Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Olivieri, Lorenzo (2015) Development and characterization of a standardized docking system for small spacecraft. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
Available under License Creative Commons Attribution No Derivatives.

25Mb

Abstract (inglese)

Since the first mating manoeuvre in space, performed in 1966, many different docking mechanisms were developed, mainly for large manned spacecraft. The few systems recently conceived for small satellites have never been verified in space nor scaled to CubeSat size. In the near future, small spacecraft docking procedures could acquire great importance due to the need to share resources between clusters of low-weight and low-cost vehicles: in fact, small spacecraft market is rapidly growing, focusing on commercial low risk application, low budget scientific and educational missions. In this context, this document presents a novel docking mechanism to provide small spacecraft with the ability to join and separate in space, to realize multi-body platforms able to rearrange, be repaired or updated, thus overcoming the actual on board limitations of single small-scale satellites. As for now, the few proposed docking ports present (1) simple probe-drogue interfaces, unable to dock with same-gender ports, or (2) androgynous geometries, that can overcome that problem, but usually employing complex and non-axis-symmetric latches to perform the docking manoeuvre, that would demand robust and stringent navigation and control systems. The proposed solution overcomes the aforementioned drawbacks, using a semi-androgynous shape-shifting mechanism that actuating one interface changes the port into a “drogue" configuration, letting the other port penetrate it and closing around to create a solid joint. The mechanism design through the requirement definition and a trade-off between different concepts is presented, followed by the analysis of the dynamic behaviour of the selected solution, with particular attention to two aspects, i.e. the loads transmitted between the mating ports and the alignment tolerances requested to perform successful docking manoeuvres. Such analysis led to the definition of an instrumented prototype to verify the solution through simple validation tests, which demonstrated the mechanism operations and defined the alignment ranges, that lie in the range of +- 15 mm and up to 6 degrees. Last, a comparison with SPHERES UDP is presented, as part of the activities performed during a visit period at MIT Space Systems Laboratory.

Abstract (italiano)

Fin dalla prima manovra di ancoraggio avvenuta nel 1966, molti e differenti meccanismi di docking sono stati sviluppati, per lo più per satlliti dotati di equipaggio. I pochi sistemi recentemente concepiti per piccoli satelliti non sono mai stati testati in spazio né scalati alle dimensioni adeguate per essere installati su CubeSat. Nel prossimo futuro, vi potrebbe essere un crescente interesse nello sviluppo di adeguate procedure di docking per piccoli veicoli, per realizzare strutture interdipendenti di satelliti, capaci di distribuire e condividere le proprie risorse: infatti, il mercato relativo a tali veicoli è in continua e costante crescita, concentrandosi su applicazioni commerciali a basso rischio e missioni scientifiche o educazionali a basso costo. In questo contesto, questo documento presenta un innovativo meccanismo di docking, capace di dare ai piccoli satelliti la capacità di agganciarsi e separarsi nello spazio, consentendo la realizzazione di piattaforme multicomponente intercambiabili, autoriparabili e aggiornabili tramite l'aggiunta di nuovi moduli, così da superare gli attuali limiti tecnologici imposti dalle limitate risorse disponibili a bordo dei singoli satelliti. Le interfaccie di docking fino ad ora realizzate presentano (1) sistemi maschio-femmina assai semplici ma ovviamente incapaci di agganciarsi a porte dello stesso genere, o (2) geometrie androgine, che pur evitando tale problematica risultano utilizzarre meccanismi complessi e non assialsimmetrici, richiedendo quindi strategie di navigazione e controllo d'assetto molto complicate e robuste. La soluzione proposta vuole superare le limitiazioni precedentemente menzionate, utilizzando un meccanismo muta-forma semiandrogino, capace di cambiare la forma dell'interfaccia in "femmina" così da consentire la penetrazione da parte di una porta equivalente ma non attuata, catturandola e realizzando l'aggancio. La progettazione del meccanismo ha seguito un processo logico, dalla definizione di una serie di requisiti al confronto tra soluzioni concettuali concorrenti, per concludersi con l'analisi del suo comportamento dinamico, dedicando particolare attenzione a due aspetti critici, la trasmissione dei carichi e le tolleranze di allineamento richieste durante una manovra di docking. Tali analisi sono state seguite dalla realizzazione di un prototipo instrumentato, utilizzato per verificare in laboratorio la funzionalità del meccanismo e definire precisamente i valori di tali tolleranze, che giacciono in un intervallo di discostamenti compreso tra +-15 mm e 6 gradi. Infine, un paragone con l'interfaccia UDP di SPHERES viene brevemente presentato, all'interno di una più ampia descrizione delle attività condotte durante un periodo di visita presso lo Space Systems Laboratory del Massachusetts Institute of Technology.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Alessandro, Francesconi
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > SCIENZE TECNOLOGIE E MISURE SPAZIALI > MISURE MECCANICHE PER L'INGEGNERIA E LO SPAZIO
Data di deposito della tesi:29 Gennaio 2015
Anno di Pubblicazione:29 Gennaio 2015
Parole chiave (italiano / inglese):docking, small satellites, semi-androgynous
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/04 Costruzioni e strutture aerospaziali
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/05 Impianti e sistemi aerospaziali
Struttura di riferimento:Centri > Centro Interdipartimentale di ricerca di Studi e attività  spaziali "G. Colombo" (CISAS)
Codice ID:7538
Depositato il:09 Dic 2015 14:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] S. Gorevan, I. Yachbes, P. Bartlett, K.Zacny, G. L. Paulsen, T. Kennedy, B. Basso, J. Wilson. Comet and Asteroid Sample Acquisition, Containerization, and Transfer for Sample Return. Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors, LPI Contribution No. 1325, pages 41{42, October 2006. URL http://www.lpi.usra.edu/meetings/recon2006/pdf/3022.pdf. Vai! Cerca con Google

