quantica esterna e interna attraverso misure di riflettività.
Tutte questi sistemi di misura sono stati utilizzati per studiare l'evoluzione dei meccanismi di rottura quando una singola cella fotovoltaica viene sottoposta a stress in polarizzazione inversa. Lo studio della rottura catastrofica di una cella solare sottoposta a stress in polarizzazione inversa è di cruciale importanza dal momento che la rottura di una singola cella può portare an un aumento repentino della temperatura con conseguente rischio di incendio e rottura dell'intero sistema fotovoltaico. Questa particolare situazione può accadere quando un pannello fotovoltaico non è illuminato in modo uniforme e le singole celle fotovoltaiche presentano resistenza di "shunt" non uniformi in un singolo pannello.
Studi addizionali sono stati eseguiti nella modellizzazione di una singola cella solare con il modello a due diodi. Lo studio e la modellizzazione di una cella solare permette di ottenere risultati corretti in termini di efficienza e fill factor. Inoltre la modellizzazione permette lo studio di stringhe di celle solari che lavorano in particolari condizioni di illuminazione non uniformi all'interno di uno stesso pannello fotovoltaico. Le simulazioni permetto di predire situazioni potenzialmente dannose e quindi di prevedere opportuni circuiti di protezione.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Meneghesso, Gaudenzio
Data di deposito della tesi:19 Gennaio 2015
Anno di Pubblicazione:20 Gennaio 2015
Parole chiave (italiano / inglese):RF MEMS, Microelectronic, Electromechanical, Solar Cells, Reliability, Characterization, Modeling, Photovoltaic.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:7495
Depositato il:13 Nov 2015 12:42
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] G.M. Rebeiz and J.B. Muldavin. RF MEMS switches and switch circuits. Microwave Magazine, IEEE, Vol. 2(4):59-71, Dec 2001. Cerca con Google

[2] R. Plana. What's Hot in RF Components and Systems. Microwave Journal, pages 22-28, 2006. Cerca con Google

[3] R. Ramesham and R. Ghafkian. Challenges in Interconnection and Packaging of Microelectromechanical Systems (MEMS). IEEE Electronic Components and Technology Conference, pages 22-28, 2000. Cerca con Google

[4] J. Maciel. Recent Reliability Results in RF MEMS. Proceedings of the 2005 IEEE MTT-S Int. Microwave Symposium, Workshop Notes, WFE Recent Applications in RF MEMS, June 12-17, 2005. Cerca con Google

[5] Peter Wurfel. Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley-vch, Second Edition, Chapter: Limitations on Energy Conversion in Solar Cells, February 2009. Cerca con Google

[6] S. Sterk, S.W.Glunz, J.Knobloch, and W.Wettling. High efficiency (>22%) Si-solar cells with optimized emitter. Photovoltaic Energy Conversion, Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, Vol. 2:1303-1306, 5-9 Dec, 1994. Cerca con Google

[7] J. Zhao, A. Wang, and M.A. Green. 24% efficient PERL structure silicon solar cells. Photovoltaic Specialists Conference, 1990. Conference Record of the Twenty First IEEE, pages 333-335, 21-25 Dec, 1990. Cerca con Google


[9] G. M. Rebeiz. RF MEMS theory, design and technology. John Wiley e Sons, March 2003. Cerca con Google

[10] J. M. Gere. Mechanics of material, 4th edition. PWS Publishing Company, 1997. Cerca con Google

[11] W.Weaver Jr., S. P. Timoshenko, and D. H. Young. Vibration Problems in Engineering. John Wiley e Sons, New York, 5th edition, 1990. Cerca con Google

[12] S. Duffy, C. Bozler, S. Rabe, J. Knecht, L. Travis, P. Wyatt, C. Keast, and M. Gouker. MEMS microswitches for reconfigurable microwave circuitry. IEEE, Microwave Wireless Comp. Letters, Vol. 11:106-108, 2001. Cerca con Google

[13] Kovacs. Micromachined Transducers Source Book. WCB/McGraw-Hill, Boston, 1998. Cerca con Google

[14] M. Zahn. Electromagnetic Field Theory: A Problem Solving Approach. John Wiley e Sons, New York, 1979. Cerca con Google

[15] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics. Addison-Wesley, Reading, MA, Vol. 2, 1964. Cerca con Google

