Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Bisi, Davide (2015) Characterization of Charge Trapping Phenomena in GaN-based HEMTs. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF - Versione sottomessa
Tesi non accessible fino a 28 Gennaio 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

13Mb

Abstract (inglese)

This dissertation reports on charge-trapping phenomena and related parasitic effects in AlGaN/GaN high electron mobility transistors. By means of static and pulsed I-V measurements and deep-level transient spectroscopy, the main charge-trapping mechanisms affecting the dynamic performance of GaN-based HEMTs devoted to microwave and power switching applications have been comprehensively characterized, identifying the nature and the localization of the deep-levels responsible for the electrically active trap-states.
A high-voltage measurement system capable for double-pulsed ID-VD, ID-VG and drain-current transient spectroscopy has been successfully designed and implemented.
A characterization methodology, including the analysis of static I-V measurements, pulsed I-V measurements, and deep-level transient spectroscopy, has been developed to investigate the impact of voltage, current, and temperature on the parasitic effects of charge-trapping (threshold voltage instabilities, dynamic on-resistance increase, and transconductance reduction), and on trapping/detrapping kinetics. Experimental results gathered on transistor structures are supported by complementary capacitance deep-level transient spectroscopy (C-DLTS) performed on 2-terminal diode (FATFET) structures.
Two main case-studies have been investigated. Schottky-gated AlGaN/GaN HEMTs grown on silicon carbide substrate employing iron and/or carbon doped buffers devoted to microwave applications, and MIS-gated double-heterostructure AlGaN/GaN/AlGaN HEMTs grown on silicon substrate devoted to power switching applications. The devices under test have been exposed to the complete set of current-voltage regimes experienced during the real life operations, including off-state, semi-on-state, and on-state.
The main novel results are reported in the following:
• Identification of a charge-trapping mechanism promoted by hot-electrons. This mechanism is critical in semi-on-state, with the combination of relatively high electric-field and relatively high drain-source current.
• Identification of a positive temperature-dependent charge-trapping mechanism localized in the buffer-layer, potentially promoted by the vertical drain to substrate potential. This mechanism is critical in high drain-voltage off-state bias in high temperature operations.
• Identification of deep-levels and charge-trapping related to the presence of doping compensation agents (iron and carbon) within the GaN buffer layer.
• Identification of charge-trapping mechanism ascribed to the SiNX and/or Al2O3 insulating layers of MIS-gated HEMTs. This mechanism is promoted in the on-state with positive gate-voltage and positive gate leakage current.
• Identification of a potential charge-trapping mechanism ascribed to reverse gate leakage current in Schottky-gate HEMTs exposed to high-voltage off-state.
• The characterization of surface-traps in ungated and unpassivated devices by means of drain-current transient spectroscopy reveals a non-exponential and weakly thermally-activated detrapping behaviour.
• Preliminary synthesis of a degradation mechanism characterized by the generation of defect-states, the worsening of parasitic charge-trapping effects, and the degradation of rf performance of AlGaN/GaN HEMTs devoted to microwave operations. The evidence of this degradation mechanism is appreciable only by means of rf or pulsed I-V measurements: no apparent degradation is found by means of DC analysis.

Abstract (italiano)

Sfruttando le proprietà fisiche dei III-nitruri, fra cui l’ampio band-gap (3.4 eV per il GaN), i dispositivi basati su eterostrutture AlGaN/GaN sono devoti per applicazioni ad alta potenza ed alta frequenza, sia per sistemi a microonde (radar, comunicazioni satellitari, base-station, etc.), sia per sistemi di conversione dell’energia elettrica (ad esempio, convertitori buck/boost). Tuttavia, a causa della complesse condizioni di crescita epitassiale (legate intrinsecamente alla natura dei materiali III-nitruri), gli strati epitassiali presentano una difettosità cristallografica ed una concentrazione di stati-trappola relativamente alta. Questo si traduce nella presenza di meccanismi parassiti, intrappolamento di carica e correnti di leakage, potenzialmente pericolosi sia per le prestazioni dinamiche, sia per l’affidabilità a lungo termine dei dispositivi.

Per effettuare una caratterizzazione esaustiva dei fenomeni parassiti ed individuarne quindi le cause, le tecniche di caratterizzazione impiegate sono l’analisi delle caratteristiche ID-VD, ID-VG, e IG-VG statiche ed impulsate, e la spettroscopia dei livelli profondi (DLTS, Deep-Levels Transient Spectroscopy).

I risultati originali salienti ottenuti nel corso dei tre anni di attività di ricerca sono riportati in questa Tesi di Dottorato sono riportati in seguito:

• Sviluppo di un sistema di misura impulsato ad alta tensione (fino a 600V), fondamentale per lo studio delle caratteristiche dinamiche di dispositivi destinati ad operare in regimi di alta tensione (> 100 V). Tramite l’impiego di generatori di forme d’onda, amplificatori di potenza, sonda differenziale ad alta-tensione, ed oscilloscopio, è stato istallato un banco misura in grado di eseguire la caratterizzazione Double-Pulse I-V e la spettroscopia dei livelli profondi tramite l’acquisizione nel dominio del tempo della corrente di drain eseguita a diverse temperature. Il sistema permette una finestra di acquisizione temporale compresa fra 1 µs e 100 s per misure fino a 200V e fra 20 µs e 100s per misure fino a 600V.
• Definizione di un protocollo di caratterizzazione per ottenere informazioni sulla localizzazione degli stati trappola all’interno della struttura epitassiale, e sull’identificazione dei meccanismi che provocano i fenomeni di intrappolamento. Il protocollo include (i) l’analisi delle correnti di leakage proveniente dai 3 terminali (gate, source e substrato), (ii) l’analisi della subthreshold-slope e dei fenomeni di canale corto (DIBL e subthreshold leakage), (iii) l’analisi degli effetti dei meccanismi di intrappolamento sui parametri elettrici dinamici (spostamento della tensione di soglia e degrado della transconduttanza), e (iv) l’analisi dei livelli profondi e la comparazione con un database che raccoglie i dati pubblicati in letteratura.
• Individuazione di un meccanismo di trapping promosso dalla corrente di leakage di gate. Questo meccanismo è critico durante il funzionamento OFF-state in dispositivi che impiegano gate realizzati tramite giunzione Schottky metallo-semiconduttore.
• Individuazione di un meccanismo di trapping promosso da elettroni caldi. Questo meccanismo è critico durante il funzionamento SEMI-ON-state, nel quale sono presenti contemporaneamente alti livelli di campo elettrico e alti livelli di corrente di canale.
• Individuazione di un meccanismo di intrappolamento localizzato nel buffer, e causato potenzialmente dal campo elettrico verticale generato fra drain e substrato. Questo meccanismo è critico durante il funzionamento ad alta tensione ed alta temperatura in dispositivi realizzati su substrati in silicio (scarsamente isolanti).
• Individuazione di stati trappola strettamente correlati alla presenza di agenti droganti (Ferro e Carbonio) all’interno degli strati GaN buffer. I livelli profondi introdotti dal processo di drogaggio sono il livello EC - 0.6 eV per il Ferro, e i livelli EC - 0.8 eV ed EV + 0.9 eV per il Carbonio.
• Individuazione di un meccanismo di trapping dovuto all’intrappolamento di carica negli strati isolanti nelle tecnologie MIS-HEMT. Durante il funzionamento ON-state, con il gate polarizzato con tensioni fortemente positive, elettroni vengono intrappolati nei difetti di interfaccia o dell’ossido promuovendo forti variazioni della tensione di soglia. Lo sviluppo di strati dielettrici con bassa concentrazione di stati trappola è un punto chiave per il successo della tecnologia MIS-HEMT.
• Sintesi preliminare di un meccanismo di degrado probabilmente promosso da fenomeni di canale corto e correnti parassite di sotto-soglia, le quali provocano la generazione di difetti cristallografici, il peggioramento dei fenomeni di intrappolamento di carica e il relativo peggioramento delle performance RF.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Meneghesso, Gaudenzio
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:31 Gennaio 2015
Parole chiave (italiano / inglese):GaN, HEMT, trapping, deep-level, DLTS, double-pulse, MIS, iron, carbon, buffer, surface, high-voltage, hot-electrons, leakage
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:7510
Depositato il:16 Nov 2015 12:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M. Riordan, L. Hoddeson, Crystal Fire: The Invention of the Transistor and the Birth of the Information Age.: New York and London: W. W. Norton, 1998. Cerca con Google