[2] International Docking System Standard (IDSS) Interface Denition Document (IDD) - Revision C. November 2013. URL http://www. internationaldockingstandard.com/download/IDSS_IDD_Rev_C_11_22_ 13_FINAL.pdf. Vai! Cerca con Google

[3] A. Ogilvie, J. Allport, M. Hannah, J. Lymer. Autonomous Satellite Servicing Using the Orbital Express Demonstration Manipulator System. International Symposium on Articial Intelligence, Robotics and Automation in Space (i-SAIRAS) Proceedings, February 2008. URL http://robotics.estec.esa.int/i-SAIRAS/isairas2008/Proceedings/SESSION%2014/m113-Ogilvie.pdf. Vai! Cerca con Google

[4] D. King, B. Walker. Space Servicing: The Future is Now. SOSTC AIAA Improving Space Operations Workshop, April 2012. URL https: //info.aiaa.org/tac/SMG/SOSTC/Workshop%20Documents/2012/SOSTC_workshop_2012_abstracts_v05.pdf. Cerca con Google

[5] B. C. Hacker, J. M. Grimwood. On the Shoulders of Titans: A History of Project Gemini |(NASA report SP-4203). Cerca con Google

[6] AIAA Guide for Berthing/Docking/Grasping Interfaces for Serviceable Spacecraft (G-056-1992). AIAA Standards, 1992. Cerca con Google

[7] W. Fehse. Automated Rendezvous and Docking of Spacecraft. Cerca con Google

[8] M. Caron, I. Mills. Planning and Execution of Tele-Robotic Maintenance Operations on the ISS. The 12th International Conference on Space Operations Proceedings, June 2012. URL http://www.spaceops2012.org/proceedings/documents/id1272635-Paper-001.pdf. Vai! Cerca con Google

[9] E. Dupuis, E. Martin. An Overview of the Recent Canadian Space Agency Ativities in Space Robotics. International Symposium on Articial Intelligence, Robotics and Automation in Space (i-SAIRAS) Proceedings, September 2012. URL http://robotics.estec.esa.int/i-SAIRAS/isairas2012/Papers/ Session%201/01_03_Dupuis.pdf. Vai! Cerca con Google

[10] S. Nishida, S. Kawamoto. Strategy for Capturing of a Tumbling Space Debris. Acta Astronautica, (68), 20121. Cerca con Google