[16] Msc software corporation, palo alto, ca 94306. Cerca con Google

[17] M. Andrews, I. Harris, and G. Turner. A comparison of squeeze-film theory with measurements on a microstructure. Sensors and Actuators, Vol. 36:79-87, 1993. Cerca con Google

[18] S. Dushman and J. Lafferty. Scientific Foundations of Vacuum Technique. John Wiley e Sons, New York, 1962. Cerca con Google

[19] T. Veijola, H. Kuisma, and J. Lahdenpera. Model for gas film damping in a silicon accelerometer. International Conference on Solid-State Sensors Actuators, Vol. 4:1097-1100, 1997. Cerca con Google

[20] W. S. Griffen, H. H. Richardson, and S. Yamanami. A study of fluid squeeze-film damping. J. Basic Eng. Trans. ASME, pages 451-456, 1966. Cerca con Google

[21] J. J. Blech. On isothermal squeeze films. J. Lubrication Tech., Vol.105:615-620, 1983. Cerca con Google

[22] J. Bergqvist, F. Rudolf, J. Maisana, F. Parodi, and M. Rossi. A silicon condensor microphone with a highly perforated backplate. International Conference on Solid-State Sensors Actuators Digest, pages 266-269, 1991. Cerca con Google

[23] William E. Newell. Miniaturization of tuning forks. Science, Vol. 161:1320-1326, 1968. Cerca con Google

[24] R. T. Howe and R. S. Muller. Resonant-microbridge vapor sensor. IEEE Trans. Electron Devices, Vol. ED-33, 4:499-506, 1986. Cerca con Google

[25] M. H. Sadd and A. K. Stier. Squeeze film dampers: Amplitude effects at low squeeze numbers. Trans. ASME, pages 1366-1370, 1975. Cerca con Google

[26] C. Kittel. Elementary Statistical Physics. John Wiley e Sons, New York, 1958. Cerca con Google

[27] E. K. Chan, E. C. Kan, R. W. Dutton, and P. M. Pinsky. Nonlinear dynamic modeling of micromachined microwave switches. IEEE MTT-S International Microwave Symposium Digest, pages 1511-1514, 1997. Cerca con Google

[28] N. S. Barker. Distributed MEMS Transmission Lines. PhD thesis, University of Michigan, Ann Arbor, MI, 1999. Cerca con Google

[29] L. Castaner and S. Senturia. Speed-energy optimization of electrostatic actuators based on pull-in. IEEE J Microelectromechanical Systems, Vol. 8 No. 3:290-297, 1999. Cerca con Google

[30] R. K. Gupta and S. Senturia. Pull-in time dynamics as a measure of absolute pressure. IEEE 10th International Conference on Microelectromechanical Systems, pages 290-294, 1997. Cerca con Google

[31] David Mardivirin, Arnaud Pothier, Aurelian Crunteanu, Bastien Vialle, and Pierre Blondy. Charging in Dielectricless Capacitive RF-MEMS Switches. IEEE transactions on microwave theory and techniques, Vol. 57(N. 1):231-236, Jan. 2009. Cerca con Google

[32] X. Rottenberg, B. Nauwelaers, W. De Raedt, and H. A. C. Tilmans. Distributed dielectric charging and its impact on RF MEMS devices. Microwave Conference. 34th European, Vol. 1:77-80, 12-14 October 2004. Cerca con Google

[33] Jurgen Wibbeler, Gunter Pfeifer, and Michael Hietschold. Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS). Sensors and Actuators A: Physical, Vol. 71(N. 1-2):74, April 1998. Cerca con Google

[34] Xavier Rottenberg, Ingrid De Wolf, Bart K. J. C. Nauwelaers, Walter De Raedt, and Harrie A. C. Tilmans. Analytical Model of the DC Actuation of Electrostatic MEMS Devices With Distributed Dielectric Charging and Nonplanar Electrodes. Journal Of Microelectromechanical Systems, Vol. 16(N. 5):1243-1253, October 2007. Cerca con Google

[35] A. Tazzoli, V. Peretti, R. Gaddi, A. Gnudi, E. Zanoni, and G. Meneghesso. Reliability Issues in RF-MEMS Switches Submitted to Cycling and ESD Test. Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE International, pages 410-415, 26-30 March 2006. Cerca con Google

[36] A. K. Jonscher. Dielectric relaxation in solids. J. Phys. D, Appl.Phys., Vol. 32:R57-R70, 1999. Cerca con Google

