Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Guidolin, Francesco (2015) Efficient Spectrum Management as an Enabler Towards 5G Cellular Systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2283Kb

Abstract (inglese)

Advanced spectrum sharing and resource management techniques are needed in future wireless cellular networks to ensure high data rates to the end users. New system architec- tures will be required, taking into account aspects such as like spectrum resources availabil- ity, deployment and operational costs, as well as power consumption. Thus, it becomes key for the development of the fifth generation of cellular networks (5G) to pursue an efficient exploitation of the wireless medium, in the sense of both using advanced physical (PHY) layer techniques, and also seeking coordination among operators. In this thesis, we analyze the problem of spectrum management within the next generation of cellular networks and we propose new algorithms for spectrum sharing and for interference coordination.
In the first part of the thesis, we focus on the spectrum sharing between operators. Firstly, we develop a Long Term Evolution (LTE) standard compliant simulation environ- ment extending the open-source network simulator ns3 to support multi-input multi-output (MIMO) systems and advanced beamforming systems. Then, we present a mathematical analysis for the network performance of non-orthogonal spectrum sharing, connecting it directly with the statistics of the radio channel and we develop some spectrum sharing al- gorithms considering different aspects of the operators coexistence. The analysis is further extended to the performance evaluation of more complex digital beamforming techniques developed in a multi-input-single-output (MISO) system allowing to reach a Pareto equi- librium between the operators. Finally, we consider also an orthogonal spectrum sharing scenario investigating the impact of asymmetries and dynamics of the user demands on the implementation of spectrum sharing techniques.
In the second part of the thesis, we extend the concept of spectrum management to two different scenarios. In the first scenario, we consider coordination between multiple cells, e.g. coordinated multipoint (CoMP). In particular, thanks to the exploitation of digital beamforming techniques, we present a novel distributed clustering algorithm that adapts the cluster configuration according to the users distribution and the average cluster size. In the second scenario, we extend the concept of spectrum sharing to the coexistence between different communications system in order to study the feasibility of the deployment of the cellular systems within the mmWave spectrum. In particular, we analyze the impact of the novel cellular networks on the fixed satellite system (FSS).
In the last part of the thesis, we focus on the mobility management of the users in a het- erogeneous network. Firstly, we focus on the average performance experienced by a mobile user while crossing a pico/femtocell, as a function of the handover parameters to provide an approximate expression of the average Shannon capacity experienced by a mobile user when crossing the femtocell. Then, we propose a Markov-based framework to model the user state during the handover process and, based on such a model, we derive an optimal context-dependent handover criterion.

Abstract (italiano)