[11] H. Ueno, S. Dubowsky, C. Lee, C. Zhu,Y. Ohkami, S. Matsumoto, M. Oda. Space Robotic Mission Concepts for Capturing Stray Objects. Proceedings 23rd Space Symposium on Space Technology and Science, May 2002. URL http://robots.mit.edu/publications/recent%20pubs/ists_paper.pdf. Vai! Cerca con Google

[12] T. Miyabe, A. Konno, M. Uchiyama. Automated Object Capturing with a Two-Arm Flexible Manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, page 2529{2534, September 2003. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1241973&tag=1. Vai! Cerca con Google

[13] B. Bischof, J. Starke, H. Guenther, W.P. Foth, L. Kerstein. ROGER - Robotic Geostationary Orbit Restorer. Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation, November 2004. URL http://robotics.estec.esa.int/ASTRA/Astra2004/. Vai! Cerca con Google

[14] B. E. Kelm, J.A. Angielski, S.T. Butcher, N.G. Creamer, K.A. Harris, C.G. Henshaw, J.A. Lennon, W.E. Purdy, F.A. Tasker, W.S. Vincent, B.P. Whalen. FREND: Pushing the Envelope of Space Robotics. Space Research and Satellite Technology, 2008 NRL REVIEW, pages 239{241, 2008. URL http://www.nrl.navy.mil/content_images/08Space_Kelm.pdf. Vai! Cerca con Google

[15] P. Rank, Q. Muhlbauer, W. Naumann, K. Landzettel. DEOS Automation and Robotics Payload. Proceedings of the 11th Symposium on Advanced Space Technologies in Robotics and Automation, April 2011. URL http://www.spacetech-i.com/phase-b-69.html?.../04%20DEOS/02%20DEOS%2...%E2%80%8E. Vai! Cerca con Google

[16] N. Zinner, A. Williamson, K. Brenner, J. B. Curran, A. Isaak, M. Knoch, A. Leppek, J. Lestishen. Junk Hunter: Autonomous Rendezvous, Capture, and Deorbit of Orbital Debris. Revolutionary Aerospace Systems Concepts Academic Linkage (RASC-AL) Conference, May 2011. URL http://nia-cms.nianet.org/RASCAL/2010-Winning-Papers/UC-Boulder-RASC-AL-2011.aspx. Vai! Cerca con Google

[17] G. Zhai, J. Zhang. Space Tether Net System for Debris Capture and Removal. 4th International Conference on Intelligent Human-Machine Systems and Cybernetics,pages 257 { 261, August 2012. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6305675&tag=1. Vai! Cerca con Google

[18] J. Reed, J. Busquets, C. White. Grappling System for Capturing Heavy Space Debris. 2nd European Workshop on Active Debris Removal, June 2012. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6305675&tag=1. Vai! Cerca con Google

[19] M. Andrenucci, P. Pergola, A. Ruggiero. Active Removal of Space Debris - Expanding foam application for active debris removal - Final Repor. , February 2011. URL http://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI-10-6411-Pisa-Active_Removal_of_Space_Debris-Foam.pdf. Vai! Cerca con Google

[20] C. Kaiser, F. Sjobergb, J. M. Delcurac, B. Eilertsend. SMART-OLEV An orbital life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronautica, 63(1-4):400{410, August 2008. URL http://www.sciencedirect.com/science/article/pii/S0094576507003633. Vai! Cerca con Google

[21] V. Trushlyakov, V. Shalay, J. Shatrov. Aktiv De-Orbiting Onboard System from Leo of Upper Stages of Launchers. Proceedings of the 5th European Conference on Space Debris, April 2009. Cerca con Google

[22] V. P. Legostaev. Russian space programs: Achievements and prospects of automatic control applications. Annual Reviews in Control, 29(Issue 1):1.11, 2005. Cerca con Google

[23] SMZA-03-BLOCK II (1) - Apollo Operational Handbook System Data - Section 2 - Subsectiom 2.13 Docking and Transfer, . Cerca con Google

[24] V. S. Syromyatnikov. Docking system of androgynous and peripheral type. The 7th Aerospace Mechanism Symposium, pages 27{35, November 1972. URL http://www.hq.nasa.gov/alsj/7thAerospaceMechanismsSymp_1973010139.pdf. Vai! Cerca con Google