[37] A. Tazzoli, E. Autizi, M. Barbato, G. Meneghesso, F. Solazzi, and P. Farinelli et al. Evolution of electrical parameters of dielectric-less ohmic RF-MEMS switches during continuous actuation stress. Solid State Device Research Conference, 2009. ESSDERC '09. Proceedings of the European, pages 343-346, 14-18 Sept 2009. Cerca con Google

[38] S. Melle, D. De Conto, D. Dubuc, K. Grenier, and O. Vendier et al. Reliability modeling of capacitive RF MEMS. Microwave Theory and Techniques, IEEE Transactions on., Vol. 53(11):3482-3488, 2005. Cerca con Google

[39] R.W. Herfst, P.G. Steeneken, J. Schmitz, A.J.G. Mank, and M. van Gils. Kelvin probe study of laterally inhomogeneous dielectric charging and charge diffusion in RF MEMS capacitive switches. Reliability Physics Symposium, IEEE International, pages 492-495, April 27 -May 1, 2008. Cerca con Google

[40] Z. Olszewski, R. Houlihan, C. Ryan, C. O'Mahony, and R. Duane. Experimental isolation of degradation mechanisms in capacitive microelectromechanical switches. Applied Physics Letter, Vol. 100(233505), 2012. Cerca con Google

[41] M. Barbato, V. Giliberto, and G. Meneghesso. A new measurement set-up to investigate the charge trapping phenomena in RF MEMS packaged switches. Microelectronic Test Structures (ICMTS), 2013. IEEE International Conference on, pages 25-30, 25-28 March 2013, Osaka, 2013. Cerca con Google

[42] W.A. de Groot, J.R. Webster, D. Felnhofer, and E. P. Gusev. Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices. IEEE Trans. Device and Materials Reliability, Vol. 9(2):190-202, 2009. Cerca con Google

[43] C. Ryan, Z. Olszewski, R. Houlihan, C. O'Mahony, and R. Duane. A simple electrical test method to isolate viscoelasticity and creep in capacitive microelectromechanical switches. Applied Physics Letters, Vol. 104(6):061908, 061908-5, 2014. Cerca con Google

[44] D. Mardivirin, A. Pothie, M. El Khatib, A. Crunteanu, O. Vendier, and P. Blondy. Reliability of Dielectric Less Electrostatic Actuators in RF-MEMS Ohmic Switches. Microwave Conference, 2008. EuMC 2008. 38th European, Vol. 9(2):1517-1520, 27-31 Oct. 2008 2008. Cerca con Google

[45] M. Barbato, A. Cester, V. Mulloni, B. Margesin, G. De Pasquale, A. Somà, and G. Meneghesso. Reliability of capacitive RF MEMS switches subjected to repetitive impact cycles at different temperatures. 44th European Solid-State Device Conference, pages 25-30, 22-26 September 2014, Venice, Italy 2014. Cerca con Google

[46] G. De Pasquale, M. Barbato, G. Meneghesso, and A. Somà. Impact wear and other contact effects on the electro-mechanical reliability of MEMS. Design, Test, Integration & Packaging of MEMS/MOEMS, 2-4 April 2014, Cannes Cote d'Azur, France 2014. Cerca con Google

[47] A. Tazzoli, M. Barbato, F. Mattiuzzo, V. Ritrovato, and G. Meneghesso. Study of the actuation speed, bounces occurrences, and contact reliability of ohmic RF-MEMS switches. Microelectronics Reliability, Vol. 50(Issues 9-11):1604-1608, Sept-Nov 2010. Cerca con Google

[48] G. De Pasquale, M. Barbato, V. Giliberto, G. Meneghesso, and A. Soma. Reliability improvement in microstructures by reducing the impact velocity through electrostatic force modulation. Microelectronics Reliability, Vol. 52(Issues 9-10):1808-1811, Sept-Oct 2012. Cerca con Google

[49] F. Giacomazzi, V. Mulloni, S. Colpo, J. Iannacci, B. Margesin, and A. Faes. A Flexible fabrication process for RF-MEMS Devices. Romanian Journal of Information Science and Technology (ROMJIST), Vol. 14(3):259-268, 2011. Cerca con Google

[50] V. Mulloni, J. Iannacci, R. Bartali, V. Micheli, S. Colpo, N. Laidani, and B. Margesin. Gold-based thin multilayers for ohmic contacts in RF-MEMS switches. Microsyst. Technol., Vol. 18:965-971, 2012. Cerca con Google

