Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

MICCIOLO, MATTEO (2015) ASSISTENZE MECCANICHE AL CIRCOLO: PADUA HEART PROJECT A TOTAL ARTIFICIAL HEART. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF (PADUA_HEART_PROJECT_TESI ) - Versione accettata
Tesi non accessible fino a 01 Gennaio 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

36Mb

Abstract (inglese)

Background
While the prevalence of heart failure (HF) in Europe and the USA has increased constantly in the last decades up to 12 million patients, we are still missing available, effective therapeutic options for advanced HF refractory to medical management, accounting for 5% of the total HF patient population. In fact, cardiac transplantation remains the primary option for a select group of end-stage HF patients but it is strongly limited due to the shortage of donor organs. The research in the field of mechanical devices to support or substitute the pumping function of failing heart is therefore strongly pursued. Since the end of the 90’s, thanks to the improved performance and safety of left ventricular assist devices (LVADs), their clinical use has increased both as a bridge to cardiac transplantation (BTT) and as a lifelong therapy. In case of end-stage biventricular failure or candidates with restrictive or infiltrative cardiomyopathies with ventricular cavities too small to accommodate apical inflow cannulae, LVADs are not a viable option: bi-ventricular assist devices (BiVAD) or total artificial hearts (TAH) are needed. To date, in INTERMACS records, only less than 5% of implanted mechanical circulatory support devices are BiVAD or TAH; however these figures do not reflect the real need for total replacement of heart function due to the limitations of available TAH (SynCardia).
State of the Art
The only clinically available TAH to date is the pneumatically driven SynCardia, that was FDA approved for BTT in 2004. It requires no surgical pocket, can provide up to 10 L/min flow with physiological control through both pulsatile pumping chambers. However, the TAH requires adequate mediastinal space to accommodate the dual-chambered pump. Its last generation portable pneumatic controller allows patients to be discharged from the hospital, although patients’ quality of life is limited by noise and weight of the drive unit (6 kg) that they need to carry. Device malfunction, along with bleeding, stroke, and infection, remain concerns with this technology.
New TAHs research and development
Several new TAH projects were started and stopped at different stage of development such as Abiomed Abiocor, Cliveland Clinic Foundation Magscrew, Aachen AME ReinHeart, only to quote few recent ones. Either technical issues prevented projects to get regulatory approval for clinical use or lack of research funding did not allow project completion. At the time being, Carmat TAH (Carmat SA) is undergoing pre-clinical tests. It is an implantable, electro-hydraulically driven, pulsatile flow device with four bioprosthetic valves. The stroke volume (30–65 ml) and the beat rate (35–150 b/min) of the prosthesis adapt automatically in response to changes in preload and the resulting pulsatile blood flow ranges from 2 to 9 l/min. Its blood-pumping surfaces consist of processed bioprosthetic pericardial tissue, potentially allowing for the reduction of anti-coagulation. Despite such innovative aspect, the implantable pump is huge and needs sternum-to-vertebral column minimum distance of 13 cm to be implanted.
Conclusion: Padua Heart Project
In order to provide an innovative solution in the field of MCS, Padua Heart Project (PHP) pursues the design of a small size, electromechanically driven TAH, that can deliver pulsatile blood flow to meet physiological need. While all of the above mentioned TAH projects are based on rotary motors with a conversion gear, thus consisting of many wear-prone parts, limiting their durability, PHP is based on a linear motor having only one moving component. Due to its original design and control mode, the size of the linear motor can be only slightly larger than the blood sacs. Furthermore, its inner lining can be coated by processed pericardial tissue. As a proof of concept, a first linear drive prototype was developed and set up. The movable part of the linear motor consists of a flat magnet including two valvular prostheses. Its linear movement back and forward within the driving coil, allows compression and relaxation of a flexible blood sac and its filling and emptying through the valves. The prototype has been tested in a simple mock loop to deliver flow varying between 4.5 and 7.5 L/min with 120 mmHg of afterload. Further tests are under way to optimize blood sac shape and control mode at different sets of preload and afterload conditions.

Abstract (italiano)