[2] N. F. Mott, "The theory of crystal rectifiers," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 171, p. 27, 1939. Cerca con Google

[3] J. E. Lilienfeld, "Method and apparatus for controlling electric currents," 1,745,175, 1926. Cerca con Google

[4] J. Bardeen, "Semiconductor research leading to the point contact transistor," in Nobel Lecture, 1956, p. 318. Cerca con Google

[5] W. Shockley, "Transistor technology evokes new physics," in Nobel Lecture, 1956, p. 344. Cerca con Google

[6] G. K. Teal, J. B. Little, "Growth of Germanium Single Crystals," Physical Review, vol. 78, p. 647, 1950. Cerca con Google

[7] M. Tanenbaum, D. E. Thomas, "Diffused Emitter and Base Silicon Transistors.," Bell System Technical Journal, vol. 35, p. 1, 1956. Cerca con Google

[8] I. M. Ross, "The Invention of the Transistor," Proceedings of the IEEE, vol. 86, p. 7, 1998. Cerca con Google

[9] W. A. Adcock, M. E. Jones, J. W. Thornhill, E. D. Jackson, "Silicon transistor," Proceedings of the IRE, vol. 42, p. 1192, 1954. Cerca con Google

[10] Henry C. Theurer, "Method of Processing Semiconductive Materials," 3,060,123, 1952. Cerca con Google

[11] Dawon Kahng, "Electric Field Controlled Semiconductor Device," 3,102,230, 1963. Cerca con Google

[12] C. A. Mead, "Schottky barrier gate field effect transistor," Proceedings of the IEEE, vol. 54, p. 307, 1966. Cerca con Google

[13] F. Schwierz, J. J. Liou, "Semiconductor devices for RF applications: evolution and current status," Microelectronics Reliability, vol. 41, p. 145, 2001. Cerca con Google

[14] R. Dingle, H. L. Störmer, A. C. Gossard, W. Wiegmann, "Electron mobilities in modulationdoped semiconductor heterojunction superlattices," Appl. Phys. Lett., vol. 33, p. 665, 1978. Cerca con Google

[15] W. P. Mccray, "MBE deserves a place in the history book," Nature nanotechnology, vol. 2, p. 259, 2007. Cerca con Google

[16] T. Mimura, "The Early History of the High Electron Mobility Transistor (HEMT)," IEEE Trans. on Microwave Theory and Techniques, vol. 50, p. 780, 2002. Cerca con Google

[17] A. Ketterson, M. Moloney, W. T. Masselink, C. K. Peng, J. Klem, R. Fisher, W. Kopp, H. Morkoc, "High Transconductance InGaAs/AlGaAs Pseudomorphic Modulation-Doped Field-Effect Transistor," IEEE Electron Device Lett., vol. 6, p. 628, 1985. Cerca con Google

[18] P. C. Chao et al., in IEEE Electron Device Meeting (IEDM), 1987, p. 410. Cerca con Google

[19] J. A. del Alamo, "Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies," in Proceedings of the ESSCIRC 2013, 2013, p. 16. Cerca con Google

[20] P. D. Ye, G. D. Wilk, J. Kwo, B. Yang, H.-J. L. Gossmann, M. Frei, S. N. G. Chu, J. P. Mannaerts, M. Sergent, M. Hong, K. K. Ng, J. Bude, "GaAs MOSFET With Oxide Gate Dielectric Grown by Atomic Layer Deposition," IEEE Electron Device Lett., vol. 24, p. 209, 2003. Cerca con Google

[21] J. A. del Alamo, D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, J. Lin, W. Lu, A. Vardi, X. Zhao, "InGaAs MOSFETs for CMOS: Recent Advances in Process Technology," in IEEE Electron Device Meeting, 2013, p. 2.1.1. Cerca con Google

[22] S. Datta, "Recent Advances in High Performance CMOS Transistors: From Planar to Non-Planar," Electrochem. Soc. Interface, p. 41, 2013. Cerca con Google

[23] W. C. Johnson, J. B. Parson, M. C. Crew, Journal of Physical Chemistry, vol. 36, p. 2561, 1932. Cerca con Google

[24] H. P. Maruska, J. J. Tietjen, "The Preparation and Properties of Vapor-Deposited Single Crystal-Line GaN," Appl. Phys. Lett., vol. 15, p. 327, 1969. Cerca con Google

[25] H. P. Maruska, "A brief history of GaN blue light-emitting diodes," Office of Navil Research. National Compound Semiconductor Roadmap. Cerca con Google

[26] S. Nakamura, M. R. Krames, "History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination," Proceedings of the IEEE, vol. 101, p. 2211, 2013. Cerca con Google

[27] M. Asif Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson , "High electron mobility transistor based on a GaN-AIGaN heterojunction," Appl. Phys. Lett., vol. 63, p. 1214, 1993. Cerca con Google

[28] A. Bykhovski, B. Gelmont, M. Shur, "Strain and charge distribution in GaN‐AlN‐GaN semiconductor‐insulator‐semiconductor structure for arbitrary growth orientation," Appl. Phys. Lett., vol. 63, p. 2243, 1993. Cerca con Google

[29] B. Ozpineci, L. M. Tolbert, Comparison of wide-bandgap semiconductors for power electronics applications. United States: Department of Energy, 2004. Cerca con Google

[30] Y. Cordier, T. Fujishima, B. Lu, E. Matioli, T. Palacios, III-Nitride Semiconductors and their Modern Devices, Capter 11: Nitride-based electron devices for high-power/high-frequency applications. Oxford, United Kingdom: Oxford University Press, 2013. Cerca con Google

[31] U. K. Mishra, L. Shen, T.E. Kazior, Yi-Feng Wu, "GaN-Based RF Power Devices and Amplifiers," Proceedings of the IEEE, vol. 96, no. 2, pp. 287-305, 2008. Cerca con Google

[32] H. Okumura, "Present Status and Future Prospect of Widegap Semiconductor High-Power Devices," J. J. Appl. Phys., vol. 45, p. 7565, 2006. Cerca con Google

[33] K. Motoki, "Development of gallium nitride substrates," SEI Tech. Rev, vol. 70, p. 28, 2010. Cerca con Google