[51] M. Barbato, V. Giliberto, A. Massenz, F. Di Maggio, M. Dispenza, P. Farinelli, B. Margesin, E. Carpentieri, U.D'Elia, I. Pomona, M. Tuluix, F. Casini, R. Sorrentino, E. Zanoni, and G. Meneghesso. Charge trapping investigation methodology on RF-MEMS switches. 12th International Symposium on RF MEMS and RF Microsystems, June 27-29, Atene 2011. Cerca con Google

[52] P. Blondy, A. Crunteanu, A. Pothier, P. Tristant, A. Catherinot, and C. Champeaux. Effects of atmosphere on the reliability of RF-MEMS capacitive switches. Microwave Conference, 2007. European, pages 1346-1348, 9-12 Oct. 2007. Cerca con Google

[53] M. Qing, T. Quan, C. Tsung-Kuan A., H. John, B. Hanan, K. Rishi, and R. Valluri. Metal contact reliability of RF MEMS switches. Proc. SPIE 6463 Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI, 64630, January 19, 2007. Cerca con Google

[54] K. Jong-Man, L. Sanghyo, B. Chang-Wook, K. Youngwoo, and K. Ypng-Kweon. Cold- and hot-switching lifetime characterizations of ohmic-contact RF MEMS switches. IEICE Electronics Express, 2008, pages 418-423, 2008. Cerca con Google

[55] Z. Yang, D. Lichtenwalner, A. Morris, J. Krim, and A. I. Kingon. Contact degradation in hot/cold operation of direct contact microswitches. Journal of Micromechanics and Microengineering, Vol. 20(10), 2010. Cerca con Google

[56] V. Mulloni, F. Solazzi, F. Ficorella, A. Collini, and B. Margesin. Influence of temperature on the actuation voltage of RF-MEMS switches. Microelectronics Reliability, Vol. 53(4):706-711, 2013. Cerca con Google

[57] M. Barbato, V. Giliberto, A. Cester, and G. Meneghesso. A Combined Mechanical and Electrical Characterization Procedure for Investigating the Dynamic Behavior of RF-MEMS Switches. Device and Materials Reliability, IEEE Transactions on, Vol. 14(1):13-20, March 2014. Cerca con Google

[58] C. Siegel, V. Ziegler, C. Von Wachter, B. Schonlinner, U. Prechtel, and H. Schumacher. Switching speed analysis of low complexity RF-MEMS Switches. German Microwave Conference, GeMiC 2006, Universitat Karlsruhe (TH), March 28-30 2006. Cerca con Google

[59] G. De Pasquale and A. Soma. Dynamic identification of electrostatically actuated MEMS in the frequency domain. Mechanical Systems and Signal Processing, Vol. 24(6):1621-1633, Aug 2010. Cerca con Google

[60] A. Soma and G. De Pasquale. MEMS Mechanical Fatigue: Experimental Results on Gold Microbeams. Microelectromechanical Systems, Journal of, Vol. 18(4):828-835, Aug 2009. Cerca con Google

[61] G. De Pasquale and A. Soma. MEMS Mechanical Fatigue: Effect of Mean Stress on Gold Microbeams. Microelectromechanical Systems, Journal of, Vol. 20(4):1054-1063, Aug 2011. Cerca con Google

[62] C.L. Goldsmith, D.I. Forehand, Z. Peng, J.C.M. Hwang, and I.L. Ebel. High-Cycle Life Testing of RF MEMS Switches. Microwave Symposium, 2007. IEEE/MTT-S International, pages 1805-1808, 3-8 June 2007. Cerca con Google

[63] D. Molinero, C. Palego, X. Luo, C. Shen, J. Hwang, and C. Goldsmith. Long-term RF Burn-in Effects on Dielectric Charging of MEMS Capacitive Switches. Device and Materials Reliability, IEEE Transactions on, Vol. 13(1):310-315, March 2013. Cerca con Google

[64] S. Bastioli, F. di Maggio, P. Farinelli, F. Giacomozzi, B. Margesin, and A. Ocera et al. Design Manufacturing and Packaging of a 5-bit K-Band MEMS Phase Shifter. Microwave Integrated Circuit Conference, 2008. EuMIC 2008. European, pages 338-341, 27-28 Oct 2008. Cerca con Google

[65] J. Iannacci, F. Giacomozzi, S. Colpo, B. Margesin, and M. Bartek. A general purpose reconfigurable MEMS-based attenuator for Radio Frequency and microwave applications. EUROCON 2009, EUROCON '09. IEEE, pages 1197-1205, 18-23 May 2009. Cerca con Google