Studio dello stato dell’arte del cuore artificiale totale (TAH) nella pratica clinica: la ricerca bibliografica è stata orientata all’analisi delle più recenti esperienze cliniche con TAH per individuarne limiti e punti di forza. L’obiettivo di tale ricerca documentale era quello di dedurre le specifiche per un nuovo TAH, in grado di soddisfare le esigenze terapeutiche ancora parzialmente o totalmente irrisolte dai sistemi attualmente disponibili:
• CARATTERISTICHE DI PESO E INGOMBRO IDEALI: diametro <90 mm, lunghezza < 100 mm; peso < 800 gr (peso del cuore naturale 300- 400 gr), per poter essere impiantato anche in pazienti di piccola BSA
• ATTUATORE impiantabile, elettromeccanico, efficiente, silenzioso, in grado di produrre un flusso medio di circa 6 L/min contro una pressione media di circa 100 mmHg, con capacità di sostenere sovraccarichi e picchi di flusso, con bassa dissipazione di calore verso il sangue e i tessuti
• DISEGNO DELLE CAMERE VENTRICOLARI E DELLE VALVOLE rispetto al flusso ematico tale da minimizzare l’emolisi e le zone di stagnazione del flusso e il conseguente pericolo di formazione di trombi
• MATERIALI USATI BIO ED EMOCOMPATIBILI: plastica, metallo, materiale biologico (PERICARDIO DECELLULARIZZATO), con caratteristiche di non tossicità, non carcinogenicità, stabilità chimica e resistenza meccanica, sterilizzabilità
• INTERFACCIA DEL TAH con il circolo (atri, arterie) rispettosa dell’anatomia e con agevoli meccanismi di aggancio
• DURATA DISPOSITIVO : circa 5 anni (per un sistema pulsatile, ciò corrisponde ad un numero di cicli variabile tra 225 e 350 Milioni, a seconda che lo Stroke Volume vari tra 70 e 45 ml), per poter offrire un supporto di lungo termine
Studio di nuovi modelli di TAH ancora in corso di sviluppo e ricerca brevettuale su TAH innovativi: attraverso tale ricerca sono stati individuati gli spunti più interessanti tra le tecnologie in divenire ed è stato definito come orientare il progetto del TAH di Padova. In particolare, si è optato per un sistema con pompe volumetriche, a camere flessibili valvolate, azionate da motori elettrici lineari (quindi, con meno trasduzioni) di piccole dimensioni. L’attuazione prevede un movimento push-pull del piano delle valvole, che realizza contemporaneamente il riempimento e l’eiezione dalle camere ventricolari. Questo consente, a parità di ingombro, l’aumento della portata o, viceversa, a parità di portata una considerevole riduzione di volume della pompa. Sono stati disegnate diverse possibili configurazioni della pompa push-pull e infine viene scelta soluzione con movimento dei piani valvolari, interposti tra sacco ventricolare e “atri”, disposti a “U”,con frequenza minima 60 b/min, SV 80 ml (40ml +40ml). Primi test su banco: il sistema push-pull con uno stroke volume complessivo di 80 ml ottenuto attraverso 2 eiezioni successive di 40 ml ciascuna, con frequenza di salita/discesa del motore lineare di 60b/min (1Hz) riesce a pompare 4,8 L/min contro un afterload di 120 mmHg Aumentando la frequenza a 92b/min, il sistema riesce a erogare una portata di 7.2 L/min contro lo stesso postcarico Emerge l’originalità progettuale del disegno in cui le valvole si comportano sia da organi di intercettazione sia da elementi di spinta della massa fluida. Prove su banco di confronto Drive Units di dispositive in uso clinico (Cardiowest Companion vs Freedom): sono state eseguite prove su banco di unità di controllo differenti impiegate sullo stesso modello di TAH (Cardiowest) allo scopo di individuare le variabili di controllo salienti su cui basare il sistema di attuazione del nuovo TAH. Lo spunto è stato fornito da un reale “clinical dilemma”: il paziente 1Z, a cui era stato impiantato il CardioWest nel 2007, ha iniziato a manifestare problemi di dispnea con edema polmonare, nonostante un flusso di 5 L/min, appena è passato dal sistema di attuazione Companion al più recente Freedom. Non aveva tali sintomi coi precedenti drive units Excor e Companion; nessun altro organo presentava segnali di scompenso. Le prove su banco hanno dimostrato che la più recente drive unit (Freedom), essendo molto rigida, poiché non permette la regolazione delle pressioni di attuazione dei due ventricoli, e non avendo alcun feedback sulle pressioni di riempimento del paziente, può determinare squilibri tra circolo destro e sinistro. Appare quindi molto importante nel progetto di nuovo TAH includere la possibilità di modulazione della portata in funzione delle pressioni di riempimento. Progetto di fitting virtuale del TAH: lo studio si propone di convertire TAC del torace in un modello 3D semplice rapido e affidabile della cavità toracica. I risultati attesi consistono nella definizione ottimale degli ingombri e delle forme della protesi impiantabile del TAH che si sta progettando, incluse le interfacce con atri e grandi vasi del ricevente. Inoltre, lo strumento sarebbe disponibile per la determinazione ottimale pre-operatoria del fitting anatomico in un dato paziente di un dato sistema di supporto circolatorio impiantabile. La ricerca è stata avviata in collaborazione con l’Unità di Ricerca “3DOM” della Fondazione Bruno Kessler di Trento.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:GEROSA, GINO
Correlatore:GEROSA, GINO
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > SCIENZE CARDIOVASCOLARI
Data di deposito della tesi:27 Gennaio 2015
Anno di Pubblicazione:Gennaio 2015
Parole chiave (italiano / inglese):TOTAL ARTIFICAL HEART
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/23 Chirurgia cardiaca
Struttura di riferimento:Istituti > Istituto di Anatomia Patologica
Codice ID:7609
Depositato il:03 Dic 2015 14:45
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Gerosa G.: Viaggio dentro il cuore …guida ragionata alla cardiochirurgia, PMS Pubblicazioni Medico Scientifiche, prima edizione Maggio 2005. Cerca con Google

2. Cohn LH. : Cardiac Surgery in the Adult, third edition, Mc Graw Hill. Cerca con Google

3. Ruvolo G.: Cenni di chirurgia della valvola aortica. In: Principi di Cardiochirurgia, Poletto ed. Cerca con Google

4. Ugo Filippo Tesler: Viaggio nel cuore, storia e storie della cardiochirurgia. UTET, 2012. Cerca con Google

5. Gerosa G, ladi Marco F, Bottio T, Casarotto D: terapie cardiochirurgiche, malattie delle valvole cardiache e assistenza circolatoria meccanica. In: Malattie del Cuore e dei Vasi, Dalla Volta S, Daliento L, Razzolini R, 2005, McGraw-Hill, pp 217-242. Cerca con Google

6. Apparato cardiovascolare In: Gray: Anatomia del Gray, Zanichelli 2001. Cerca con Google

7. Netter FH, Ciba collection of medical illustrations: Heart, Vol 5, Ciba Pharmaceutical Co., Summit NJ, 1978, 12. Cerca con Google

8. Roberts WC The structural basis of abnormal cardiac function: A look at coronary, hypertensive, valvular, idiopathic myocardial, and pericardial heart disease. In Levine JJ ed Clinical cardiovasculae Physiology, New York:Grune and Stratton, 1976. Cerca con Google