[25] D. Schwaab. NASA Docking System (NDS) Users Guide. Cerca con Google

[26] R. J. McLaughlin, W. H. Warr. The Common Berthing Mechanism (CBM) for International Space Station. 31st International Conference On Environmental Systems, 2001. URL http://spacecraft.ssl.umd.edu/design_lib/ICES01-2435.ISS_CBM.pdf. Vai! Cerca con Google

[27] M. Oda. Space robot experiments on NASDA's ETS-VII satellite-preliminary overview of the experiment results. Robotics and Automation, 1999. Proceedings.1999 IEEE International Conference on , 2, May 1999. URL 10.1109/ROBOT.1999.772555. Cerca con Google

[28] D. Miller, A. Saenz-Otero, J.Wertz, A. Chen, G. Berkowski, C. Brodel, S. Carlson, D. Carpenter, S. Chen, S. Cheng, D. Feller, S. Jackson, B. Pitts, F. Perez, J. Szuminski, S. Sell. SPHERES: A Testbed for Long Duration Satellite Formation Flying in Micro-Gravity Conditions. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting,, (AAS 00-110), January 2000. URL http://ssl.mit.edu/spheres/library/AAS-AIAA.pdf. Vai! Cerca con Google

[29] Shuonan Dong, Katherine Allen, Paul Bauer, Brett Bethke, Amy Brzezinski, Thomas Coee, Richard-Duane Chambers, Marcos Flores, Allison Gallagher Rodgers, John Head, Michael Heiman, Nick Hoff, Colleen Horin, Michael Horvath, Elizabeth Jordan, John Keesee, SeongMin Kim, Edmund Kong, Agnieszka Koscielniak, Scott Lawrence, June Marquiss, Christopher McQuin, Jordan McRae, David Miller, James Modisette, Jasmin Moghbeli, Simon Nolet, Lennon Rodgers, Alvar Saenz-Otero, Audrey Schaer, and Cemocan Yesil. Selfassembling wireless autonomously recongurable module design concept. Acta Astronautica, 62(2{3):246-256, 2008. ISSN 0094-5765. doi: http://dx.doi.org/10.1016/j.actaastro.2006.12.042. URL http://www.sciencedirect.com/science/article/pii/S0094576507001816. Vai! Cerca con Google

[30] L. Rodgers, N. Ho, E. Jordan, M. Heiman, D. W. Miller. A Universal Interface for Modular Spacecraft. Proceedings of 19th Annual AIAA/USU Conference on Small Satellites, 2005. URL http://ssl.mit.edu/spheres/library/small_sat_Lennon_Rodgers.pdf. Vai! Cerca con Google

[31] P. Tchoryk Jr., A. B. Hays , J. C. Pavlich. A Docking Solution for On-Orbit Satellite Servicing: Part of the Responsive Space Equation. 1st Responsive Space Conference, April 2003. URL http://www.responsivespace.com/Papers/RS1/SESSION2/TCHORYK/2001P.PDF. Vai! Cerca con Google

[32] K. Ui, S. Matunaga, S. Satori, T. Ishikawa. Microgravity Experiments of Nano-Satellite Docking Mechanism for Final Rendezvous Approach and Docking Phase. Microgravity - Science and Technology, 17, Issue 3:pp 56{63, September 2005. URL http://link.springer.com/article/10.1007%2FBF02872088. Vai! Cerca con Google

[33] A. Adomeit, M. Lakshmanan, P. Seefeldt, H. G. Reimerdes, J. Weise, K. Brie. Structures for Modular and Serviceable Spacecraft Systems. Proceedings of 12th European Conference on Spacecraft Structures, Materials and Environmental Testing, 2012. URL http://esamultimedia.esa.int/multimedia/publications/SP-691/toc_SP-691.pdf. Vai! Cerca con Google

[34] S. Gorevan, I. Yachbes, P. Bartlett, K.Zacny, G. L. Paulsen, T. Kennedy, B. Basso, J.Wilson. Comet and Asteroid Sample Acquisition, Containerization, and Transfer for Sample Return. Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors, October 2006. URL http://www.lpi.usra.edu/lpi/contribution_docs/LPI-001325.pdf. Vai! Cerca con Google