[66] R. W. Herfst, P. G. Steeneken, M. P. J. Tiggelman, J. Stulemeijer, and J. Schmitz. Fast RF-CV Characterization Through High-Speed 1-port S-parameter Measurements. Semiconductor Manufacturing, IEEE Transactions on, Vol. 25(3):310-316, Aug 2012. Cerca con Google

[67] P. G. Steeneken, Th G. S. M. Rijks, J. T. M. van Beek, M. J. E. Ulenaers, J. DeCoster, and R. Puers. Dynamics and squeeze film gas damping of a capacitive RF MEMS switch. Journal of Micromechanics and Microengineering, Vol. 15(1):176-184, 2005. Cerca con Google

[68] E. Papandreou, M. Lamhamdi, C. M. Skoulikidou, P. Pons, G. Papaioannou, and R. Plana. Structure dependent charging process in RF MEMS capacitive switches. Microelectronics Reliability, Vol. 47(9-11):1812-1817, Sept-Nov 2007. Cerca con Google

[69] E. Brusa, G. De Pasquale, and A. Soma. Experimental characterization of electro-thermo-mechanical coupling in gold RF microswitches. Microelectromechanical Systems, Journal of, Vol. 22(4):919-929, Aug 2013. Cerca con Google

[70] J.L. Ebel, D.J. Hyman, and H.S. Newman. RF MEMS Testing - Beyond the S-Parameters. IEEE Journals & Magazines, Vol. 8(6):76-88, 2007. Cerca con Google

[71] Z.J. Guo, N.E. McGruer, and G.G. Adams. Modeling and Measurement of the Dynamic Performance of an OHMIC Contact-Type RF MEMS Switch. Solid-State Sensors, Actuators and Microsystems Conference. TRANSDUCERS 2007. International, pages 651-654, 10-14 June 2007. Cerca con Google

[72] F. Souchon, B. Reig, C. Dieppedale, L. Thouy, A. Koszewski, H. Sibuet, and G. Papaioannou. Key improvements of the MEMS switch lifetime thanks to a dielectric-free design and contact reliability investigations in hot/cold switching operations. Reliability Physics Symposium (IRPS), 2013 IEEE International, pages 6B.2.1-6B.2.8, 14-18 April 2013. Cerca con Google

[73] Becquerel AE. Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques. Comptes Rendus de LAcademie des Sciences, Vol. 9:145-149, 1839. Cerca con Google

[74] Becquerel AE. Memoire sur les effects d’electriques produits sous l’infuence des rayons solaires. Annalen der Physick und Chemie, Vol. 54:35-42, 1841. Cerca con Google

[75] Christiana Honsberg and Stuart Bowden. Pveducation Vai! Cerca con Google

[76] Adams WG and Day RE. The Action of Light on Selenium. Proceedings of the Royal Society, Vol. A25:113, 1877. Cerca con Google

[77] Fritts CE. On a New Form of Selenium Photocell. American J. of Science, Vol. 26:465, 1883. Cerca con Google

[78] Grondahl LO. The Copper-Cuprous-Oxide Rectifier and Photoelectric Cell. Review of Modern Physics, Vol. 5:141, 1933. Cerca con Google

[79] Bergmann L. Uber eine neue Selen- Sperrschicht Photozelle. Physikalische Zeitschrift, Vol. 32:286, 1931. Cerca con Google

[80] Nix FC. and Treptwo AW. A Thallous Sulphide Photo EMF Cell. Journal Opt. Society of America, Vol. 29:457, 1939. Cerca con Google

[81] Braun F. On Conductance in Metal Sulphides. Ann. d. Physik., Vol. 153:556, 1874. Cerca con Google

[82] Ohl RS. Light-Sensitive Electric Device. U.S. Patent., Vol. 2:402, 602, 1941. Cerca con Google

[83] Kingsbury EF and Ohl RS. Photoelectric Properties of Tonically Bombarded Silicon. Bell Systems Technical Journal., Vol. 31:802-815, 1952. Cerca con Google

[84] Chapin DM, Fuller CS, and Pearson GL. A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics, Vol. 25:676-677, 1954. Cerca con Google

[85] Horzel J, Szlufcik J, Nijs J, and Mertens R. A simple processing sequence for selective emitters. Twenty Sixth IEEE Photovoltaic Specialists Conference, pages 139-142, 1997. Cerca con Google