9. E. Braunwald : Malattie del cuore di Braunwald, Trattato di medicina Cardiovascolare, settima edizione; Elsevier Masson ed. pp. 1583-1629. Cerca con Google

10. Butany J, Manmeet A, Munroe C, Fayet C, Ahn C, Blit P, Kepron C, Cusimano R, Leask R: Mechanical heart valve prostheses: identification and evaluation; Cardiovascular Pathology 12 (2003) 322-344. Cerca con Google

11. Fareed Siddiqui R, Rajiiv JA, Butany J: Bioprosthetic heart valves: modes of failure; Histopathology 2009, 55, 135-144. Cerca con Google

12. Eriksson H. Heart failure. A growing public health problem. J Intern Med 1995; 237: 135-41. Cerca con Google

13. Schocken DD, Arietta MI, Leaverton PE, Ross EA. Prevalence and mortality rate of congestive heart failure in the United States. J Am Coll Cardiol 1992; 20: 301-6. Cerca con Google

14. Robbins RC, Barlow CW, Oyer PE, et al. Thirty years of cardiac transplantation at Stanford University. J Thorac Cardiovasc Surg 1999; 117: 939-51. Cerca con Google

15. Tavazzi L. Epidemiology of dilated heart failure: a still undetermined entity. Eur Heart J 1997; 18: 4-6. Cerca con Google

16. Hunt SA, Frazier OH. Mechanical circulatory support and cardiac transplantation. Circulation 1998; 97: 2079-90. Cerca con Google

17. Spencer FC, Eiseman B, Trinkle JK, Rossi NP. Assisted circulation for cardiac failure following intracardiac surgery with cardiopulmonary bypass. J Thorac Cardiovasc Surg 1965; 49: 56-73. Cerca con Google

18. DeBakey ME. Left ventricular bypass pump for cardiac assistance: clinical experience. Am J Cardiol 1971; 27: 3-11. Cerca con Google

19. Cooley DA, Liotta D, Hallman GL, Bloodwell RD, Leachman RD, Milam JD. Orthotopic cardiac prosthesis for twostaged cardiac replacement. Am J Cardiol 1969; 24: 723-3. Cerca con Google

20. Hill JC, Farrar DJ, Hershon JJ, et al. Use of a prosthetic ventricle as a bridge to cardiac transplantation for postinfarction cardiogenic shock. N Engl J Med 1986; 314: 626-8. Cerca con Google

21. Rose EA, Gelijns AC, Moskowitz AJ, et al, for the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001; 345: 1435-43. Cerca con Google

22. Garatti A, Colombo T, Russo C, et al. Different applications for left ventricular mechanical support with the Impella Recover 100 microaxial blood pump. J Heart Lung Transplant 2005; 24: 481-5. Cerca con Google

23. Colombo T, Garatti A, Bruschi G, et al. First successful bridge to recovery with the Impella Recover 100 left ventricular assist device for fulminant acute myocarditis. Ital Heart J 2003; 4: 642-5. Cerca con Google

24. Meyns B, Dens J, Sergeant P, et al. Initial experiences with the Impella device in patients with cardiogenic shock – Impella support for cardiogenic shock. Thorac Cardiovasc Surg 2003; 51: 312-7. Cerca con Google

25. Kiyotaka F, McCarthy PM, Smedira NG, et al. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg 1999 68: 2181-4. Cerca con Google

26. Chen JM, Rose EA. Management of perioperative rightsided circulatory failure. In: Goldstein DJ, Oz MC, eds. Cardiac assist devices. Armonk, NY: Futura Publishing Company, 2000: 83-101. Cerca con Google

27. Deng MC, Loebe M, El-Banayosy A, et al. Mechanical circulatory support for advanced heart failure: effect of patient selection on outcome. Circulation 2001; 103: 231-7. Cerca con Google

28. El-Banayosy A, Arusoglu L, Kizner L, et al. Predictors of survival in patients bridged to transplantation with the Thoratec VAD device: a single-center retrospective study on more than 100 patients. J Heart Lung Transplant 2000; 19: 964-8. Cerca con Google

29. Reinhartz O, Farrar DJ, Hershon JH, et al. Importance of preoperative liver function as a predictor of survival in patients supported with Thoratec ventricular assist device as a bridge to transplantation. J Thorac Cardiovasc Surg 1998; 116: 633-40. Cerca con Google

30. Szefner J, Cabrol C. Control and treatment of hemostasis in patients with a total artificial heart: the experience of La Pitié. In: Pifarre R, ed. Anticoagulation, hemostasis, and blood preservation in cardiovascular surgery. Philadelphia, PA: Hanley & Belfus, 1993: 237-68. Cerca con Google

31. Mussivand T, Paganini EP, Oz MC, Smedira NG. Cost-effectiveness of artificial organ therapies. ASAIO J 1998; 44: 253-8. Cerca con Google

32. Aaronson KD, Patel H, Pagani FD. Patient selection for left ventricular assist device therapy. Ann Thorac Surg. 2003 Jun;75(6 Suppl):S29-35. Review. Cerca con Google

33. Mielniczuk L, Mussivand T, Davies R, Mesana TG, Masters RG, Hendry PJ, Keon WJ, Haddad HA. Patient selection for left ventricular assist devices. Artif Organs. 2004 Feb;28(2):152-7. Review. Cerca con Google

34. Entwistle JW 3rd. Short- and long-term mechanical ventricular assistance towards myocardial recovery. Surg Clin North Am. 2004 Feb;84(1):201-21. Review. Cerca con Google

35. Lietz K, Long JW, Kfoury AG, Slaughter MS, Silver MA, Milano CA, Rogers JG, Naka Y, Mancini D, Miller LW. Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation. 2007 Jul 31;116(5):497-505. Epub 2007 Jul 16. Cerca con Google