[34] S.C. Binari, J. M. Redwing, G. Kelner, W. Kruppa, "AlGaN/GaN HEMTs grown on SiC substrates," Electronics Letters, vol. 33, no. 3, p. 242, 1997. Cerca con Google

[35] S. Kaiser, M. Jakob, J. Zweck, W. Gebhardt, O. Ambacher, R. Dimitrov, A. T. Schremer, J. A. Smart, J. R. Shealy, "Structural properties of AlGaN/GaN heterostructures on Si(111) substrates suitable for high-electron mobility transistors," J. Vac. Sci. Technol. B, vol. 18, p. 733, 2000. Cerca con Google

[36] M. Van Hove, X. Kang, S. Stoffels, D. Wellekens, N. Ronchi, R. Venegas, K. Geens, S. Decoutere, "Fabrication and Performance of Au-Free AlGaN/GaN-on-Silicon Power Devices With Al2O3 and Si3N4/Al2O3 Gate Dielectrics," IEEE Trans. Electron Devices, vol. 60, no. 10, p. 3071, 2013. Cerca con Google

[37] T. Nakamura, K. Motoki, "GaN Sunstrate Technologies for Optical Devices," Proceedings of the IEEE, vol. 101, no. 10, p. 2221, 2013. Cerca con Google

[38] T. Paskova, D. A. Hanser, R. Evans, "GaN Substrates for III-Nitride Devices," Proceedings of the IEEE, vol. 98, no. 7, p. 1324, 2010. Cerca con Google

[39] S. Chowdhury, U. K Mishra, "Lateral and Vertical Transistors Using the AlGaN/GaN Heterostructure," IEEE Trans. Electron Devices, vol. 60, no. 10, p. 3060, 2013. Cerca con Google

[40] S. Yoshida, S. Misawa, S. Gonda , "Epitaxial growth of GaN/AlN heterostructures," J. Vac. Sci. Technol. B, vol. 1, p. 250, 1983. Cerca con Google

[41] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda , "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett., vol. 48, p. 353, 1986. Cerca con Google

[42] Eric Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, M. Leroux, P. Gibart, "Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy," Appl. Phys. Lett., vol. 79, p. 3230, 2001. Cerca con Google

[43] A. D. Bykhovski, B. L. Gelmont, M. S. Shur, "Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices," J. Appl. Phys., vol. 81, p. 6332, 1997. Cerca con Google

[44] T. Egawa, "Heteroepitaxial growth and power electronics using AlGaN/GaN HEMT on Si," in IEEE Electron Device Meeting (IEDM 2012), 2012, p. 27.1.1. Cerca con Google

[45] S. Heikman, S. Keller, T. Mates, S.P. DenBaars, U.K. Mishra, "Growth and characteristics of Fe-doped GaN," J. Cryst. Growth, vol. 248, p. 513, 2003. Cerca con Google

[46] A.E. Wickenden, D.D. Koleske, R.L. Henry, M.E. Twigg, M. Fatemi, "Resistivity control in unintentionally doped GaN films grown by MOCVD," vol. 260, p. 54, 2004. Cerca con Google

[47] J. Liu, Y. Zhou, J. Zhu, K. M. Lau, K. J. Chen, "AlGaN/GaN/InGaN/GaN DH-HEMTs With an InGaN Notch for Enhanced Carrier Confinement," IEEE Electron Device Lett., vol. 27, p. 10, 2006. Cerca con Google

[48] J. Kuzmik, "Power Electronics on InAlN/(In)GaN: Prospect for a Record Performance," IEEE Electron Device Lett., vol. 22, p. 510, 2001. Cerca con Google

[49] T. Lim, R. Aidam, P. Waltereit, T. Henkel, R. Quay, R. Lozar, T. Maier, L. Kirste, O. Ambacher, "GaN-Based Submicrometer HEMTs With Lattice-Matched InAlGaN Barrier Grown by MBE," IEEE Electron Device Lett., vol. 31, p. 671, 2010. Cerca con Google

[50] M. H. Wong, S. Keller, Nidhi, S. Dasgupta, D. J. Denninghoff, S. Kolluri, D. F. Brown, J. Lu, N. A. Fichtenbaum, E. Ahmadi1, U. Singisetti, A. Chini, S. Rajan, S. P. DenBaars, J. S. Speck, U. Mishra, "N-polar GaN epitaxy and high electron mobility transistors," Semicond. Sci. Technol., vol. 28, p. 074009, 2013. Cerca con Google

[51] S. Keller, H. Li, M. Laurent, Y. Hu, N. Pfaff, J. Lu, D. F. Brown, N. A. Fichtenbaum, J. S. Speck, S. P. DenBaars, U. K. Mishra, "Recent progress in metal-organic chemical vapor deposition of N-polar group-III nitrides," Semicond. Sci. Technol., vol. 29, p. 113001, 2014. Cerca con Google

[52] I. Ben-Yaacov, Y.-K. Seck, U. K. Mishra, S. P. DenBaars, "AlGaN/GaN current aperture vertical electron transistors with regrown channels," J. Appl. Phys., vol. 95, p. 2073, 2004. Cerca con Google

[53] B. S. Eller, J. Yang, R. J. Nemanich , "Electronic surface and dielectric interface states on GaN and AlGaN," J. Vac. Sci. Technol., vol. 31, p. 050807, 2013. Cerca con Google

[54] T.-H. Hung, P. S. Park, S. Krishnamoorthy, D. N. Nath, S. Rajan, "Interface Charge Engineering for Enhancement-Mode GaN MISHEMTs," IEEE Electron Device Lett., vol. 35, p. 312, 2014. Cerca con Google

[55] H. Huang, Y. C. Liang, G. S. Samudra, et al., "Design of Novel Normally-off AlGaN/GaN HEMTs with Combined Gate Recess and Floating Charge Structures," in IEEE 10th International Conference on Power Electronics and Drive Systems, 2013, p. 555. Cerca con Google

[56] M. Capriotti, A. Alexewicz, C. Fleury, M. Gavagnin, O. Bethge, D. Visalli, J. Derluyn, H. D. Wanzenböck, E. Bertagnolli, D. Pogany, G. Strasser, "Fixed interface charges between AlGaN barrier and gate stack composed of in situ grown SiN and Al2O3 in AlGaN/GaN high electron mobility transistors with normally off capability," Appl. Phys. Lett., vol. 104, p. 113502, 2014. Cerca con Google

[57] X. Liu, S. H. Chan, F. Wu, Y. Li, S. Keller, J. S. Speck, U. K. Mishra, "Metalorganic chemical vapor deposition of Al2O3 using trimethylaluminum and O2 precursors: Growth mechanism and crystallinity," J. Cryst. Growth, vol. 408, p. 78, 2014. Cerca con Google

[58] B. Lu, E. Matioli, T. Palacios, "Tri-Gate Normally-Off GaN Power MISFET," IEEE Electron Device Lett., vol. 33, p. 360, 2012. Cerca con Google

[59] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, D. Ueda, "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Trans. Electron Devices, vol. 54, p. 3393, 2007. Cerca con Google

[60] C. G. Van de Walle, J. Neugebauer, "First-principles calculations for defects and impurities: Applications to III-nitrides," J. Appl. Phys., vol. 95, p. 3851, 2004. Cerca con Google