[86] Ruby DS, Yang P, Zaidi S, Brueck S, Roy M, and Narayanan S. Improved Performance of Self-Aligned, Selective-Emitter Silicon Solar Cells. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 1998. Cerca con Google

[87] Narayanan S, Zolper J, Yun F, Wenham SR, Sproul AB, Chong CM, and Green MA. 18% efficient polycrystalline silicon solar cells. Twenty First IEEE Photovoltaic Specialists Conference, Vol. 1:678-680, 1990. Cerca con Google

[88] Willeke G, Nussbaumer H, Bender H, and Bucher E. A simple and effective light trapping technique for polycrystalline silicon solar cells. Solar Energy Materials and Solar Cells [Internet], Vol. 26:348-356, 1992. Cerca con Google

[89] Hezel R. Recent progress in MIS solar cells. Progress in Photovoltaics: Research and Applications, pages 109-120, 1997. Cerca con Google

[90] Einhaus R, Vazsonyi E, Szlufcik J, Nijs J, and Mertens R. Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions. Twenty Sixth IEEE Photovoltaic Specialists Conference, pages 167-170, 1997. Cerca con Google

[91] Stocks MJ, Carr AJ, and Blakers AW. Texturing of polycrystalline silicon. Solar Energy Materials and Solar Cells [Internet], Vol. 40:33-42, 1996. Cerca con Google

[92] Zhao J, Wang A, and Green MA. 19.8% Efficient Multicrystalline Silicon Solar Cells with Honeycomb Textured Front Surface. 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 1998. Cerca con Google

[93] Fukui K, Inomata Y, and Shirasawa K. Surface texturing using reactive ion etching for multicrystalline silicon solar cells. Twenty Sixth IEEE Photovoltaic Specialists Conference, pages 47-50, 1997. Cerca con Google

[94] Szlufcik J, Sivoththaman S, Nlis JF, Mertens RP, and Van-Overstraeten R. Low-cost industrial technologies of crystalline silicon solar cells. Proceedings-of-the-IEEE, Vol. 85:711-730, 1997. Cerca con Google

[95] Jordan D and Nagle JP. Buried contact concentrator solar cells. Progress in Photovoltaics: Research and Applications, Vol. 2:171-176, 1994. Cerca con Google

[96] Wohlgemuth JH and Narayanan S. Buried contact concentrator solar cells. Twenty Second IEEE Photovoltaic Specialists Conference, Vol. 1:273-277, 1991. Cerca con Google

[97] Verlinden PJ, Swanson RM, and Crane RA. 7000 High Efficiency Cells for a Dream. Progress in Photovoltaics: Research and Applications, Vol. 2:143-152, 1994. Cerca con Google

[98] T. Fellmeth, A. Drews, B. Thaidigsmann, S. Mach, A. Wolf, F. Clement, D. Biro, and R. Preu. Industrially feasible all side passivated silicon based c-MWT concentrator solar cells. Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, pages 3554-3558, 19-24 June 2011. Cerca con Google

[99] D. Biro, B. Thaidigsmann, F. Clement, A. Wolf, and E. Lohmuller et al. MWT meets PERC: towards 20% efficient industrial silicon solar cells. Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, pages 1395-1399, 19-24 June 2011. Cerca con Google

[100] Honsberg CB, Corkish R, and Bremner SP. A New Generalized Detailed Balance Formulation to Calculate Solar Cell Efficiency Limits. 17th European Photovoltaic Solar Energy Conference, 1:22-26, 2001. Cerca con Google

[101] Swanson R. Approaching the 29% limit efficiency of silicon solar cells. Thirty-First IEEE Photovoltaic Specialists Conference, Vol. 1:889-894, 2005. Cerca con Google

[102] Bauer G. Absolutwerte der optischen Absorptionskonstanten von Alkalihalogenidkristallen im Gebiet ihrer ultravioletten Eigenfrequenzen. Annalen der Physik, Vol. 4:434-464, 1934. Cerca con Google

[103] Sims VL Brandhorst EW Broder JD. Wang EY, Yu FTS. Optimum Design of Anti-reflection coating for silicon solar cells. 10th IEEE Photovoltaic Specialists Conference, pages 168-171, 1973. Cerca con Google

[104] McIntosh KR and Baker-Finch SC. OPAL 2: Rapid optical simulation of silicon solar cells. IEEE 38th Photovoltaic Specialists Conference (PVSC), 2012. Cerca con Google