36. Miller LW, Lietz K. Candidate selection for long-term left ventricular assist device therapy for refractory heart failure. J Heart Lung Transplant. 2006 Jul;25(7):756-64. Cerca con Google

37. Patient selection for the use of ventricular assist devices as a bridge to transplantation. Ann Thorac Surg. 2003 Jun;75(6 Suppl):S66-71. Review. Cerca con Google

38. Topkara VK, Dang NC, Martens TP, Cheema FH, Liu JF, Liang LM, Cheema AF, Barili F, Oz MC, Naka Y. Cerca con Google

39. Effect of diabetes on short- and long-term outcomes after left ventricular assist device implantation. J Heart Lung Transplant. 2005 Dec;24(12):2048-53. Epub 2005 Sep 15. Cerca con Google

40. Butler J, Howser R, Portner PM, Pierson RN 3rd. Body mass index and outcomes after left ventricular assist device placement. Ann Thorac Surg. 2005 Jan;79(1):66-73. Cerca con Google

41. Butler J, Howser R, Portner PM, Pierson RN 3rd. Diabetes and outcomes after left ventricular assist device placement. J Card Fail. 2005 Sep;11(7):510-5. Cerca con Google

42. McCampbell B, Wasif N, Rabbitts A, Staiano-Coico L, Yurt RW, Schwartz S. Diabetes and burns: retrospective cohort study. J Burn Care Rehabil. 2002 May-Jun;23(3):157-66. Cerca con Google

43. Gronda E, Bourge RC, Costanzo MR, Deng M, Mancini D, Martinelli L, Torre-Amione G, O'Hara ML, Chambers S. Heart rhythm considerations in heart transplant candidates and considerations for ventricular assist devices: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates--2006. J Heart Lung Transplant. 2006 Sep;25(9):1043-56. Cerca con Google

44. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, Long JW, Ascheim DD, Tierney AR, Levitan RG, Watson JT, Meier P, Ronan NS, Shapiro PA, Lazar RM, Miller LW, Gupta L, Frazier OH, Desvigne-Nickens P, Oz MC, Poirier VL; Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001 Nov 15;345(20):1435-43. Cerca con Google

45. Stevenson LW, Miller LW, Desvigne-Nickens P, Ascheim DD, Parides MK, Renlund DG, Oren RM, Krueger SK, Costanzo MR, Wann LS, Levitan RG, Mancini D; REMATCH Investigators. Left ventricular assist device as destination for patients undergoing intravenous inotropic therapy: a subset analysis from REMATCH (Randomized Evaluation of Mechanical Assistance in Treatment of Chronic Heart Failure). Circulation. 2004 Aug 24;110(8):975-81. Epub 2004 Aug 16. Cerca con Google

46. Drews T, Stiller B, Hübler M, Weng Y, Berger F, Hetzer R. Coagulation management in pediatric mechanical circulatory support. ASAIO J. 2007 Sep-Oct;53(5):640-5. Cerca con Google

47. Fries D, Innerhofer P, Streif W, Schobersberger W, Margreiter J, Antretter H, Hörmann C. Coagulation monitoring and management of anticoagulation during cardiac assist device support. Ann Thorac Surg. 2003 Nov;76(5):1593-7. Cerca con Google

48. Meuris B, Arnout J, Vlasselaers D, Schetz M, Meyns B. Long-term management of an implantable left ventricular assist device using low molecular weight heparin and antiplatelet therapy: a possible alternative to oral anticoagulants. Cerca con Google

49. Ghez O, Liesner R, Karimova A, Ng C, Goldman A, van Doorn C. Subcutaneous low molecular weight heparin for management of anticoagulation in infants on excor ventricular assist device. ASAIO J. 2006 Nov-Dec;52(6):705-7. Cerca con Google

50. Dang NC, Naka Y. Perioperative pharmacotherapy in patients with left ventricular assist devices. Drugs Aging. 2004;21(15):993-1012. Review. Cerca con Google

51. Drakos SG, Terrovitis JV, Anastasiou-Nana MI, Nanas JN. Reverse remodeling during long-term mechanical unloading of the left ventricle. J Mol Cell Cardiol. 2007 Sep;43(3):231-42. Epub 2007 Jun 6. Review. Cerca con Google

52. Milting H, Kassner A, Arusoglu L, Meyer HE, Morshuis M, Brendel R, Klauke B, El Banayosy A, Körfer R. Influence of ACE-inhibition and mechanical unloading on the regulation of extracellular matrix proteins in the myocardium of heart transplantation candidates bridged by ventricular assist devices. Eur J Heart Fail. 2006 May;8(3):278-83. Epub 2005 Nov 23. Cerca con Google

53. Morawietz H, Szibor M, Goettsch W, Bartling B, Barton M, Shaw S, Koerfer R, Zerkowski HR, Holtz J. Deloading of the left ventricle by ventricular assist device normalizes increased expression of endothelin ET(A) receptors but not endothelin-converting enzyme-1 in patients with end-stage heart failure. Circulation. 2000 Nov 7;102(19 Suppl 3):III188-93. Cerca con Google

54. Milting H, Jacob M, Kassner A, Heimann P, Mannherz HG, Becker G, Meyer HE, Böthig D, Arusoglu L, Morshuis M, Körfer R, El Banayosy A. The structural examination of myocardial samples from patients with end-stage heart failure supported by ventricular assist devices using electron microscopy and amino acid analysis reveals low degree of reverse remodeling. J Heart Lung Transplant. 2004 Apr;23(4):396-404. Cerca con Google

55. Klotz S, Naka Y, Oz MC, Burkhoff D. Biventricular assist device-induced right ventricular reverse structural and functional remodeling. J Heart Lung Transplant. 2005 Sep;24(9):1195-201. Cerca con Google