[61] M. A. Reshchikov, H. Morkoç , "Luminescence properties of defects in GaN," J. Appl. Phys., vol. 97, p. 061301, 2005. Cerca con Google

[62] Y. S. Puzyrev, T. Roy, M. Beck, B. R. Tuttle, R. D. Schrimpf, D. M. Fleetwood, S. T. Pantelides, "Dehydrogenation of defects and hot-electron degradation in GaN high-electron-mobility transistors," J. Appl. Phys., vol. 109, p. 034501, 2011. Cerca con Google

[63] Puzyrev et al., "Gate Bias Dependence of Defect-Mediated Hot-Carrier Degradation in GaN HEMTs," IEEE Trans. Electron Devices, vol. 61, p. 1316, 2014. Cerca con Google

[64] K. Laaksonen, M. G. Ganchenkova, R. M. Nieminen, "Vacancies in wurtzite GaN and AlN," J. Phys.: Condens. Matter, vol. 21, p. 015803, 2009. Cerca con Google

[65] A. F. Wright, U. Grossner, "The effect of doping and growth stoichiometry on the core structure of a threading edge dislocation in GaN," Appl. Phys. Lett., vol. 73, p. 2751, 1998. Cerca con Google

[66] K. Leung, A. F. Wright, E. B. Stechel , "Charge accumulation at a threading edge dislocation in gallium nitride," Appl. Phys. Lett., vol. 74, p. 2495, 1999. Cerca con Google

[67] C. B. Soh, S. J. Chua, H. F. Lim, D. Z. Chi, W. Liu, S. Tripathy, "Identification of deep levels in GaN associated with dislocations," J. Phys.: Condens. Matter, vol. 16, no. 34, pp. 6305–6315, 2004. Cerca con Google

[68] O. Yastrubchak, T. Wosiński, A. Makosa, T. Figielski, S. Porowski, I. Grzegory, R. Czernecki, P. Perlin, "Capture kinetics at deep-level electron traps in GaN-based laser diode," Phys. Stat. Sol. (c), vol. 4, no. 8, p. 2878, 2007. Cerca con Google

[69] C. Wetzel, T. Suski, J. W. Ager III, E. R. Weber, E. E. Haller, S. Fischer and B. K. Meyer, R. J. Molnar, P. Perlin, "Pressure Induced Deep Gap State of Oxygen in GaN," Phys. Rev. Lett., vol. 78, p. 3923, 1997. Cerca con Google

[70] C. G. Van de Walle, "DX-center formation in wurtzite and zinc-blende AlxGaNxN," Phys. Rev. B, vol. 57, p. 2033, 1998. Cerca con Google

[71] J. L. Lyons, A. Janotti, C. G. Van de Walle, "Effects of carbon on the electrical and optical properties of InN, GaN, and AlN," Phys. Rev. B, vol. 89, p. 035204, 2014. Cerca con Google

[72] J. Neugebauer, C. G. Van de Walle, "Hydrogen in GaN: Novel Aspects of a Common Impurity," Phys. Rev. B, vol. 75, p. 4452, 1995. Cerca con Google

[73] A. F. Wright, "Substitutional and interstitial carbon in wurtzite GaN," J. Appl. Phys., vol. 92, p. 2575, 2002. Cerca con Google

[74] J. Baur, M. Kunzer, K. Maier, U. Kaufmann, J. Schneider, "Determination of the GaN/AIN band discontinuities via the ( -/0) acceptor level of iron," Material Science and Engineering, vol. B29, p. 61, 1995. Cerca con Google

[75] R. Heitz, P. Maxim, L. Eckey, P. Thurian, A. Hoffmann, and I. Broser, "Excited states of Fe3+ in GaN," Phys. Rev. B, vol. 55, no. 7, pp. 4382-4387, 1997. Cerca con Google

[76] J. Lu, M. Gao, J. Zhang, Y. Wang, Z. Yu, "First-principles calculations for effects of Fluorine impurity in GaN," in International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2008, p. 233. Cerca con Google

[77] K.-H. Hong, I. Hwang, H. S. Choi et al., "Impacts of fluorine on GaN high electron mobility transistors: Theoretical study," Phys Status Solidi RRL, vol. 4, p. 332, 2010. Cerca con Google

[78] E. Vianello, F. Driussi, P. Blaise, P. Palestri, D. Esseni, L. Perniola, G. Molas, B. De Salvo, L. Selmi, "Explanation of the Charge Trapping Properties of Silicon Nitride Storage Layers for NVMs—Part II: Atomistic and Electrical Modeling," IEEE Trans. Electron Devices, vol. 58, p. 2490, 2011. Cerca con Google

[79] M. Choi, A. Janotti, C. G. Van de Walle, "Native point defects and dangling bonds in -Al2O3," J. Appl. Phys., vol. 113, p. 044501, 2013. Cerca con Google

[80] M. Choi, J. L. Lyons, A. Janotti, C. G. Van de Walle, "Impact of carbon and nitrogen impurities in high- dielectrics on metal-oxide-semiconductor devices," Appl. Phys. Lett., vol. 102, p. 142902, 2013. Cerca con Google

[81] W. Shockley, W. T. Read, "Statistics of the Recombinations of Holes and Electrons," Phys. Rev., vol. 87, p. 835, 1952. Cerca con Google

[82] Hadis Morkoc, Handbook of Nitride Semiconductors and Devices, Vol. 1.: Wiley-VCH, 2008. Cerca con Google

[83] E. Fred Schubert, Doping in III-V Semiconductors.: Cambridge University Press, 1993. Cerca con Google

[84] T. Grasser, "Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities," Microelectronics Reliability, vol. 52, p. 39, 2012. Cerca con Google

[85] C. H. Henry, D. V. Lang, "Nonradiative capture and recombination by multiphonon emission in GaAs and GaP," Physical Review B, vol. 15, no. 2, p. 989, 1977. Cerca con Google

[86] O. Mitrofanov, M. Manfra, "Poole-Frenkel electron emission from the traps in AlGaN/GaN transistors," J. Appl. Phys., vol. 95, no. 11, p. 6414, 2004. Cerca con Google

[87] N. Ikeda, Y. Niiyama, H. Kambayashi, Y. Sato, T. Nomura, S. Kato, S. Yoshida, "GaN Power Transistors on Si Substrates for Switching Applications," Proceedings of the IEEE, vol. 98, no. 7, pp. 1151-1161, 2010. Cerca con Google

[88] A. Sasikumar, A. Arehart, S.A Ringel, S. Kaun, M. H. Wong, U. K. Mishra, J.S. Speck, "Direct correlation between specific trap formation and electric stress-induced degradation in MBE-grown AlGaN/GaN HEMTs," IEEE International Reliability Physics Symposium (IRPS), p. 2C.3.1, 2012. Cerca con Google

[89] R. Vetury, N. Q. Zhang, S. Keller, U. K. Mishra, "The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 48, no. 3, p. 560, 2001. Cerca con Google

[90] M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U.K. Mishra, Yi Pei, E. Zanoni, "Investigation of Trapping and Hot-Electron Effects in GaN HEMTs by Means of a Combined Electrooptical Method," IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 2996-3003, 2011. Cerca con Google