[105] Dale B and Rudenberg HG. High efficiency silicon solar cells. Proceedings of the 14th Annual Power Sources Conference, page 22, 1960. Cerca con Google

[106] Bailey WL, Coleman MG, Harris CB, and Lesk IA. Texture etching of silicon: method. United States Patent: 4137123, page 22, 1979. Cerca con Google

[107] Campbell P and Green MA. Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics, Vol. 2:243, 1987. Cerca con Google

[108] Campbell P and Green MA. High performance light trapping textures for monocrystalline silicon solar cells. Solar Energy Materials and Solar Cells, Vol. 65:369-375, 2001. Cerca con Google

[109] Zhao J, Dai X A. W, Green MA, and Wenham SR. Improvements in Silicon Solar Cell Performance. 22nd IEEE PV Specialists Conference., pages 399-402, 1991. Cerca con Google

[110] Wenham SR and Green MA. Buried contact solar cell. Available from:, Vol. 65:369-375, 1988. Vai! Cerca con Google

[111] Zolper JC, Narayanan S, Wenham SR, and Green MA. 16.7% efficient, laser textured, buried contact polycrystalline silicon solar cell. Applied Physics Letters, Vol. 55:2363, 1989. Cerca con Google

[112] Eades WD and Swanson RM. Calculation of surface generation and recombination velocities at the Si - SiO2 interface. Journal of Applied Physics, Vol. 58:4267, 1985. Cerca con Google

[113] Fossum JG. Physical operation of back-surface-field silicon solar cells. IEEE Transactions on Electron Devices, Vol. 24:322-325, 1977. Cerca con Google

[114] Serreze HB. Optimizing Solar Cell Performance by Simultaneous Consideration of Grid Pattern Design and Interconnect Configurations. 13th IEEE Photovoltaic Specialists Conference., pages 1-8, 1978. Cerca con Google

[115] Lindholm FA., Fossum JG., and Burgess EL. Application of the superposition principle to solar-cell analysis. IEEE Transactions on Electron Devices, Vol. 26:165-171, 1979. Cerca con Google

[116] Sinton RA and Cuevas A. Contactless determination of current voltage characteristics and minority carrier lifetimes in semiconductors from quasi steady state photoconductance data. Applied Physics Letters [Internet], Vol. 69:2510-2512, 1996. Cerca con Google

[117] Baruch P., De Vos A., Landsberg PT., and Parrott JE. On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Materials and Solar Cells, Vol. 36:201-222, 1995. Cerca con Google

[118] Levy MY and Honsberg CB. Rapid and precise calculations of energy and particle x for detailed-balance photovoltaic applications. Solid-State Electronics, Vol. 50:1400-1405, 2006. Cerca con Google

[119] Green MA. Solar cell fill factors: General graph and empirical expressions. Solid-State Electronics, Vol. 24:788-789, 1981. Cerca con Google

[120] Green MA. Accuracy of Analytical Expressions for Solar Cell Fill Factors. Solar Cells, Vol. 7:337-340, 1982. Cerca con Google

[121] Green MA. Solar Cells - Operating Principles, Technology and System Application. Kensington, Australia: University of NSW, 1992. Cerca con Google

[122] Bunea G., Wilson K., Meydbray Y., Campbell M., and Ceuster D.D. Low Light Performance of Mono-Crystalline Silicon Solar Cells. 4th World Conference on Photovoltaic Energy Conference, pages 1312-1314, 2006. Cerca con Google

[123] O. Breitenstein, J.P. Rakotoniaina, M. Kaes, S. Seren, T. Pernau, G. Hahn, W. Warta, and J. Isenberg. Lock-In thermography - A universal tool for local analysis of solar cells. 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 6-10 June 2005. Cerca con Google

[124] A. Simo and S. Martinuzzi. Hot spots and heavily dislocated regions in multicrystalline silicon cells. Photovoltaic Specialists Conference, Conference Record of the Twenty First IEEE, Vol. 1:21-25, May 1990. Cerca con Google

[125] M. Danner and K. Bucher. Reverse characteristics of commercial silicon solar cells-impact on hot spot temperatures and module integrity. Photovoltaic Specialists Conference, Conference Record of the Twenty Sixth IEEE, pages 1137-1140, 29 Sep-3 Oct 1997. Cerca con Google