[35] A. Boesso, A. Francesconi. ARCADE small-scale docking mechanism for microsatellites. Acta Astronautica, 86, May 2013. URL http://www.sciencedirect.com/science/article/pii/S0094576513000180. Vai! Cerca con Google

[36] L. Olivieri, A. Francesconi. Design of a docking mechanism for small spacecraft. 63rd International Astronautical Congress, October 2012. Cerca con Google

[37] L. Olivieri, F. Branz, A. Francesconi. Conceptual design of small spacecraft docking mechanism actuated by electroactive polymers. 2nd IAA Conference on University Satellites Missions and Cubesat Winter Workshop, February 2013. URL http://www.sciencedirect.com/science/article/pii/S0094576513000180. Vai! Cerca con Google

[38] M. Fittock, A. Stamminger, M. Roth, K. Dannenberg, H. Page. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community. 38th COSPAR Scientic Assembly, July 2010. URL http://adsabs.harvard.edu/abs/2010cosp...38.3891F. Vai! Cerca con Google

[39] TITLE XV|MATTERS RELATING TO ARMS CONTROL, EXPORT CONTROLS, AND COUNTER-PROLIFERATION, Subtitle B|Satellite Export Controls, PUBLIC LAW 105{261, . Cerca con Google

[40] Aurora program, . URL http://www.esa.int/Our_Activities/Human_Spaceflight/Exploration/The_European_Space_Exploration_Programme_Aurora. Vai! Cerca con Google

[41] Plans for asteroid mining emerge, . URL http://www.bbc.com/news/science-environment-17827347. Vai! Cerca con Google

[42] Cubesat launches list, . URL http://www.zarya.info/Diaries/Launches/Launches.php?year=2012. Vai! Cerca con Google

[43] Cubesat list, . URL http://en.wikipedia.org/wiki/List_of_CubeSats. Vai! Cerca con Google

[44] E. Gill, P. Sundaramoorthy, J. Bouwmeester, B. Zandbergen, R. Reinhard. Formation fl Cerca con Google

ying within a constellation of nano-satellites: The QB50 mission. Proceedings of 6th International Workshop on Satellite Constellation and Formation Flying, 2010. URL http://www.sciencedirect.com/science/article/pii/S0094576512001440. Vai! Cerca con Google

[45] E. P. Caillibot, C. C. Grant, D. D. Kekez. Formation Flying Demonstration Missions Enabled by CanX Nanosatellite Technology. Proceedings of the 19th Annual AIAA/USU Conference on Small Satellites, 2005. Cerca con Google

[46] T. R. Krogstad, J. T. Gravdahl, K. Y. Pettersen, E. Brhaug. AUVSAT - an experimental platform for spacecraft formation Cerca con Google

ying. Proceedings of 59th International Astronautical Congress, 2008. URL http://www.itk.ntnu.no/ansatte/Gravdahl_Jan.Tommy/papers/iac2008_paper.pdf. Vai! Cerca con Google

[47] M. Marszalek, O. Kurz, M. Drentschew, M. Schmidt, K. Schilling. Intersatellite Links and Relative Navigation: Pre-conditions for Formation Flights with Pico- and Nanosatellites. Preprints of the 18th IFAC World Congress, 2011. URL http://www.itk.ntnu.no/ansatte/Gravdahl_Jan.Tommy/papers/iac2008_paper.pdf. Vai! Cerca con Google

[48] T. Vladimirova, X. Wu, A.H. Jallad, C. P. Bridges. Distributed Computing in Recongurable Picosatellite Networks. Conference on Adaptive Hardware and Systems, 2007. URL http://www.itk.ntnu.no/ansatte/Gravdahl_Jan.Tommy/papers/iac2008_paper.pdf. Vai! Cerca con Google

[49] C.P. Bridges, L. Sauter, P. Palmer. Formation deployment and separation simulation of multi-satellite scenarios using SatLauncher. IEEE Aerospace Conference, Big Sky, MT, 2011. URL http://www.itk.ntnu.no/ansatte/Gravdahl_Jan.Tommy/papers/iac2008_paper.pdf. Vai! Cerca con Google