I futuri sistemi di comunicazione cellulare dovranno affrontare nei prossimi anni un rapido aumento della domanda di traffico dati mobile rendendo necessario l’utilizzo di avanzate tecniche di condivisione dello spettro e gestione delle risorse. Sara` quindi fonda- mentale lo sviluppo di nuove tecnologie che dovranno considerare aspetti quali la disponi- bilita` di risorse spettrali, i costi di realizzazione ed il consumo di energia. La chiave per lo sviluppo della quinta generazione di sistemi cellulari (5G), sara` quindi la ricerca di un uso piu` efficiente delle risorse wireless, sfruttando nello stesso tempo le piu` avanzate tecniche a livello fisico e la coordinazione tra gli operatori. In questa tesi, vengono analizzati i problemi relativi alla gestione delle risorse spettrali nelle reti cellulari di nuova generazione propo- nendo nuovi algoritmi per la condivisione dello spettro e la gestione delle interferenze.
Nella prima parte di questa tesi vengono analizzate tematiche relative alla condivisione dello spettro tra operatori. In primo luogo e` stata implementata un’estensione del simulatore di rete ns3, basata sullo standard Long Term Evolution (LTE) al fine di supportare l’analisi di sistemi multi antenna (MIMO) e di avanzate tecniche di beamforming. E` stata quindi effettuata un’analisi matematica delle performance ottenibili dalla condivisione di spettro non ortogonale connessa direttamente al comportamento statistico del canale radio. Sono stati quindi sviluppati alcuni algoritmi di condivisione dello spettro considerando diversi aspetti della coesistenza tra operatori. L’analisi e` stata quindi estesa alla valutazione di tec- niche di beamforming digitale sviluppate in uno scenario multi-input-single-output (MISO) e atte a realizzare un equilibrio di Pareto tra gli operatori. Al termine di questa sezione sono inoltre stati analizzati alcuni scenari di condivisione ortogonale delle risorse, al fine di studi- are l’impatto delle dinamiche degli utenti sulla implementazione delle tecniche di gestione delle risorse spettrali.
Nella seconda parte di questa tesi il concetto di gestione delle risorse e` stato esteso a due ulteriori scenari. Nel primo scenario, si e` considerata la coordinazione tra celle diverse (CoMP). Nello specifico, grazie all’uso di tecniche di beamforming digitale, e` stato ideato un nuovo algoritmo di clustering delle celle capace di adattare la configurazione dei clusters in relazione alla distribuzione degli utenti e alla dimensione dei cluster stessi. Nel secondo scenario, il concetto di condivisione di spettro e` stato esteso alla coesistenza tra diversi sis- temi di comunicazione, al fine di fornire uno studio di fattibilita` sullo sviluppo dei sistemi cellulari all’interno dello spettro delle onde millimetriche. In particolare, e` stato analizzato l’impatto delle nuove reti cellulari su sistemi satellitari fissi (FSS).
Nell’ultima parte delle tesi vengono invece trattati aspetti riguardanti la gestione della mobilita` degli utenti all’interno delle reti eterogenee. Inizialmente, sono state analizzate le performance ottenute da un utente mobile nell’attraversare una pico/femto cella in funzione dei parametri di handover, al fine di fornire un espressione della capacita` di Shannon media dell’utente. E’ stato quindi proposto un modello basato su una catena dI Markov atto a studiare lo stato dell’utente durante il processo di handover e, sfruttando tale modello, e` stato derivato un criterio di handover ottimale basato sulle condizioni del contesto.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Badia, Leonardo
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:27 Gennaio 2015
Anno di Pubblicazione:27 Gennaio 2015
Parole chiave (italiano / inglese):spectrum sharing, LTE, cellular networks, 5G, CoMP, hotness, handover, interference management
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:7621
Depositato il:12 Nov 2015 16:00
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1] 3GPP, “Evolved universal terrestrial radio acces (e- utra); physical layer procedures,” TS36.213, version 8.5.0. Cerca con Google

[2] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 20132018,” White paper, February 2014. Cerca con Google

[3] N. Alliance, “Next generation mobile networks beyond HSPA & EVDO,” White paper 3.0, December 2006. Cerca con Google

[4] J. Andrews, “Seven ways that hetnets are a cellular paradigm shift,” IEEE Communi- cations Magazine, vol. 51, no. 3, pp. 136–144, March 2013. Cerca con Google

[5] S.-E. Elayoubi, O. Ben Haddada, and B. Fourestie ́, “Performance evaluation of fre- quency planning schemes in ofdma-based networks,” IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1623–1633, May 2008. Cerca con Google

[6] M. Szydelko, “Business model analysis for spectrum sharing with the spectrum bro- ker,” in IEEE International Symposium on Dynamic Spectrum Access Networks, Oct 2012, pp. 378–388. Cerca con Google

[7] T. Frisanco, P. Tafertshofer, P. Lurin, and R. Ang, “Infrastructure sharing and shared operations for mobile network operators: From a deployment and operations view,” in IEEE International Conference on Communications, May 2008, pp. 2193–2200. Cerca con Google

[8] P. Marques, J. Rodriguez, S. Delaere, P. Delahaye, B. Lecroart, M. Gundlach, D. Tri- antafyllopoulou, K. Moessner, and D. Noguet, “Shared use of radio spectrum in the eu: From research projects to standards,” in IEEE International Conference on Communi- Cerca con Google

cations Workshops, June 2013, pp. 1249–1254. Cerca con Google

[9] C. Gabriel. European commission gets behind spectrum shar- ing. [Online]. Available: http://www.rethink-wireless.com/2012/09/04/ european-commission-behind-spectrum-sharing.htm Vai! Cerca con Google

[10] The Saphyre project (fp7-ict-248001). [Online]. Available: http://saphyre.eu Vai! Cerca con Google

[11] E. Jorswieck, L. Badia, T. Fahldieck, D. Gesbert, S. Gustafsson, M. Haardt, K.-M. Ho, E. Karipidis, A. Kortke, E. Larsson, H. Mark, M. Nawrocki, R. Piesiewicz, F. Ro ̈mer, M. Schubert, J. Sykora, P. Trommelen, B. van den Ende, and M. Zorzi, “Resource shar- ing in wireless networks: The saphyre approach,” in Future Network and Mobile Sum- mit, June 2010, pp. 1–8. Cerca con Google