[126] E.L. Meyer and E. Ernest van Dyk. The effect of reduced shunt resistance and shading on photovoltaic module performance. Photo-voltaic Specialists Conference, Conference Record of the Thirty first IEEE, pages 1331-1334, 3-7 Jan. 2005. Cerca con Google

[127] D.D. Nguyen and B. Lehman. Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions. Computers in Power Electronics, COMPEL, pages 295-299, 16-19 Jan. 2006. Cerca con Google

[128] M. C. Alonso Garcia, W. Herrmann, W. Bohmer, and B. Proisy. Thermal and electrical effects caused by outdoor hot-spot testing in associations of photovoltaic cells. Progress in Photovoltaics: Research and Applications, Vol. 11(5):293-307, 2003. Cerca con Google

[129] M. Barbato, M. Meneghini, A. Cester, G. Mura, E. Zanoni, and G. Meneghesso. Influence of Shunt Resistance on the Performance of an Illuminated String of Solar Cells: Theory, Simulation, and Experimental Analysis. Device and Materials Reliability, IEEE Transactions on, Vol. 14(4):942 - 950, Dec. 2014. Cerca con Google

[130] T.J. McMahon, T.S. Basso, and S.R. Rummel. Cell shunt resistance and photovoltaic module performance. Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, 13-17 May 1996:1291-1294, 1996. Cerca con Google

[131] M. Haouari-Merbah, M. Belhamel, I. Tobias, and Jm. Ruiz. Method of extraction and analysis of solar cell parameters from the dark current-voltage curve. Spanish Conference on Electron Devices, pages 275-277, 2-4 Feb. 2005. Cerca con Google

[132] Erees Q.B. Macabebe and Van Dyk E. Ernest. Parameter extraction from dark current-voltage characteristics of solar cells. S. Afr. j. sci. [online], Vol. 104(n. 9-10):401-404, 2008. Cerca con Google

[133] A. Kaminski, J.J. Marchand, A. Fave, and A. Laugier. New method of parameters extraction from dark I-V curve. Conference Record of the Twenty-Sixth IEEE Photovoltaic Specialists Conference, pages 203-206, 29 Sep. - 3 Oct. 1997. Cerca con Google

[134] Ewa Radziemska. Dark I-U-T measurements of single crystalline silicon solar cells. Energy Conversion and Management, Vol. 46(n. 9-10):1485-1494, 2005. Cerca con Google

[135] J. Shewchun, R. Singh, D. Burk, and F. Scholz. Temperature dependence of the current-voltage characteristics of silicon MIS solar cells. Appl. Phys. Lett., Vol. 35(n. 416), 1979. Cerca con Google

[136] M. Barbato, M. Meneghini, V. Giliberto, D. Giaffreda, P. Magnone, and et al. Effect of shunt resistance on the performance of mc-Silicon solar cells: a combined electro-optical and thermal investigation.38th IEEE Photovoltaic Specialists Conference, pages 1241 - 1245, 2012. Cerca con Google

[137] A. Compagnin, M. Meneghini, M. Barbato, V. Giliberto, and et al. A. Cester. Thermal and electrical investigation of the reverse bias degradation of silicon solar cells. Microelectronics Reliability, Vol. 53(9-11):1809-1813, September-November 2013. Cerca con Google

[138] F. Fertig, S. Rein, M. Schubert, and W. Warta. Impact of junction breakdown in multi-crystalline silicon solar cells on hot spot formation and module performance. 26th European Photovoltaic Solar Energy Conference, pages 1168-1178, 2011. Cerca con Google

[139] A. Johansson, R. Gottschalg, and D.G. Infield. Modeling shading on amorphous silicon single and double junction modules. 3rd World Conference on Photovoltaic Energy Conversion, Vol. 2:1934-1937, 2003. Cerca con Google

[140] M. Langenkamp and O. Breitenstein. Classification of shunting mechanisms in crystalline silicon solar cells. Solar Energy Materials and Solar Cells, Vol. 72(Issues 1-4):433-440, April 2002. Cerca con Google

[141] S. Grober, D. Lausch, M.Werner, S. Swatek, M. Mergner, and et al. Shunt Analysis in Solar Cells - Electro-Optical Classification and High Resolution Defect Diagnostics. Energy Procedia, Vol. 27:7 - 12, 2012. Cerca con Google

Versioni disponibili di questo documento

  • Characterization, modeling and reliability of RF MEMS Switches and Photovoltaic Silicon Solar Cells. (deposited 13 Nov 2015 12:42) [Attualmente visualizzato]

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record