[50] To the stars: Nasa selects small spacecraft technology demonstration missions. URL http://www.nasa.gov/home/hqnews/2012/aug/HQ_12-274_Small_Tech_Demo_Missions.html. Vai! Cerca con Google

[51] Robotic refueling mission. URL http://ssco.gsfc.nasa.gov/robotic_refueling_mission.html. Vai! Cerca con Google

[52] D. W. Miller, S. Mohan, J. Budino. Assembly of a Large Modular Optical Telescope (ALMOST). The International Society for Optical Engineering, July 2007. URL http://dspace.mit.edu/handle/1721.1/52733. Vai! Cerca con Google

[53] D. L. Akin, J. C. Lanef, B. J. Roberts, S. R. Weisman. Robotic Capabilities for Complex Space Operations. AIAA Space 2001 Conference and Exposition, 2001. URL http://spacecraft.ssl.umd.edu/publications/2001/2001.Akin.pdf. Vai! Cerca con Google

[54] Pierre Bely. The design and construction of large optical telescopes. Springer, 2003. Cerca con Google

[55] James R Wertz and Wiley J Larson. Space mission analysis and design. 1999. Cerca con Google

[56] C. E. Eyerman. A systems engineering approach to disturbance minimization for spacecraft utilizing controlled structures technology. Cerca con Google

[57] Cira-2012 models of the earth's upper atmosphere, . URL https://spaceweather.usu.edu/htm/cira/. Vai! Cerca con Google

[58] Backes P. Burdick J. Kennedy B. Kim J. Lee N. Malakhova G. Mukherjee R. Pellegrino S. Wu Y.-H. Hogstrom, K. A robotically-assembled 100-meter space telescope. Cerca con Google

[59] Francesco Sansone, Livia Savioli, and Alessandro Francesconi. Economic benets for leo telecom constellations due to modular spacecraft architecture. Cerca con Google

[60] R. Shankar, T. K. Ghosh, R. J. Spontak. Dielectric elastomers as next-generation polymeric actuators. Soft Matter, Issue 9, 207. Cerca con Google

[61] R. Zhang, P. Lochmatter, A. Kunz, G. Kovacs. Spring roll dielectric elastomer actuators for a portable force feedback glove. Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), SPIE 6168, 2006. Cerca con Google

[62] G. Kovacs, S. Michel, R. Pelrine, Q. Pei. Study on core free rolled actuator based on soft dielectric EAP. Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), 6927. Cerca con Google

[63] O. R. Stohlman. Repeatability of joint-dominated deployable masts. Cerca con Google

[64] D. Pankow, R. Besuner, R.Wilkes, R. Ullrich. DEPLOYMENT MECHANISMS ON THE FAST SATELLITE: Magnetometer, Radial Wire, and Axial Booms. Space Science Reviews, v. 98, Issue 1/2:93{111, 2001. URL http://sprg.ssl.berkeley.edu/fast/scienceprod/papers/pankow/FASTPaper.PDF. Vai! Cerca con Google

[65] R. Osiander, S. L. Firebaugh, J. L. Champion, D. Farrar, M. A. Garrison Darrin. Microelectromechanical Devices for Satellite Thermal Control. IEEE SENSORS JOURNAL, 4(4), August 2004. Cerca con Google

[66] L. Johnson, et al. NanoSail-D: A solar sail demonstration mission. Acta Astronautica, 68(5-6), March{April 2011. Cerca con Google

[67] M. Pignataro, N. Rizzi, A. Luongo. Stabilita, Biforcazione e Comportamento Postcritico delle Strutture Elastiche. Cerca con Google

[68] S. P. Timoshenko, J. M. Gere. Theory of Elastic Stability, 2nd ed. Cerca con Google

[69] Friction and coecients of friction, . URL http://www.engineeringtoolbox.com/friction-coefficients-d_778.html. Vai! Cerca con Google

[70] J Schroeter. Risk management in esa's scientic directorate- a case study. ESA Bulletin, 107:64{71, 2001. Cerca con Google