[91] S. P. Kumar, A. Agrawal, S. Kabra, M. Gupta, R.S. Gupta, "An analysis for AlGaN/GaN modulation doped field effect transistor using accurate velocity-field dependence for high power microwave frequency applications," Microelectronics Journal, vol. 37, no. 11, pp. 1339-1346, 2006. Cerca con Google

[92] H. Huang, Y. C. Liang, G. S. Samudra, Ting-Fu Chang, C.-F. Huang, "Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs," IEEE Trans. Power Electronics, vol. 29, no. 5, p. 2164, 2014. Cerca con Google

[93] T. Kawanago, K. Kakushima, Y. Kataoka, A. Nishiyama, N. Sugii, H. Wakabayashi, K. Tsutsui, K. Natori, H. Iwai, "Gate Technology Contributions to Collapse of Drain Current in AlGaN/GaN Schottky HEMT," IEEE Trans. Electron Devices, vol. 61, no. 3, p. 785, 2014. Cerca con Google

[94] A. R. Arehart, "Investigation of electrically active defects in GaN, AlGaN, and AlGaN/GaN high electron mobility transistors," Ph.D. dissertation, Ohio State Univ., US, 2009. Cerca con Google

[95] J.-G. Tartarin, S. Karboyan, F. Olivie, G. Astre, L. Bary, B. Lambert, "I-DLTS, electrical lag and low frequency noise measurements of trapping effects in AlGaN/GaN HEMT for reliability studies," European Microwave Integrated Circuits Conference (EuMIC), pp. 438-441, 2011. Cerca con Google

[96] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, E. Zanoni, "Surface-related drain current dispersion effects in AlGaN-GaN HEMTs," IEEE Trans. Electron Devices, vol. 51, no. 10, pp. 1554-1561, 2004. Cerca con Google

[97] J. Joh, J. A. del Alamo, "A Current-Transient Methodology for Trap Analysis for GaN High Electron Mobility Transistors," IEEE Trans. Electron Devices, vol. 58, no. 1, pp. 132-140, 2011. Cerca con Google

[98] M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Meneghesso, E. Zanoni, C. Dua, "Mechanisms of RF Current Collapse in AlGaN–GaN High Electron Mobility Transistors," IEEE Trans. Dev. Mat. Rel., vol. 8, no. 2, pp. 240-247, 2008. Cerca con Google

[99] M. Caesar, M. Dammann, V. Polyakov, P. Waltereit, W. Bronner, M. Baeumler, R. Quay, M. Mikulla, O. Ambacher, "Generation of traps in AlGaN/GaN HEMTs during RF-and DC-stress test," IEEE International Reliability Physics Symposium (IRPS), pp. CD6.1-CD6.5, 2012. Cerca con Google

[100] M. Ťapajna, R. J.T. Simms, Yi Pei, U. K. Mishra, M. Kuball, "Integrated Optical and Electrical Analysis: Identifying Location and Properties of Traps in AlGaN/GaN HEMTs During Electrical Stress," IEEE Electron Device Lett., vol. 31, no. 7, pp. 662-664, 2010. Cerca con Google

[101] D. Jin, J. A. del Alamo, "Methodology for the Study of Dynamic ON-Resistance in High-Voltage GaN Field-Effect Transistors," IEEE Trans. Electron Devices, vol. 60, no. 10, p. 3190, 2013. Cerca con Google

[102] A. Chini, F. Soci, F. Fantini, A. Nanni, A. Pantellini, C. Lanzieri, D. Bisi, G. Meneghesso, E. Zanoni, "Field plate related reliability improvements in GaN-on-Si HEMTs," Microelectronics Reliability, vol. 52, no. 9-10, pp. 2153-2158, 2012. Cerca con Google

[103] S. DasGupta, M. Sun, A. Armstrong, R. J. Kaplar, M. J. Marinella, J. B. Stanley, S. Atcitty, T. Palacios, "Slow Detrapping Transients due to Gate and Drain Bias Stress in High Breakdown Voltage AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2115-2122, 2012. Cerca con Google

[104] W. R. Thurber, R. A. Forman, W. E. Phillips, "A novel method to detect nonexponential transients in deep level transient spectroscopy," J. Appl. Phys., vol. 53, no. 11, p. 7397, 1982. Cerca con Google

[105] O. Mitrofanov, M. Manfra, "Mechanisms of gate lag in GaN/AlGaN/GaN high electron mobility transistors," Superlattices and Microstructures, vol. 34, no. 1-2, pp. 33-53, 2003. Cerca con Google

[106] P. D. Kirchner, W. J. Schaff, G. N. Maracas, L. F. Eastman, T. I. Chappell, C. M. Ransom, "The analysis of exponential and nonexponential transients in deep‐level transient spectroscopy," J. Appl. Phys., vol. 52, no. 11, p. 6462, 1981. Cerca con Google

[107] P. Omling, L. Samuelson, H. G. Grimmeiss, "Deep level transient spectroscopy evaluation of nonexponential transients in semiconductor alloys," J. Appl. Phys., vol. 54, no. 9, p. 5117, 1983. Cerca con Google

[108] G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U. K Mishra, E. Zanoni, "Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements," Semicond. Sci. Technol., vol. 28, p. 074021, 2013. Cerca con Google

[109] H. Hasegawa, M. Akazawa, "Current collapse transient behavior and its mechanism in submicron-gate AlGaN/GaN heterostructure transistors," J. Vac. Sci. Technol. B, vol. 27, p. 2048, 2009. Cerca con Google

[110] J. Joh, J. A. del Alamo, U. Chowdhury, T.-M. Chou, H.-Q. Tserng, J. L. Jimenez, "Measurement of Channel Temperature in GaN High-Electron Mobility Transistors," IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2895-2901, 2009. Cerca con Google

[111] A. Chini, F. Soci, M. Meneghini, G. Meneghesso, E. Zanoni, "Deep Levels Characterization in GaN HEMTs—Part II: Experimental and Numerical Evaluation," IEEE Trans. Electron Devices, vol. 60, p. 3176, 2013. Cerca con Google

[112] T. Wosiński, "Evidence for the electron traps at dislocations in GaAs crystals," J. Appl. Phys., vol. 65, no. 4, p. 1566, 1988. Cerca con Google

[113] A. Hierro, A.R. Arehart, B. Heying, M. Hansen, J.S. Speck, U.K. Mishra, S.P. DenBaars, S.A. Ringel, "Capture Kinetics of Electron Traps in MBE-Grown n-GaN," Phys. Status Solidi B, vol. 228, no. 1, pp. 309-313, 2001. Cerca con Google

[114] P. Hacke, T. Detchprohm, K. Hiramatsu, N. Sawaki, "Analysis of deep levels in n-type GaN by transient capacitance methods," J. Appl. Phys., vol. 76, p. 304, 1994. Cerca con Google

[115] P.Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, and N. Sawaki, "Deep levels in the upper band-gap region of lightly Mg-doped GaN," Appl. Phys. Lett., vol. 68, no. 10, pp. 1362-1364, 1996. Cerca con Google

[116] F. D. Auret, S. A. Goodman, F. K. Koschnick, J-M. Spaeth, B. Beaumont, P. Gibart, "Electrical characterization of two deep electron traps introduced in epitaxially grown n-GaN during He-ion irradiation," Appl. Phys. Lett., vol. 73, p. 3745, 1998. Cerca con Google