56. Rodrigue-Way A, Burkhoff D, Geesaman BJ, Golden S, Xu J, Pollman MJ, Donoghue M, Jeyaseelan R, Houser S, Breitbart RE, Marks A, Acton S. Sarcomeric genes involved in reverse remodeling of the heart during left ventricular assist device support. J Heart Lung Transplant. 2005 Jan;24(1):73-80. Cerca con Google

57. Burkhoff D, Holmes JW, Madigan J, Barbone A, Oz MC. Left ventricular assist device-induced reverse ventricular remodeling. Prog Cardiovasc Dis. 2000 Jul-Aug;43(1):19-26. Review. Cerca con Google

58. Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, Cleutjens JP, Cerca con Google

Gmelig-Meyling FH, de Weger RA. Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transplant. 2006 Sep;25(9):1091-8. Epub 2006 Aug 2. Cerca con Google

59. Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail. 2006 Apr;12(3):227-39. Review. Cerca con Google

60. Jugdutt BI, Butler C. Ventricular unloading, tissue angiotensin II, matrix modulation, and function during left ventricular assist device support. J Am Coll Cardiol. 2007 Mar 20;49(11):1175-7. Epub 2007 Mar 6. Cerca con Google

61. Latif N, Yacoub MH, George R, Barton PJ, Birks EJ. Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung Transplant. 2007 Mar;26(3):230-5. Cerca con Google

62. Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, Banner NR, Khaghani A, Yacoub MH. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006 Nov 2;355(18):1873-84. Cerca con Google

63. Hetzer R, Müller JH, Weng YG, Loebe M, Wallukat G. Midterm follow-up of patients who underwent removal of a left ventricular assist device after cardiac recovery from end-stage dilated cardiomyopathy. J Thorac Cardiovasc Surg. 2000 Nov;120(5):843-53. Cerca con Google

64. Müller J, Wallukat G, Weng YG, Dandel M, Spiegelsberger S, Semrau S, Brandes K, Bieda H, Hummel M, Loebe M, Meyer R, Hetzer R. Temporary mechanical left heart support. Recovery of heart function in patients with end-stage idiopathic dilated cardiomyopathy. Herz. 1997 Oct;22(5):227-36. German. Cerca con Google

65. Hetzer R, Müller J, Weng Y, Wallukat G, Spiegelsberger S, Loebe M. Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg. 1999 Aug;68(2):742-9. Cerca con Google

66. Drews TN, Loebe M, Jurmann MJ, Weng Y, Wendelmuth C, Hetzer R. Outpatients on mechanical circulatory support. Ann Thorac Surg. 2003 Mar;75(3):780-5; Cerca con Google

67. Hoy FB, Clemson BS, Geiss DM, Bond LM, Linett CE, Gomez RC. Intracranial bleed during bridge to transplant may not preclude a successful result. J Heart Lung Transplant. 2001 Aug;20(8):901-3. Cerca con Google

68. Slaughter MS, Tsui SS, El-Banayosy A, Sun BC, Kormos RL, Mueller DK, Massey HT, Icenogle TB, Farrar DJ, Hill JD; IVAD Study Group. Results of a multicenter clinical trial with the Thoratec Implantable Ventricular Assist Device. J Thorac Cardiovasc Surg. 2007 Jun;133(6):1573-80. Erratum in: J Thorac Cardiovasc Surg. 2007 Sep;134(3):A34. Cerca con Google

69. Samuels LE, Holmes EC, Hagan K, Gopalan R, Droogan C, Ferdinand F. The Thoratec Implantable Ventricular Assist Device (IVAD): initial clinical experience. Heart Surg Forum. 2006;9(4):E690-2. Cerca con Google

70. Farrar DJ, Reichenbach SH, Rossi SA, Weidman JR. Development of an intracorporeal Thoratec ventricular assist device for univentricular or biventricular support. ASAIO J. 2000 May-Jun;46(3):351-3. Cerca con Google

71. Deng MC, Tjan TD, Asfour B, Gradaus R, Böcker D, Loick HM, Baba HA, Breithardt G, Scheld HH, Borggrefe M, Hammel D. Combining nonpharmacologic therapies for advanced heart failure: the Münster experience with the assist device-defibrillator combination. Am J Cardiol. 1999 Mar 11;83(5B):158D-160D. Cerca con Google

72. Farrar DJ, Buck KE, Coulter JH, Kupa EJ. Portable pneumatic biventricular driver for the Thoratec ventricular assist device. ASAIO J. 1997 Sep-Oct;43(5):M631-4. Cerca con Google

73. Zierer A, Melby SJ, Voeller RK, Guthrie TJ, Ewald GA, Shelton K, Pasque MK, Moon MR, Damiano RJ Jr, Moazami N. Late-onset driveline infections: the Achilles' heel of prolonged left ventricular assist device support. Ann Thorac Surg. 2007 Aug;84(2):515-20 Cerca con Google

74. Tsukui H, Abla A, Teuteberg JJ, McNamara DM, Mathier MA, Cadaret LM, Kormos RL. Cerebrovascular accidents in patients with a ventricular assist device. J Thorac Cardiovasc Surg. 2007 Jul;134(1):114-23. Epub 2007 Jun 4. Cerca con Google

75. Pagani FD, Long JW, Dembitsky WP, Joyce LD, Miller LW. Improved mechanical reliability of the HeartMate XVE left ventricular assist system. Ann Thorac Surg. 2006 Oct;82(4):1413-8. Cerca con Google

76. Dembitsky WP, Tector AJ, Park S, Moskowitz AJ, Gelijns AC, Ronan NS, Piccione W Jr, Holman WL, Furukawa S, Weinberg AD, Heatley G, Poirier VL, Damme L, Long JW. Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial. Cerca con Google