[71] Jana L Schwartz, Mason A Peck, and Christopher D Hall. Historical review of air-bearing spacecraft simulators. Journal of Guidance, Control, and Dynamics, 26(4):513{522, 2003. Cerca con Google

[72] Heidi C. Schubert and Jonathan P. How. Space construction: an experimental testbed to develop enabling technologies, 1997. URL http://dx.doi.org/10.1117/12.295583. Vai! Cerca con Google

[73] Saburo Matunaga, Keisuke Yoshihara, Takashi Takahashi, Shingo Tsurumi, and Kyoichi Ui. Ground experiment system for dual-manipulator-based capture of damaged satellites. In Intelligent Robots and Systems, 2000.(IROS 2000). Proceed- ings. 2000 IEEE/RSJ International Conference on, volume 3, pages 1847-1852. IEEE, 2000. Cerca con Google

[74] T. Boge, T. Wimmer, O. Ma, M. Zebenay. EPOS:A Robotics-Based Hardwarein-the-Loop Simulator for Simulating Satellite RvD Operations . i-SAIRAS 2010, September 2010. Cerca con Google

[75] Advanced robotic testbed for testing of space missions, . URL http://www.gmv.com/en/Company/Communication/News/2013/09/platform.html. Vai! Cerca con Google

[76] A. Antonello, F. Sansone, A. Francesconi, R. Carli, A. Carron. A Novel Approach to the Simulation of On-Orbit Rendezvous and Docking Maneuvers in a Laboratory Environment through the Aid of an Anthropomorphic Robotic Arm. IEEE International Workshop Metrology for Aerospace, May 2014. Cerca con Google

[77] Andrea Valmorbida, Francesco Scarpa, Mattia Mazzucato, Sergio Tronco, Stefano Debei, and Enrico C Lorenzini. Attitude module characterization of the satellite formation Cerca con Google

ight testbed. In Metrology for Aerospace (MetroAeroSpace), 2014 IEEE, pages 73{78. IEEE, 2014. Cerca con Google

[78] S. Nolet. Development of a guidance, navigation and control architecture and validation process enabling autonomous docking to a tumbling satellite. Cerca con Google

[79] A. Saenz Otero. Design principles for the development of space technology maturation laboratories aboard the international space station. Cerca con Google

[80] A. R. Hilton, G. J. Eslinger, D. W. Miller. Dynamics Modeling of Electromagnetic Formation Flight. 36th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE, February 2013. URL http://www.usafa.edu/df/dfas/Papers/20122013/Dynamics%20Modeling%20of%20Electromagnetic%20Formation%20Flight%20-%20Hilton.pdf. Vai! Cerca con Google

[81] F. Capolupo. Optical Staged Control for Separated Spacecraft Interferometry: from System Identication to Testbed Validation. 9th PEGASUS-AIAA Student Conference, April 2014. URL https://www.pegasus-europe.org/AIAA_Pegasus/Papers/ISAE_Capolupo.pdf. Vai! Cerca con Google

[82] J. Katz, S. Mohan, D. Miller. On-Orbit Assembly of Flexible Space Structures with SWARM. AIAA Infotech@Aerospace 2010, April 2010. URL http://arc.aiaa.org/doi/abs/10.2514/6.2010-3524. Vai! Cerca con Google

[83] D. Fourie, B. Tweddle, S. Ulrich, A. Saenz Otero. Vision-Based Relative Navigation and Control for Autonomous Spacecraft Inspection of an Unknown Object. AIAA GUIDANCE, NAVIGATION, AND CONTROL (GNC) CONFERENCE, August 2013. URL http://arc.aiaa.org/doi/abs/10.2514/6.2013-4759. Vai! Cerca con Google

[84] et al. M. Abel. Integrated Navigation Sensor Platform for EVA Control and Testing (INSPECT) for SPHERES. Cerca con Google

[85] Design Document Universal Docking Port, . Cerca con Google

[86] Buzz Aldrin. Line-of-sight guidance techniques for manned orbital rendezvous. Cerca con Google