[12] Directive 2002/21/EC of the European parliament and of the council of 7 March 2002 on a common regulatory framework for electronic communications networks and ser- vices. Cerca con Google

[13] E. Jorswieck, L. Badia, T. Fahldieck, E. Karipidis, and J. Luo, “Spectrum sharing im- proves the network efficiency for cellular operators,” IEEE Communications Magazine, vol. 52, no. 3, pp. 129–136, March 2014. Cerca con Google

[14] B. Aazhang, J. Lilleberg, and G. Middleton, “Spectrum sharing in a cellular system,” in IEEE Eighth International Symposium on Spread Spectrum Techniques and Applications, 2004, Aug 2004, pp. 355–359. Cerca con Google

[15] L. Anchora, L. Badia, H. Zhang, T. Fahldieck, J. Zhang, M. Szydelko, M. Schubert, E. Karipidis, and M. Haardt, “Resource allocation and management in multi-operator cellular networks with shared physical resources,” in International Symposium on Wire- less Communication Systems, Aug 2012, pp. 296–300. Cerca con Google

[16] R. Mochaourab and E. Jorswieck, “Optimal beamforming in interference networks with perfect local channel information,” IEEE Transactions on Signal Processing, vol. 59, no. 3, pp. 1128–1141, March 2011. Cerca con Google

[17] J. Laneman and G. Wornell, “Energy-efficient antenna sharing and relaying for wire- less networks,” in IEEE Wireless Communications and Networking Confernce, vol. 1, 2000, pp. 7–12 vol.1. Cerca con Google

[18] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, “Co- ordinated multipoint transmission and reception in lte-advanced: deployment sce- narios and operational challenges,” IEEE Communications Magazine, vol. 50, no. 2, pp. 148–155, February 2012. Cerca con Google

[19] Q. Wang, D. Jiang, G. Liu, and Z. Yan, “Coordinated multiple points transmission for lte-advanced systems,” in International Conference on Wireless Communications, Net- working and Mobile Computing, Sept 2009, pp. 1–4. Cerca con Google

[20] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno, “Coordi- nated multipoint transmission/reception techniques for lte-advanced [coordinated and distributed mimo],” IEEE Wireless Communications, vol. 17, no. 3, pp. 26–34, June 2010. Cerca con Google

[21] B. Mondal, E. Visotsky, T. Thomas, X. Wang, and A. Ghosh, “Performance of down- link comp in lte under practical constraints,” in IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications, Sept 2012, pp. 2049–2054. Cerca con Google

[22] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia, O. Queseth, M. Schellmann, H. Schotten, H. Taoka, H. Tullberg, M. Uusitalo, B. Timus, and M. Fall- gren, “Scenarios for 5g mobile and wireless communications: the vision of the metis project,” IEEE Communications Magazine, vol. 52, no. 5, pp. 26–35, May 2014. Cerca con Google

[23] J. Bae, Y. S. Choi, J. S. Kim, and M. Y. Chung, “Architecture and performance evalua- tion of mmwave based 5g mobile communication system,” in International Conference on Information and Communication Technology Convergence, Oct 2014, pp. 847–851. Cerca con Google

[24] A. Apostolidis, L. Campoy, K. Chatzikokolakis, K.-J. Friederichs, T. Irnich, K. Koufos, J. Kronander, J. Luo, E. Mohyeldin, P. Olmos, T. Rosowski, H. Schotten, B. Singh, M. Tercero, O. Tirkkonen, and M. A. Uusitalo, “Intermediate description of the spec- trum needs and usage principles,” Metis project, D5.1 Deliverable, August 2013. Cerca con Google

[25] D. Lopez-Perez, I. Guvenc, and X. Chu, “Mobility management challenges in 3gpp heterogeneous networks,” IEEE Communications Magazine, vol. 50, no. 12, pp. 70–78, December 2012. Cerca con Google

[26] Ns-3 network simulator. [Online]. Available: http://www.nsnam.org/ Vai! Cerca con Google

[27] G. Foschini and M. Gans, “On limits of wireless communications in a fading environ- ment when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311–335, 1998. Cerca con Google