77. Ann Thorac Surg. 2004 Dec;78(6):2123-9; discussion 2129-30. Cerca con Google

78. Gambino A, di Marco F, Feltrin G, Toscano G, Gerosa G, Angelini A, Thiene G. Mechanical and biologic analysis of a 1,512-day-long implanted Novacor left ventricular assist device. J Heart Lung Transplant. 2006 Apr;25(4):492-4. Epub 2006 Feb 8. Cerca con Google

79. Dohmen PM, Laube H, de Jonge K, Konertz W. A reliable test to detect impending pump failure during long-term support on the Novacor N100 Left Ventricular Assist System. Tex Heart Inst J. 2001;28(2):139-41. Cerca con Google

80. John R, Liao K, Lietz K, Kamdar F, Colvin-Adams M, Boyle A, Miller L, Joyce L. Experience with the Levitronix CentriMag circulatory support system as a bridge to decision in patients with refractory acute cardiogenic shock and multisystem organ failure. J Thorac Cardiovasc Surg. 2007 Aug;134(2):351-8. Cerca con Google

81. De Robertis F, Birks EJ, Rogers P, Dreyfus G, Pepper JR, Khaghani A. Clinical performance with the Levitronix Centrimag short-term ventricular assist device. J Heart Lung Transplant. 2006 Feb;25(2):181-6. Epub 2006 Jan 6. Cerca con Google

82. Thiele H, Smalling RW, Schuler GC. Percutaneous left ventricular assist devices in acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2007 Sep;28(17):2057-63. Epub 2007 Jun 22. Cerca con Google

83. Ottervanger JP, de Feijter P, Gardien M, Serruys PW. Percutaneous insertion of a left ventricular assist device for cardiogenic shock in a patient with a myocardial infarction. Ned Tijdschr Geneeskd. 2003 Jan 25;147(4):164-6. Dutch. Cerca con Google

84. Watterson PA, Woodard JC, Ramsden VS, Reizes JA. VentrAssist hydrodynamically suspended, open, centrifugal blood pump. Artif Organs. 2000 Jun;24(6):475-7. Cerca con Google

85. James NL, Wilkinson CM, Lingard NL, van der Meer AL, Woodard JC. Evaluation of hemolysis in the VentrAssist implantable rotary blood pump. Artif Organs. 2003 Jan;27(1):108-13. Cerca con Google

86. Tansley G, Vidakovic S, Reizes J. Fluid dynamic characteristics Artif Organs. 2000 Jun;24(6):483-7. Cerca con Google

87. Chung MK, Zhang N, Tansley GD, Woodard JC. Impeller behavior and displacement of the VentrAssist implantable rotary blood pump. Artif Organs. 2004 Mar;28(3):287-97. Cerca con Google

88. Ayre PJ, Vidakovic SS, Tansley GD, Watterson PA, Lovell NH. Sensorless flow and head estimation in the VentrAssist rotary blood pump. Artif Organs. 2000 Aug;24(8):585-8. Cerca con Google

89. Yoshino M, Uemura M, Takahashi K, Watanabe N, Hoshi H, Ohuchi K, Nakamura M, Fujita H, Sakamoto T, Takatani S. Design and evaluation of a single-pivot supported centrifugal blood pump. Artif Organs. 2001 Sep;25(9):683-7. Cerca con Google

90. James NL, van der Meer AL, Edwards GA, Snelling SR, Begg JD, Esmore DS, Woodard JC. Implantation of the VentrAssist Implantable Rotary Blood Pump in sheep. ASAIO J. 2003 Jul-Aug;49(4):454-8. Cerca con Google

91. Mitamura Y, Kido K, Yano T, Sakota D, Yambe T, Sekine K, OKamoto E. A hydrodynamically suspended, magnetically sealed mechanically noncontact axial flow blood pump: design of a hydrodynamic bearing. Artif Organs. 2007 Mar;31(3):221-4. Cerca con Google

92. Vidakovic S, Ayre P, Woodard J, Lingard N, Tansley G, Reizes J. Paradoxical effects of viscosity on the VentrAssist rotary blood pump. Artif Organs. 2000 Jun;24(6):478-82. Cerca con Google

93. Fukamachi K. New technologies for mechanical circulatory support: current status and future prospects of CorAide and MagScrew technologies. J Artif Organs. 2004;7(2):45-57. Review. Cerca con Google

94. Doi K, Golding LA, Massiello AL, Kopcak MW Jr, Gerhart RL, Schenk S, Inoue M, Ootaki Y, Fukamachi K. Preclinical readiness testing of the Arrow International CorAide left ventricular assist system. Ann Thorac Surg. 2004 Jun;77(6):2103-10. Cerca con Google

95. Gerhart RL, Horvath DJ, Ochiai Y, Krogulecki AY, Golding LA. The effects of impact on the CorAide ventricular assist device. ASAIO J. 2002 Jul-Aug;48(4):449-52. Cerca con Google

96. Fukamachi K, Ochiai Y, Doi K, Massiello AL, Medvedev AL, Horvath DJ, Gerhart RL, Chen JF, Krogulecki AY, Takagaki M, Howard MW, Kopcak MW Jr, Golding LA. Chronic evaluation of the Cleveland Clinic CorAide left ventricular assist system in calves. Artif Organs. 2002 Jun;26(6):529-33. Cerca con Google

97. Ochiai Y, Golding LA, Massiello AL, Medvedev AL, Horvath DJ, Gerhart RL, Chen JF, Krogulecki AY, Takagaki M, Doi K, Howard MW, Fukamachi K. Cleveland clinic CorAide blood pump circulatory support without anticoagulation. ASAIO J. 2002 May-Jun;48(3):249-52. Cerca con Google