[117] H. M. Chung, W. C. Chuang, Y. C. Pan, C. C. Tsai, M.C. Lee, W. H. Chen, W. K. Chen, C. I. Chiang, C. H. Lin, H. Chang, "Electrical characterization of isoelectronic In-doping effects in GaN films grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett., vol. 76, no. 7, pp. 897-899, 2000. Cerca con Google

[118] Z-Q. Fang, L. Polenta, J. W. Hemsky, D. C. Look, "Deep centers in as-grown and electron-irradiated n-GaN," in International Semiconducting and Insulating Materials Conference SIMC-XI, 2000. Cerca con Google

[119] H. K. Cho, C. S. Kim, and C.-H. Hong, "Electron capture behaviors of deep level traps in unintentionally doped and intentionally doped n-type GaN," J. Appl. Phys., vol. 94, no. 3, pp. 1485,1489, 2003. Cerca con Google

[120] F. D. Auret, W. E. Meyer, L. Wu, M. Hayes, M. J. Legodi, B. Beaumont, P. Gibart, "Electrical characterisation of hole traps in n-type GaN," phys. stat. sol. (a), vol. 201, no. 10, pp. 2271–2276, 2004. Cerca con Google

[121] T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, T. Mizutani, "Drain current DLTS of AlGaN-GaN MIS-HEMTs," IEEE Electron Device Lett., vol. 25, no. 8, pp. 523-525, 2004. Cerca con Google

[122] D.C. Look, Z.-Q. Fang, B. Claflin, "Identification of donors, acceptors, and traps in bulk-like HVPE GaN," J. Cryst. Growth, vol. 281, no. 1, pp. 143-150, 2005. Cerca con Google

[123] D. Johnstone, S. Biyikli, S. Dogan, Y. T. Moon, F. Yun, and H. Morkoç, "Comparison of deep levels in GaN grown by MBE, MOCVD, and HVPE," Proc. SPIE 5739, Light-Emitting Diodes: Research, Manufacturing, and Applications IX, 7, 2005. Cerca con Google

[124] A. R. Arehart, A. Corrion, C. Poblenz, J. S. Speck, U. K. Mishra, S. A. Ringel, "Deep level optical and thermal spectroscopy of traps in n-GaN grown by ammonia molecular beam epitaxy," Appl. Phys. Lett., vol. 93, no. 11, p. 112101, 2008. Cerca con Google

[125] A. R. Arehart, A. Sasikumar, S. Rajan, G. D. Via, B. Poling, B. Winningham, E. R. Heller, D. Brown, Y. Pei, F. Recht, U. K. Mishra, S. A. Ringel, "Direct observation of 0.57 eV trap-related RF output power reduction in AlGaN/GaN high electron mobility transistors," Solid-state Elec., vol. 80, pp. 19-22, 2013. Cerca con Google

[126] S. Chen, U. Honda, T. Shibata, T. Matsumura, Y. Tokuda, K. Ishikawa, M. Hori, H. Ueda, T. Uesugi, T. Kachi, "As-grown deep-level defects in n-GaN grown by metal–organic chemical vapor deposition on freestanding GaN," J. Appl. Phys., vol. 112, no. 5, p. 053513, 2012. Cerca con Google

[127] J. Pernot, P. Muret, "Electronic properties of the EC-0.6 eV electron trap in n-type GaN," J. Appl. Phys., vol. 103, no. 2, p. 023704, 2008. Cerca con Google

[128] M. Silvestri, M. J. Uren, M. Kuball, "Iron-induced deep-level acceptor center in GaN/AlGaN high electron mobility transistors: Energy level and cross section," Appl. Phys. Lett., vol. 102, p. 073501, 2013. Cerca con Google

[129] X. D. Chen, Y. Huang, S. Fung, C. D. Beling, C. C. Ling, J. K. Sheu, M. L. Lee, G. C. Chi, S. J. Chang, "Deep level defect in Si-implanted GaN n+-p junction," Appl. Phys. Lett., vol. 82, p. 3671, 2003. Cerca con Google

[130] L. Stuchlíková, J. Šebok, J. Rybár, M. Petrus, M. Nemec, L. Harmatha, J. Benkovská, J. Ková, J. Škriniarová, T. Lalinský, R. Paskiewicz, M. Tlaczala, "Investigation of Deep Energy Levels in Heterostructures based on GaN by DLTS," 8th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM), pp. 135-138, 2010. Cerca con Google

[131] Z.-Q. Fang, D. C. Look, D. H. Kim, and I. Adesida, "Traps in AlGaN/GaN/SiC heterostructures studied by deep level transient spectroscopy," Appl. Phys. Lett., vol. 87, no. 18, p. 182115, 2005. Cerca con Google

[132] Z.-Q. Fang, G. C. Farlow, B. Claflin, D. C. Look, D. S. Green, "Effects of electron-irradiation on electrical properties of AlGaN/GaN Schottky barrier diodes," J. Appl. Phys., vol. 105, no. 12, p. 123704, 2009. Cerca con Google

[133] C.B. Soh, D.Z. Chi, A. Ramam, H.F. Lim, S.J. Chua, "Study of electrically active defects in n-GaN layer," Materials Science in Semiconductor Processing, vol. 4, no. 6, pp. 595-600, 2001. Cerca con Google

[134] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, A. A. Shlensky, S. J. Pearton, "Influence of high-temperature annealing on the properties of Fe doped semi-insulating GaN structures," J. Appl. Phys., vol. 95, no. 10, p. 5591, 2004. Cerca con Google

[135] P. Kamyczek, E. Placzek-Popko, Vl. Kolkovsky, S. Grzanka, R. Czernecki, "A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN," J. Appl. Phys., vol. 111, no. 11, p. 113105, 2012. Cerca con Google

[136] J. L. Lyons, A. Janotti, C.G. Van de Walle, "Carbon impurities and the yellow luminescence in GaN," Appl. Phys. Lett., vol. 97, no. 15, p. 152108, 2010. Cerca con Google

[137] D. Jin, J.A. del Alamo, "Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs," 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 333-336, 2012. Cerca con Google

[138] M. Denais, A. Bravaix, V. Huard, C. Parthasarathy, G. Ribes, F. Perrie, Y. Rey-Tauriac, N.Revil, "On-the-fly characterization of NBTI in ultra-thin gate oxide PMOSFET's," in IEEE Electron Devices Meeting, 2004, pp. 109-112. Cerca con Google

[139] J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, U. K. Mishra, "Polarization effects, surface states, and the source of electrons in AlGaN Õ GaN heterostructure field effect transistors," Appl. Phys. Lett., vol. 77, p. 250, 2000. Cerca con Google

[140] J. Kotani, M. Tajima, S. Kasai, T. Hashizume, "Mechanism of surface conduction in the vicinity of Schottky gates on AlGaN/GaN heterostructures," Appl. Phys. Lett., vol. 91, no. 9, p. 093501, 2007. Cerca con Google

[141] S. Sabuktagin, Y. T. Moon, S. Dogan, A. A. Baski, H. Morkoc, "Observation of surface charging at the edge of a Schottky contact," IEEE Electron Device Lett., vol. 27, p. 211, 2006. Cerca con Google

[142] D. V. Lang, "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors," J. Appl. Phys., vol. 45, p. 3023, 1974. Cerca con Google