[28] H. Huang, C. B. Papadias, and S. Venkatesan, MIMO Communication for Cellular Net- Cerca con Google

works. Springer, 2012. Cerca con Google

[29] S. Catreux, P. Driessen, and L. Greenstein, “Data throughputs using multiple-input multiple-output (mimo) techniques in a noise-limited cellular environment,” IEEE Transactions on Wireless Communications, vol. 1, no. 2, pp. 226–235, Apr 2002. Cerca con Google

[30] S.Catreux,L.Greenstein,andV.Erceg,“Someresultsandinsightsontheperformance gains of mimo systems,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 839–847, June 2003. Cerca con Google

[31] J.Lindblom,E.Karipidis,andE.Larsson,“Closed-formparameterizationofthepareto boundary for the two-user miso interference channel,” in IEEE International Conference on Acoustics, Speech and Signal Processing, May 2011, pp. 3372–3375. Cerca con Google

[32] E. Jorswieck, E. Larsson, and D. Danev, “Complete characterization of the pareto boundary for the miso interference channel,” IEEE Transactions on Signal Processing, vol. 56, no. 10, pp. 5292–5296, Oct 2008. Cerca con Google

[33] 3gpp lte toolbox and blockset. [Online]. Available: http://www.steepestascent.com/ content/default.asp?page=s210 Vai! Cerca con Google

[34] Opnet lte specialized model. [Online]. Available: http://www.opnet.com/LTE/ Vai! Cerca con Google

[35] J.Ikuno,M.Wrulich,andM.Rupp,“Systemlevelsimulationofltenetworks,”inIEEE 71st Vehicular Technology Conference, May 2010, pp. 1–5. Cerca con Google

[36] G. Piro, N. Baldo, and M. Miozzo, “An lte module for the ns-3 network simulator,” in Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, ser. SIMUTools ’11, 2011, pp. 415–422. Cerca con Google

[37] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct 1998. Cerca con Google

[38] A. Ghosh, W. Xiao, R. Ratasuk, A. Rottinghaus, and B. Classon, “Multi-antenna sys- tem design for 3gpp lte,” in IEEE International Symposium on Wireless Communication Systems, Oct 2008, pp. 478–482. Cerca con Google

[39] Q. Li, G. Li, W. Lee, M. il Lee, D. Mazzarese, B. Clerckx, and Z. Li, “Mimo techniques in wimax and lte: a feature overview,” IEEE Communications Magazine, vol. 48, no. 5, pp. 86–92, May 2010. Cerca con Google

[40] R. Heath, S. Sandhu, and A. Paulraj, “Antenna selection for spatial multiplexing sys- tems with linear receivers,” IEEE Communications Letters, vol. 5, no. 4, pp. 142–144, April 2001. Cerca con Google

[41] A. Paulraj, D. GORE, R. Nabar, and H. Bolcskei, “An overview of mimo communica- tions - a key to gigabit wireless,” Proceedings of the IEEE, vol. 92, no. 2, pp. 198–218, Feb 2004. Cerca con Google

[42] G. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky, “Simplified processing for high spectral efficiency wireless communication employing multi-element arrays,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 11, pp. 1841–1852, Nov 1999. Cerca con Google

[43] 3GPP, “Spatial channel model for multiple input multiple output (mimo) simula- tions,” TR 25.996 version 6.1.0, September 2003. Cerca con Google

[44] I. Xirouchakis, “Spatial channel model for mimo simulations. a ray based simulator based on 3gpp tr 25.996 v.6.1.0.” [Online]. Available: http://www.mathworks.com/ matlabcentral/fileexchange/ Vai! Cerca con Google

[45] R. Pupala, L. Greenstein, and D. Daut, “Downlink throughput statistics in interference-limited cellular systems with multi-element antennas,” IEEE Transactions on Communications, vol. 58, no. 1, pp. 311–317, January 2010. Cerca con Google

[46] J. Lindblom and E. Larsson, “Does non-orthogonal spectrum sharing in the same cell improve the sum-rate of wireless operators?” in IEEE 13th International Workshop on Signal Processing Advances in Wireless Communications, June 2012, pp. 6–10. Cerca con Google

[47] P. Mogensen, W. Na, I. Kovacs, F. Frederiksen, A. Pokhariyal, K. Pedersen, T. Kolding, K. Hugl, and M. Kuusela, “Lte capacity compared to the shannon bound,” in IEEE 65th Vehicular Technology Conference, April 2007, pp. 1234–1238. Cerca con Google

[48] [Online]. Available: http://code.nsnam.org/lanchora/ns-3-lte-SpectrumSharing. Vai! Cerca con Google