98. Ochiai Y, Golding LA, Massiello AL, Medvedev AL, Gerhart RL, Chen JF, Takagaki M, Fukamachi K. In vivo hemodynamic performance of the Cleveland Clinic CorAide blood pump in calves. Ann Thorac Surg. 2001 Sep;72(3):747-52. Cerca con Google

99. Nojiri C. Left ventricular assist system with a magnetically levitated impeller technology. Nippon Geka Gakkai Zasshi. 2002 Sep;103(9):607-10. Review. Japanese. Cerca con Google

100. Pae WE, Connell JM, Boehmer JP, Korfer R, El-Banayosy A, Hetzer R, Vigano M, Pavie A; CUBS Study Group. Neurologic events with a totally implantable left ventricular assist device: European LionHeart Clinical Utility Baseline Study (CUBS). J Heart Lung Transplant. 2007 Jan;26(1):1. Cerca con Google

101. Lazar RM, Shapiro PA, Jaski BE, Parides MK, Bourge RC, Watson JT, Damme L, Dembitsky W, Hosenpud JD, Gupta L, Tierney A, Kraus T, Naka Y. Neurological events during long-term mechanical circulatory support for heart failure: the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) experience. Circulation. 2004 May 25;109(20):2423-7. Epub 2004 May 3. Cerca con Google

102. Rivello H, Meckert P, Vigliano C, Favaloro R, Loguens RP. Cardiac myocyte nuclear size and ploidy status decrease after mechanical support. Cardiovasc Pathol 2001; 0: 53-7. Cerca con Google

103. Bruckner B, Stetson S, Perez-Verdia A, et al. Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant 2001; 20: 457-64. Cerca con Google

104. Thomas CE, Jichici D, Petrucci R, Urrutia VC, Schwartzman RJ. Neurologic complications of the Novacor left ventricular assist device. Ann Thorac Surg. 2001 Oct;72(4):1311-5. Cerca con Google

105. Pae WE, Connell JM, Adelowo A, Boehmer JP, Korfer R, El-Banayosy A, Hetzer R, Vigano M, Pavie A; Clinical Utility Baseline Study (CUBS) Group. Does total implantability reduce infection with the use of a left ventricular assist device? The LionHeart experience in Europe. J Heart Lung Transplant. 2007 Mar;26(3):219-29. Cerca con Google

106. Holman WL, Park SJ, Long JW, Weinberg A, Gupta L, Tierney AR, Adamson RM, Watson JD, Raines EP, Couper GS, Pagani FD, Burton NA, Miller LW, Naka Y; REMATCH Investigators. Infection in permanent circulatory support: experience from the REMATCH trial. J Heart Lung Transplant. 2004 Dec;23(12):1359-65. Cerca con Google

107. Copeland JG 3rd, Smith RG, Arabia FA, Nolan PE, Mehta VK, McCarthy MS, Chisholm KA. Comparison of the CardioWest total artificial heart, the novacor left ventricular assist system and the thoratec ventricular assist system in bridge to transplantation. Ann Thorac Surg. 2001 Mar;71(3 Suppl):S92-7; discussion S114-5. Cerca con Google

108. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, McClellan D, Slepian MJ; CardioWest Total Artificial Heart Investigators. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004 Aug 26;351(9):859-67. Cerca con Google

109. Copeland JG, Smith RG, Arabia FA, Nolan PE, Banchy ME. The CardioWest total artificial heart as a bridge to transplantation. Semin Thorac Cardiovasc Surg. 2000 Jul;12(3):238-42. Cerca con Google

110. Copeland JG, Arabia FA, Smith RG, Sethi GK, Nolan PE, Banchy ME. Arizona experience with CardioWest Total Artificial Heart bridge to transplantation. Ann Thorac Surg. 1999 Aug;68(2):756-60. Cerca con Google

111. Copeland JG, Smith RG, Arabia FA, Nolan PE, McClellan D, Tsau PH, Sethi GK, Bose RK, Banchy ME, Covington DL, Slepian MJ. Total artificial heart bridge to transplantation: a 9-year experience with 62 patients. J Heart Lung Transplant. 2004 Jul;23(7):823-31. Cerca con Google

112. Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, McClellan D, Slepian MJ; CardioWest Total Artificial Heart Investigators. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004 Aug 26;351(9):859-67. Cerca con Google

113. Copeland JG 3rd, Arabía FA, Banchy ME, Sethi GK, Foy B, Long J, Kormos RL, Smith RG. The CardioWest total artificial heart bridge to transplantation: 1993 to 1996 national trial. Ann Thorac Surg. 1998 Nov;66(5):1662-9. Cerca con Google

114. Copeland JG, Smith RG, Arabia FA, Nolan PE, Banchy ME. The CardioWest total artificial heart as a bridge to transplantation. Semin Thorac Cardiovasc Surg. 2000 Jul;12(3):238-42. Cerca con Google

115. Arabia FA, Copeland JG, Smith RG, Sethi GK, Arzouman DA, Pavie A, Duveau D, Keon WJ, Masters R, Foy B, Carrier M, Dembitsky W, Long J, Kormos R. International experience with the CardioWest total artificial heart as a bridge to heart transplantation. Eur J Cardiothorac Surg. 1997 Apr;11 Suppl:S5-10. Cerca con Google

116. Frazier OH, Dowling RD, Gray LA Jr, Shah NA, Pool T, Gregoric I. The total artificial heart: where we stand. Cardiology. 2004;101(1-3):117-21 Cerca con Google

117. Nakatani T. Artificial heart. Kyobu Geka. 2007 May;60(5):365-71. Japanese. Cerca con Google

118. Copeland JG, Arabia FA, Tsau PH, Nolan PE, McClellan D, Smith RG, Slepian MJ. Total artificial hearts: bridge to transplantation. Cardiol Clin. 2003 Feb;21(1):101-13. Review. Cerca con Google