[143] J. W. Chung, X. Zhao, T. Palacios, "Estimation of Trap Density in AlGaN/GaN HEMTs from Subthreshold Slope Study," in 65th Annual Device Research Conference, 2007, p. 111. Cerca con Google

[144] P. S. Park, S. Rajan, "Simulation of Short-Channel Effects in N- and Ga-Polar AlGaN/GaN HEMTs," IEEE Trans. Electron Devices, vol. 58, p. 704, 2011. Cerca con Google

[145] M. J. Uren, K. J. Nash, R. S. Balmer, T. Martin, E. Morvan, N. Caillas, S. L. Delage, D. Ducatteau, B. Grimbert, J. C. De Jaeger, "Punch-Through in Short-Channel AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 53, p. 395, 2006. Cerca con Google

[146] N.M. Shmidt, D.V. Davydov, V.V. Emtsev, I.L. Krestnikov, A.A. Lebedev, W.V. Lundin, D.S. Poloskin, A.V. Sakharov, A.S. Usikov, A.V. Osinsky, "Effect of Annealing on Defects in As-Grown and gamma-Ray Irradiated n-GaN Layers," Phys. stat. sol. (b), vol. 216, p. 533, 1999. Cerca con Google

[147] M. R. Hogsed, Y. K. Yeo, M. Ahoujja, M.-Y. Ryu, J. C. Petrosky, R. L. Hengehold, "Radiation-induced electron traps in Al0.14Ga0.86N by 1 MeV electron radiation," Appl. Phys. Lett., vol. 86, p. 261906, 2005. Cerca con Google

[148] A. Chini, V. Di Lecce, F. Soci, D. Bisi, A. Stocco, M. Meneghini, G. Meneghesso, E. Zanoni, A. Gasparotto, "Experimental and numerical correlation between current-collapse and fe-doping profiles in GaN," in IEEE International Reliability Physics Symposium (IRPS) 2012, 2012, p. CD.2.1. Cerca con Google

[149] D. W. Cardwell, A. Sasikumar, A. R. Arehart, S. W. Kaun, J. Lu, S. Keller, J. S. Speck, U. K. Mishra, S. A. Ringel, J. P. Pelz, "Spatially-resolved spectroscopic measurements of Ec 0.57eV traps in AlGaN/GaN high electron mobility transistors," Appl. Phys. Lett., vol. 102, p. 193509, 2013. Cerca con Google

[150] H. K. Cho, K. S. Kim, C.-H. Hong, and H. J. Lee, "Electron traps and growth rate of buffer layers in unintentionally doped GaN," J. Crystal Growth, vol. 223, p. 38, 2001. Cerca con Google

[151] M. A. Moram, M. E. Vickers, "X-ray diffraction of III-nitrides," Rep. Prog. Phys., vol. 72, p. 036502, 2009. Cerca con Google

[152] M. Rudziński, V. Desmaris, P.A. van Hal, J. L. Weyher, P. R. Hageman, K. Dynefors, T.C. Rodle, H.F.F. Jos, H. Zirath, P.K. Larsen, "Growth of Fe doped semi-insulating GaN on sapphire and 4H-SiC by MOCVD," phys. stat. sol. (c), vol. 3, p. 2231, 2006. Cerca con Google

[153] F. Mei, Q. M. Fu, T. Peng, C. Liu, M. Z. Peng, J. M. Zhou, "Growth and characterization of AlGaN/GaN heterostructures on semi-insulating GaN epilayers by molecular beam epitaxy," J. Appl. Phys., vol. 103, p. 094502, 2008. Cerca con Google

[154] U. Honda, Y. Yamada, Y. Tokuda, K. Shiojima, "Deep levels in n-GaN Doped with Carbon Studied by Deep Level and Minority Carrier," J. J. Appl. Phys., vol. 51, p. 04DF04, 2012. Cerca con Google

[155] G. Meneghesso, M. Meneghini, D. Bisi, R. Silvestri, A. Zanandrea, O. Hilt, E. Bahat-Treidel, F. Brunner, A. Knauer, J. Wuerfl, E. Zanoni, "GaN-Based Power HEMTs: Parasitic, Reliability and High Field Issues," ECS Transactions, vol. 58, p. 187, 2013. Cerca con Google

[156] Z.-Q. Fang, B. Claflin, D. C. Look, D. S. Green, R. Vetury, "Deep traps in AlGaN/GaN heterostructures studied by deep level transient spectroscopy: Effect of carbon concentration in GaN buffer layers," J. Appl. Phys., vol. 108, p. 063706, 2010. Cerca con Google

[157] A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, "Impact of carbon on trap states in n-type GaN grown by metalorganic chemical vapor," Appl. Phys. Lett., vol. 84, p. 374, 2004. Cerca con Google

[158] J.-T. Chen, U. Forsberg, E. Janzén, "Impact of residual carbon on two-dimensional electron gas properties in AlxGa1xN/GaN," Appl. Phys. Lett., vol. 102, p. 193506, 2013. Cerca con Google

[159] A. Chini, V. Di Lecce, F. Fantini, G. Meneghesso, E. Zanoni, "Analysis of GaN HEMT Failure Mechanisms During DC and Large-Signal RF Operation," IEEE Trans. Electron Devices, vol. 59, p. 1385, 2012. Cerca con Google

[160] D. Bisi, M. Meneghini, C. De Santi, A. Chini, M. Dammann, P. Brückner, M. Mikulla, G. Meneghesso, E. Zanoni, "Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements," IEEE Trans. Electron Devices, vol. 60, no. 10, p. 3166, 2013. Cerca con Google

[161] E. Zanoni, M. Meneghini, A. Chini, D. Marcon, G. Meneghesso, "AlGaN/GaN-Based HEMTs Failure Physics and Reliability: Mechanisms Affecting Gate Edge and Schottky Junction," IEEE Trans. Electron Devices, vol. 60, p. 3119, 2013. Cerca con Google

[162] M. Meneghini et al., "Degradation of AlGaN/GaN high electron mobility transistors related to hot electrons," Appl. Phys. Lett., vol. 100, p. 233508, 2012. Cerca con Google

[163] Y. Puzyrev, S. Mukherjee, J. Chen, T. Roy, M. Silvestri, R. D. Schrimpf, D. M. Fleetwood, J. Singh, J. M. Hickley, A. Paccagnella, S. T. Pantelides, "Gate Bias Dependence of Defect-Mediated Hot-Carrier Degradation in GaN HEMTs," IEEE Trans. Electron Devices, vol. 61, p. 1316, 2014. Cerca con Google

[164] Milan Tapajna et al., "Hot-Electron-Related Degradation in InAlN/GaN High-Electron-Mobility Transistors," IEEE Trans. Electron Devices, vol. 61, p. 2793, 2014. Cerca con Google

[165] A. R. Arehart et al., "Comparison of deep level incorporation in ammonia and rf-plasma assisted molecular beam epitaxy n-GaN films ," Phys. Stat. Sol. (c), vol. 5, p. 1750, 2008. Cerca con Google

[166] M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Cester, G. Meneghesso, E. Zanoni, "Role of buffer doping and pre-existing trap states in the current collapse and degradation of AlGaN/GaN HEMTs," in IEEE IRPS, 2014, p. 6C.6.1. Cerca con Google