[87] D. J. Pearson. The glideslope approach. Cerca con Google

[88] J. Enright, M. Hilstad, A. Saenz Otero, D. Miller. The SPHERES Guest Scientist Program: Collaborative Science on the ISS. 2004 IEEE Aerospace Conference, March 2004. Cerca con Google

[89] ZARM Drop Tower Bremen User Manual, . Cerca con Google

[90] Didier Pinard, Stephane Reynaud, Patrick Delpy, and Stein E. Strandmoe. Accurate and autonomous navigation for the fATVg. Aerospace Science and Technology, 11(6):490 { 498, 2007. ISSN 1270-9638. doi: http://dx.doi.org/10.1016/j.ast.2007.02.009. URL http://www.sciencedirect.com/science/article/pii/S1270963807000624. Vai! Cerca con Google

[91] Atv-5 set to test new rendezvous sensors, . URL http://www.esa.int/Our_Activities/Human_Spaceflight/ATV/ATV-5_set_to_test_new_rendezvous_sensors. Vai! Cerca con Google

[92] Cubesat kitTM gpsrm 1 gps receiver module, . URL http://www.cubesatkit.com/docs/datasheet/DS_CSK_GPSRM_1_710-00908-C.pdf. Vai! Cerca con Google

[93] Oliver Montenbruck, Takuji Ebinuma, E Glenn Lightsey, and Sunny Leung. A realtime kinematic gps sensor for spacecraft relative navigation. Aerospace Science and Technology, 6(6):435{449, 2002. Cerca con Google

[94] F. Sansone, F. Branz, A. Francesconi, M. Barbetta, and M.G. Pelizzo. 2d closerange navigation sensor for miniature cooperative spacecraft. Aerospace and Electronic Systems, IEEE Transactions on, 50(1):160{169, January 2014. ISSN 0018-9251. doi: 10.1109/TAES.2013.120295. Cerca con Google

[95] L. Olivieri, R. Mantellato, F. Branz, F. Sansone, A. Cavinato, M. Gaino, D. Petrillo, A. Francesconi, E. C. Lorenzini. Cubesat mission concept for tethered electromagnetic docking demonstration. In Tartu Conference on Space Science and Technology. Cerca con Google

[96] J. Reed and S. Barraclough. Development of harpoon system for capturing space debris. In Proc. 6th European Conference on Space Debris. Cerca con Google

[97] E. Ahedo and J. R. Sanmartin. Analysis of bare-tether systems for deorbiting low-earth-orbit satellites. Cerca con Google

[98] R. Mantellato, G. Colombatti, A. Valmorbida, M. Pertile and E. C. Lorenzini. Twobar model for free vibrations damping of space tethers by means of spring-dashpot devices. Cerca con Google

[99] Meet the teams: Felds (2014), . URL http://www.esa.int/Education/Meet_the_teams_FELDs_2014. Vai! Cerca con Google

[100] Articulated mast systems, . URL https://www.atk.com/products-services/articulated-mast-systems/. Vai! Cerca con Google

[101] C. Cassapakis, M. Thomas. In Cerca con Google

atable Structures Technology Development Overview. AIAA 1995 Space Programs and Technologies Conference, 1995. URL http://www.lgarde.com/assets/content/files/publications/overview.pdf. Vai! Cerca con Google

[102] Telescopic booms, . URL https://www.atk.com/products-services/telescoping-boom/. Vai! Cerca con Google

[103] Stem products and programs, . URL http://www.northropgrumman.com/BusinessVentures/AstroAerospace/Products/Documents/pageDocs/STEM_Hardware_Programs.pdf. Vai! Cerca con Google

[104] M. Leipold, D. Kassing, M. Eiden, L. Herbeck. Solar Sails for Space Exploration The Development and Demonstration of Critical Technologies in Partnership. ESA bulletin 98, June 1999. URL http://www.esa.int/esapub/bulletin/bullet98/LEIPOLD.pdf. Vai! Cerca con Google

[105] F. Rehnmark, M. Pryor, B. Holmes, D. Schaechter, N. Pedreiro, C. Carrington. Development of a Deployable Nonmetallic Boom for Recongurable Systems of Small Spacecraft. AIAA, 2007. URL http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070031728.pdf. Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record