[49] L. Anchora, M. Mezzavilla, L. Badia, and M. Zorzi, “A performance evaluation tool for spectrum sharing in multi-operator {LTE} networks,” Computer Communications, vol. 35, no. 18, pp. 2218 – 2226, 2012. [Online]. Available: http://www.sciencedirect. com/science/article/pii/S0140366412002678 Vai! Cerca con Google

[50] X. Ge, X. Huang, Y. Wang, M. Chen, Q. Li, T. Han, and C.-X. Wang, “Energy-efficiency optimization for mimo-ofdm mobile multimedia communication systems with qos constraints,” IEEE Transactions on Vehicular Technology, vol. 63, no. 5, pp. 2127–2138, June 2014. Cerca con Google

[51] L. Anchora, L. Badia, E. Karipidis, and M. Zorzi, “Capacity gains due to orthogonal spectrum sharing in multi-operator lte cellular networks,” in International Symposium on Wireless Communication Systems, Aug 2012, pp. 286–290. Cerca con Google

[52] E. G. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cam- bridge, U.K.: Cambridge Uni. Press, 2003. Cerca con Google

[53] E. Larsson and E. Jorswieck, “Competition versus cooperation on the miso interfer- ence channel,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 7, pp. 1059–1069, September 2008. Cerca con Google

[54] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broadcast scheduling using zero-forcing beamforming,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 3, pp. 528–541, March 2006. Cerca con Google

[55] L. Canzian, L. Badia, and M. Zorzi, “Promoting cooperation in wireless relay net- works through stackelberg dynamic scheduling,” IEEE Transactions on Communica- tions, vol. 61, no. 2, pp. 700–711, February 2013. Cerca con Google

[56] T. Pham and N. Turkkan, “Reliability of a standby system with beta-distributed com- ponent lives,” IEEE Transactions on Reliability, vol. 43, no. 1, pp. 71–75, Mar 1994. Cerca con Google

[57] P.Nuggehalli,M.Sarkar,andR.Rao,“Qosandselfishusers:Amaclayerperspective,” in IEEE Global Telecommunications Conference, Nov 2007, pp. 4719–4723. Cerca con Google

[58] L. Kleinrock, Queueing Systems. John Wiley & Sons, Inc., New York, NY, 1975, vol. 1. Cerca con Google

[59] R. K. Jain, Dah-Ming Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared computer system,” ACM Transaction on Computer Systems, 1984. Cerca con Google

[60] A. Papadogiannis, D. Gesbert, and E. Hardouin, “A dynamic clustering approach in wireless networks with multi-cell cooperative processing,” in IEEE International Con- ference on Communications, May 2008, pp. 4033–4037. Cerca con Google

[61] J.-M. Moon and D.-H. Cho, “Formation of cooperative cluster for coordinated trans- mission in multi-cell wireless networks,” in IEEE Consumer Communications and Net- working Conference, Jan 2013, pp. 528–533. Cerca con Google

[62] P. Baracca, F. Boccardi, and V. Braun, “A dynamic joint clustering scheduling algo- rithm for downlink comp systems with limited csi,” in International Symposium on Wireless Communication Systems, Aug 2012, pp. 830–834. Cerca con Google

[63] J. Gong, S. Zhou, Z. Niu, L. Geng, and M. Zheng, “Joint scheduling and dynamic clus- tering in downlink cellular networks,” in IEEE Global Telecommunications Conference, Dec 2011, pp. 1–5. Cerca con Google

[64] A.Papadogiannis,E.Hardouin,andD.Gesbert,“Decentralisingmulticellcooperative processing: a novel robust framework,” EURASIP Journal on Wireless Communication Networks, February 2009. Cerca con Google

[65] S. Zhou, J. Gong, Z. Niu, Y. Jia, and P. Yang, “A decentralized framework for dy- namic downlink base station cooperation,” in IEEE Global Telecommunications Confer- ence, November 2009, pp. 1–6. Cerca con Google

[66] Z. Khan, S. Glisic, L. DaSilva, and J. Lehtoma ̈ki, “Modeling the dynamics of coalition formation games for cooperative spectrum sharing in an interference channel,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 3, no. 1, pp. 17–30, March 2011. Cerca con Google

[67] W. Saad, Z. Han, M. Debbah, and A. Hjorungnes, “A distributed coalition formation framework for fair user cooperation in wireless networks,” IEEE Transactions on Wire- less Communications, vol. 8, no. 9, pp. 4580–4593, September 2009. Cerca con Google