[167] A. Stocco, S. Gerardin, D. Bisi, S. Dalcanale, F. Rampazzo, M. Meneghini, G. Meneghesso, J. Grünenpütt, B. Lambert, H. Blanck, E. Zanoni, "Proton induced trapping effect on space compatible GaN HEMTs," Microelectronics Reliability, vol. 54, p. 2213, 2014. Cerca con Google

[168] B. J. Baliga, "Gallium nitride devices for power electronic applications," Semicond. Sci. Technol., vol. 28, p. 074011, 2013. Cerca con Google

[169] M. Su, C. Chen, S. Rajan, "Prospects for the application of GaN power devices in hybrid electric vehicle drive systems," Semicond. Sci. Technol., vol. 28, p. 074012, 2013. Cerca con Google

[170] M. Van Hove, S. Boulay, S. R. Bahl, S. Stoffels, X. Kang, D. Wellekens, K. Geens, A. Delabie, S. Decoutere, "CMOS Process-Compatible High-Power Low-Leakage AlGaN/GaN MISHEMT in Silicon," IEEE Electron Device Letters, vol. 33, no. 5, p. 667, 2012. Cerca con Google

[171] G. Verzellesi, M. Faqir, A. Chini, F. Fantini, G. Meneghesso, E. Zanoni, F. Danesin, F. Zanon, F. Rampazzo, F.A. Marino, A. Cavallini, A. Castaldini, "False Surface-Trap Signatures Induced by Buffer Traps in AlGaN-GaN HEMTs," in 47th IRPS, Montreal, 2009, pp. 732-735. Cerca con Google

[172] M. Meneghini, D. Bisi, D. Marcon, S. Stoffels, M. Van Hove, T-L Wu, S. Decoutere, G. Meneghesso, E. Zanoni, "Trapping and Reliability Assessment in D-Mode GaN-Based MIS-HEMTs for Power Applications," IEEE Trans. Power Electronics, vol. 29, no. 5, p. 2199, 2014. Cerca con Google

[173] H. Umeda, A. Suzuki, Y. Anda, M. Ishida, T. Ueda, T. Tanaka, D. Ueda, "Blocking-Voltage Boosting Technology for GaN Transistors by Widening Depletion Layer in Si Substrates," in IEEE Electron Device Meeting (IEDM 2010), 2010, p. 480. Cerca con Google

[174] A. Pérez-Tomás, A. Fontserè, J. Llobet, M. Placidi, S. Rennesson, N. Baron, S. Chenot, J. C. Moreno, Y. Cordier, "Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates," J. Appl. Phys., vol. 113, p. 174501, 2013. Cerca con Google

[175] C. Zhou, Q. Jiang, S. Huang, K. J. Chen, "Vertical Leakage/Breakdown Mechanisms in AlGaN/GaN-on-Si Devices," Electron Dev. Lett., vol. 33, p. 1132, 2012. Cerca con Google

[176] D. Bisi, M. Meneghini, F. A. Marino, D. Marcon, S. Stoffels, M. Van Hove, S. Decoutere, G. Meneghesso, E. Zanoni, "Kinetics of Buffer-Related RON-Increase in GaN-on-Silicon MIS-HEMTs," IEEE Electron Device Lett., vol. 35, p. 1004, 2014. Cerca con Google

[177] K. Tanaka, M. Ishida, T. Ueda, T. Tanaka, "Effects of Deep Trapping States at High Temperatures on Transient Performance of AlGaN/GaN Heterostructure Field-Effect Transistors," J. J. Appl. Phys., vol. 52, pp. 04CF07-1, 2013. Cerca con Google

[178] X. Huang, Z. Liu, Q. Li, F. C. Lee, "Evaluation and Application of 600 V GaN HEMT in Cascode Structure," IEEE Trans. Power Electronics, vol. 29, p. 2453, 2014. Cerca con Google

[179] J. Joh, N. Tipirneni, S. Pendharkar, S. Krishnan, "Current Collapse in GaN Heterojunction Field Effect Transistors for High-voltage Switching Applications," in IEEE Interational Reliability Physics Symposium, 2014. Cerca con Google

[180] I. Hwang, J. Kim, S. Chong, H.-S. Choi, S.-K. Hwang, J. Oh, J. K. Shin, U-In Chung, "Impact of Channel Hot Electrons on Current Collapse in AlGaN/GaN HEMTs," IEEE Electron Device Letters, vol. 34, no. 12, p. 1494, 2013. Cerca con Google

[181] N. Braga, R. Mickevicius, R. Gaska, X. Hu, M. S. Shur, et al., "Simulation of hot electron and quantum effects in AlGaN/GaN heterostructure field effect transistors," J. Appl. Phys., vol. 95, p. 6409, 2004. Cerca con Google

[182] M. Wang, D. Yan, C. Zhang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, B. Shen, "Investigation of Surface- and Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors Using a Soft Switched Pulsed (I-V) Measurement," IEEE Electron Device Lett., vol. 35, p. 1094, 2014. Cerca con Google

[183] T. Imada, M. Kanamura, T. Kikkawa, "Enhancement-Mode GaN MIS-HEMTs for Power Supplies," in The 2010 International Power Electronics Conference, 2010, p. 1027. Cerca con Google

[184] J. Robertson, M. J. Powell, "Gap states in silicon nitride," Appl. Phys. Lett., vol. 44, p. 415, 1984. Cerca con Google

[185] P. Lagger, M. Reiner, D. Pogany, C. Ostermaier, "Comprehensive Study of the Complex Dynamics of Forward Bias-Induced Threshold VoltageDrifts in GaN Based MIS-HEMTs byStress/Recovery Experiments," IEEE Transaction Electron Devices, 2014. Cerca con Google

[186] Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, Y. Taur, "A Distributed Bulk-Oxide Trap Model for Al 2 O 3 InGaAs MOS Devices," IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012. Cerca con Google

[187] S. Yang, Z. Tang, K.-Y. Wong, Y.-S. Lin, Y. Lu, S. Huang, K. J. Chen, "Mapping of Interface Traps in High-Performance Al 2 O 3 /AlGaN/GaN MIS-Heterostructures Using Frequency- and Temperature-Dependent C-V Techniques," in IEEE Electron Devices Meeting IEDM, 2013, p. 6.3.1. Cerca con Google

[188] M. Matys, B. Adamowicz, T. Hashizume, "Determination of the deep donor-like interface state density distribution in metal/Al 2 O 3 /n-GaN structures from the photocapacitance–light intensity measurement," Applied Physics Letters, vol. 101, pp. 231608-1, 2012. Cerca con Google

[189] B. L. Swenson, U. K. Mishra, "Photoassisted high-frequency capacitance-voltage characterization of the Si3N4/GaN interface," J. Appl. Phys., vol. 106, p. 064902, 2009. Cerca con Google

[190] X. Sun, O. I. Saadat, K. S. Chang-Liao, T. Palacios, S. Cui, T. P. Ma , "Study of gate oxide traps in HfO2/AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method," Appl. Phys. Lett., vol. 102, p. 103504, 2013. Cerca con Google

[191] X.-H. Ma, J.-J. Zhu, X.-Y. Liao, T. Yue, W.-W. Chen, Y. Hao, "Quantitative characterization of interface traps in Al 2 O 3 /AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by dynamic capacitance dispersion technique," Applied Physics Letters, vol. 103, p. 033510, 2013. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record