119. Casarotto D, Bottio T, Gambino A, Testolin L, Gerosa G. The last to die is hope: prolonged mechanical circulatory support with a Novacor left ventricular assist device as a bridge to transplantation. J Thorac Cardiovasc Surg. 2003 Feb;125(2):417-8. Cerca con Google

120. Bottio T, Gambino A, Casarotto D, Gerosa G, Thiene G. Are valve bioprostheses more prone to structural valve deterioration in mitral than in aortic position? An answer derived from a prolonged experience with the novacor left ventricular assist device. J Heart Lung Transplant. 2004 Apr;23(4):507-9. Cerca con Google

121. Kirklin JK, Holman WL. Mechanical circulatory support therapy as a bridge to transplant or recovery (new advances). Curr Opin Cardiol. 2006 Mar;21(2):120-6. Cerca con Google

122. Tiziano Colombo, Claudio Russo, Marco Lanfranconi, Giuseppe Bruschi, Andrea Garatti, Filippo Milazzo, Emanuele Catena, Fabrizio Oliva, Fabio Turazza, Maria Frigerio, Ettore Vitali. Assistenza ventricolare meccanica nell’insufficienza cardiaca avanzata. Indicazioni e prospettive. GIC - G Ital Cardiol 2006; 7 (2): 91-108. Cerca con Google

123. James K. Kirklin, MD, David C. Naftel, PhD, Francis D. Pagani, MD, PhD, Robert L. Kormos, MD, Lynne Stevenson, MD, Marissa Miller, DVM, MPH, and James B. Young, MD. Long-term mechanical circulatory support (destination therapy): On track to compete with heart transplantation? J Thorac Cardiovasc Surg 2012;144:584-603. Cerca con Google

124. Miller MA, Ulisney K, Baldwin JT. INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support): a new paradigm for translating registry data into clinical practice. J Am Coll Cardiol. 2010;56:738-40. Cerca con Google

125. Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, Miller MA, et al. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27:1065-72. Cerca con Google

126. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29:1-10. Cerca con Google

127. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. The Fourth INTERMACS Annual Report: 4,000 implants and counting. J Heart Lung Transplant. 2012;31:117 26. Cerca con Google

128. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transplant. 2011;30:115-23. Cerca con Google

129. Park SJ, Milano CA, Tatooles AJ, Rogers JG, Adamson RM, Steidley DE, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5:241-8. Cerca con Google

130. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Heart-Mate II Clinical Investigators. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885-96. Cerca con Google

131. Pagani FD, Miller LW, Russell SD, Aaronson KD, John R, Boyle AJ, et al, HeartMate II Investigators. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54: 312-21. Cerca con Google

132. Rogers JG, Aaronson KD, Boyle AJ, Russell SD, Milano CA, Pagani FD, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826-34. Cerca con Google

133. Kirklin JK, Naftel DC. Mechanical circulatory support: registering a therapy in evolution. Circ Heart Fail. 2008;1:200-5. Cerca con Google

134. Aaronson KD, Slaughter MS, McGee E, Cotts WG, Acker MA, Jessup ML. Evaluation of the HeartWare HVAD left ventricular assist device system for the treatment of advanced heart failure: results of the ADVANCE bridge to transplant trial. Circ Res. 2010;122:2216. Cerca con Google

135. Bellotto F, Compostella L, Agostoni P, et al. Peripheral adaptation mechanisms in physical training and cardiac rehabilitation: the case of a patient supported by a CardioWest total artificial heart. J Card Fail 2011;17:670-5. Cerca con Google

136. Jaroszewski DE, Anderson EM, Pierce CN, et al. The SynCardia freedom driver: a portable driver for discharge home with the total artificial heart. J Heart Lung Transplant 2011;30:844-5. Cerca con Google

137. Copeland JG. SynCardia Total Artificial Heart: update and future. Tex Heart Inst J 2013;40:587-8. Cerca con Google

138. Torregrossa G, Michiel M, Varghese R, et al. Results with syncardia total artificial heart beyond 1 year. ASAIO J 2014;60:626-34. Cerca con Google

139. Tarzia V, Buratto E, Gallo M, Bortolussi G, Bejko J, Dal Lin C, Torregrossa G, Bianco R, Bottio T, Gerosa G. Surgical implantation of the CardioWest Total Artificial Heart. Ann Cardiothorac Surg 2014;3(6):624-625. doi: 10.3978/j.issn.2225-319X.2014.08.16. Cerca con Google

140. Gerosa G, Gallo M, Tarzia V, et al. Less invasive surgical and perfusion technique for implantation of the Jarvik 2000 left ventricular assist device. Ann Thorac Surg 2013;96:712-4. Cerca con Google

141. Bottio T, Bejko J, Falasco G, et al. Less-invasive off-pump ventricular assist device implantation in regional paravertebral analgesia. J Artif Organs 2014. Cerca con Google

142. Tarzia V, Buratto E, Dal Lin C, Gallo M, Bortolussi G, Bejko J, Bottio T, Gerosa G. Jarvik 2000: evolution of surgical implantation from conventional to minimally invasive technique. Ann Cardiothorac Surg 2014;3(6):621-623. doi: 10.3978/j.issn.2225-319X.2014.08.15. Cerca con Google

143. Popov AF, Hosseini MT, Zych B, et al. HeartWare left ventricular assist device implantation through bilateral anterior thoracotomy. Ann Thorac Surg 2012;93:674-6. Cerca con Google

144. Tarzia V, Buratto E, Gallo M, Bortolussi G, Bejko J, Bianco R, Bottio T, Gerosa G. Implantation of the HeartWare HVAD: from full sternotomy to less invasive techniques. Ann Cardiothorac Surg 2014;3(5):535-537. doi: 10.3978/j.issn.2225-319X.2014.08.12. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record