[68] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts, performance, and field trial results,” IEEE Communications Magazine, vol. 49, no. 2, pp. 102–111, Febru- ary 2011. Cerca con Google

[69] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong, J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for 5g cellu- lar: It will work!” IEEE Access, vol. 1, pp. 335–349, 2013. Cerca con Google

[70] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communi- cations: theoretical feasibility and prototype results,” IEEE Communications Magazine, vol. 52, no. 2, pp. 106–113, February 2014. Cerca con Google

[71] T. Kim, J. Park, J.-Y. Seol, S. Jeong, J. Cho, and W. Roh, “Tens of gbps support with mmwave beamforming systems for next generation communications,” in IEEE Global Communications Conference, December 2013, pp. 3685–3690. Cerca con Google

[72] S. Rangan, T. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366–385, March 2014. Cerca con Google

[73] M. Akdeniz, Y. Liu, M. Samimi, S. Sun, S. Rangan, T. Rappaport, and E. Erkip, “Mil- limeter wave channel modeling and cellular capacity evaluation,” IEEE Journal on Se- lected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, June 2014. Cerca con Google

[74] T. Bai, V. Desai, and R. Heath, “Millimeter wave cellular channel models for system evaluation,” in International Conference on Computing, Networking and Communications, Feb 2014, pp. 178–182. Cerca con Google

[75] S. Hur, Y. J. Cho, K. Lee, J. H. Ko, and J. Park, “Millimeter-wave channel modeling based on measurements in in-building and campus environments at 28 ghz,” Korea, 2014. Cerca con Google

[76] CoRaSat project, “Service and market requirememts,” D.2.1 Deliverable, Tech. Rep., October 2013. Cerca con Google

[77] ITU-R M.2109, “Sharing studies between imt advanced systems and geostationary satellite networks in the fixed-satellite service in the 3400-4200 and 4500-4800 mhz frequency bands,” Tech. Rep., 2007. Cerca con Google

[78] ITU-R 4-5-6-7/TEMP/139-E, “Sharing and compatibility between imt system and fixed-satellite service network in 5850-6425 mhz frequency range,” Tech. Rep., Febru- ary 2007. Cerca con Google

[79] S. Sharma, S. Chatzinotas, and B. Ottersten, “Satellite cognitive communications: In- terference modeling and techniques selection,” in Advanced Satellite Multimedia Sys- tems Conference and 12th Signal Processing for Space Communications Workshop, Sept 2012, pp. 111–118. Cerca con Google

[80] J.-W. Lim, H.-S. Jo, H.-G. Yoon, and J.-G. Yook, “Interference mitigation technique for the sharing between imt-advanced and fixed satellite service,” Journal of Communica- tions and Networks, vol. 9, no. 2, pp. 159–166, June 2007. Cerca con Google

[81] D.-S. Oh, S. min Lee, D.-S. Ahn, and S. Kim, “A study on the separation distance for frequency sharing between gso network and terrestrial network in ka band,” in IEEE Vehicular Technology Conference, May 2008, pp. 2967–2971. Cerca con Google

[82] S.Sharma,S.Chatzinotas,andB.Ottersten,“Transmitbeamformingforspectralcoex- istence of satellite and terrestrial networks,” in 8th International Conference on Cognitive Radio Oriented Wireless Networks, July 2013, pp. 275–281. Cerca con Google

[83] D.MondererandL.Shapley,“Potentialgames,”GamesandEconomicBehavior,pp.124– 143, 1996. Cerca con Google

[84] N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cog- nitive radio networks,” in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov 2005, pp. 269–278. Cerca con Google

[85] S. Buzzi, G. Colavolpe, D. Saturnino, and A. Zappone, “Potential games for energy- efficient power control and subcarrier allocation in uplink multicell ofdma systems,” IEEE Journal of Selected Topics in Signal Processing,, vol. 6, no. 2, pp. 89–103, April 2012. Cerca con Google

[86] F.-W.ChenandJ.-C.Kao,“Game-basedbroadcastoverreliableandunreliablewireless links in wireless multihop networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 8, pp. 1613–1624, Aug 2013. Cerca con Google

[87] ITU-R P.452-15, “Prediction procedure for the evaluation of interference between sta- tions on the surface of the earth at frequencies above about 0.1 ghz,” Tech. Rep., September 2013. Cerca con Google

[88] ITU-R S.465, “Reference radiation pattern for earth station antennas in the fixed- satellite service for use in coordination and interference assessment in the frequency range from 2 to 31 ghz,” Tech. Rep., January 2010. Cerca con Google

[89] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Hybrid precoding for millime- ter wave cellular systems with partial channel knowledge,” in Information Theory and Applications Workshop, February 2013, pp. 1–5. Cerca con Google

[90] ITU-R SF.558-2, “Maximum allowable values of interference from terrestrial radio links to systems in the fixed-satellite service employing 8-bit pcm encoded telephony and sharing the same frequency bands,” Tech. Rep., July 1986. Cerca con Google

[91] ITU-R Rec. S.1432, “Apportionment of the allowable error performance degradation to fixed-satellite service (fss) hypothetical reference digital paths arising from time invariant interference for system operating below 30 ghz,” Tech. Rep., January 2000. Cerca con Google

[92] G. T. 36.839, “Evolved universal terrestrial radio access (e-utra); mobility enhance- ments in heterogeneous networks (release 11),” Tech. Rep. version 11.0.0, September 2012. Cerca con Google

[93] G. T. 36.331, “Protocol specification; radio resource control,” Tech. Rep. v.10.4.0, De- cember 2011. Cerca con Google

[94] Q. Liao, F. Penna, S. Stanczak, Z. Ren, and P. Fertl, “Context-aware handover opti- mization for relay-aided vehicular terminals,” in IEEE 14th Workshop on Signal Process- ing Advances in Wireless Communications, June 2013, pp. 555–559. Cerca con Google

[95] M. Peng, D. Liang, Y. Wei, J. Li, and H.-H. Chen, “Self-configuration and self- optimization in lte-advanced heterogeneous networks,” IEEE Communications Mag- azine, vol. 51, no. 5, pp. 36–45, May 2013. Cerca con Google

[96] D.Xenakis,N.Passas,L.Merakos,andC.Verikoukis,“Mobilitymanagementforfem- tocells in lte-advanced: Key aspects and survey of handover decision algorithms,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp. 64–91, First 2014. Cerca con Google

[97] K. Kitagawa, T. Komine, T. Yamamoto, and S. Konishi, “A handover optimization algorithm with mobility robustness for lte systems,” in IEEE 22nd International Sympo- sium on Personal Indoor and Mobile Radio Communications, Sept 2011, pp. 1647–1651. Cerca con Google

[98] Y.Lee,B.Shin,J.Lim,andD.Hong,“Effectsoftime-to-triggerparameteronhandover performance in son-based lte systems,” in 16th Asia-Pacific Conference on Communica- tions, Oct 2010, pp. 492–496. Cerca con Google

[99] K. Kitagawa, T. Komine, T. Yamamoto, and S. Konishi, “Performance evaluation of handover in lte-advanced systems with pico cell range expansion,” in IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications, Sept 2012, pp. 1071–1076. Cerca con Google

[100] S.Barbera,P.Michaelsen,M.Saily,andK.Pedersen,“Improvedmobilityperformance in lte co-channel hetnets through speed differentiated enhancements,” in IEEE Globe- com Workshops, December 2012, pp. 426–430. Cerca con Google

[101] I. Guvenc, “Capacity and fairness analysis of heterogeneous networks with range ex- pansion and interference coordination,” IEEE Communications Letters, vol. 15, no. 10, pp. 1084–1087, October 2011. Cerca con Google

[102] A. Lobinger, S. Stefanski, T. Jansen, and I. Balan, “Coordinating handover parameter optimization and load balancing in lte self-optimizing networks,” in IEEE 73rd Vehic- ular Technology Conference, May 2011, pp. 1–5. Cerca con Google

[103] A. Goldsmith, Wireless Communications. Cambridge University Press, New York, NJ, 2005. Cerca con Google

[104] M. Zorzi, “Outage and error events in bursty channels,” IEEE Transactions on Commu- nications, vol. 46, no. 3, pp. 349–356, Mar 1998. Cerca con Google

[105] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. Andrews, “User asso- ciation for load balancing in heterogeneous cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2706–2716, June 2013. Cerca con Google

[106] R. Tanbourgi, S. Singh, J. Andrews, and F. Jondral, “Analysis of non-coherent joint- transmission cooperation in heterogeneous cellular networks,” in IEEE International Conference on Communications, June 2014, pp. 5160–5165. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record