Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Volpato, Chiara (2015) Valutazione psicofisiologica delle funzioni attentive nella sclerosi laterale amiotrofica. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
1389Kb

Abstract (english)

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a progressive degeneration of motor neurons in the spinal cord, brainstem and cortex determining muscle atrophy and paralysis. There is substantial clinical and experimental evidence indicating the presence of cognitive dysfunction at least in a subpopulation of patients with ALS. An important contribution in the evaluation of cognitive dysfunction and related neural mechanisms in ALS can be provided by event-related potentials (ERPs) because this technique could be administered to patients with severe motor disability, not requiring verbal or motor responses. The main ERPs studies in ALS patients found changes in electrophysiological parameters reflecting an alteration of the control processes of attention. Therefore, objective of this study was to evaluate the attention functioning in a group of patients with ALS using the ERPs approach.
In the first experiment we used a distraction paradigm to evaluate the ability of change detection, focusing and re-orientation of attention. The results have revealed in ALS patients a modification of the amplitude and the latency of the N200, the P300 and the re-orienting negativity (RON) components. This could suggest an alteration of the endogenous mechanism of detection of change resulting in a reduction of the allocation and the re-orientation of attentional resources.
In the second experiment we used a Bayesian approach to estimate the single trial P300 recorded with an oddball paradigm in a group of ALS patients in the initial stage of the disease. The analysis of single trial, unlike the classical analysis, showed an alteration of both the latency and the amplitude of the P300 in the patient group compared to the control group, suggesting in ALS patients at the initial stages of the disease the presence of neurophysiological alterations of attentional functions.
In conclusion, the ERPs results support the hypothesis that ALS is a multisystem disease with involvement of cognitive functions. Moreover, these data confirm the usefulness and effectiveness of the electrophysiological approach in early detection and monitoring of cognitive functions of ALS patients.

Abstract (italian)

La sclerosi laterale amiotrofica (SLA) è una malattia neurodegenerativa caratterizzata da una progressiva degenerazione dei motoneuroni del midollo spinale, del tronco encefalico e della corteccia, con conseguente atrofia muscolare e paralisi. Ci sono consistenti evidenze cliniche e sperimentali che indicano la presenza di disfunzioni cognitive almeno in una sottopopolazione di pazienti con SLA. Un importante contributo nella valutazione delle disfunzioni cognitive e dei relativi meccanismi neurali nella SLA può essere fornito dai potenziali evento-correlati (ERPs) poiché, non richiedendo risposte verbali o motorie, possono essere somministrati a pazienti affetti da grave disabilità motoria. I principali studi ERPs nei pazienti con SLA hanno riscontrato delle modificazioni nei parametri elettrofisiologici che potrebbero riflettere un’alterazione dei processi di controllo e supervisione dell’attenzione. Obiettivo di questo studio, quindi, è valutare le funzioni attentive in un gruppo di pazienti affetti da SLA utilizzando l’approccio ERPs.
Nel primo esperimento è stato utilizzato un paradigma della distrazione che ha consentito di valutare la capacità di detezione del cambiamento, focalizzazione e ri-orientamento dell’attenzione. I risultati hanno messo in luce nei pazienti con SLA una modificazione dei parametri ampiezza e latenza delle componenti N200, P300 e re-orienting negativity (RON), suggerendo un’alterazione del meccanismo endogeno di rilevazione del cambiamento con una conseguente riduzione dell’allocazione ed del ri-orientamento delle risorse attentive.
Nel secondo esperimento è stato utilizzato un approccio di stima Bayesana single trial della P300 registrata con un paradigma oddball attivo in un gruppo di pazienti affetti da SLA allo stadio iniziale di malattia. L’analisi single trial, a differenza dell’analisi classica, ha rivelato un’alterazione sia della latenza sia dell’ampiezza della P300 nel gruppo di pazienti rispetto al gruppo di controllo suggerendo nei pazienti con SLA agli stadi iniziali di malattia la presenza di alterazioni neurofisiologiche delle funzioni attentive ed esecutive.
In conclusione, i risultati ERPs ottenuti da questo studio rafforzano l’ipotesi che la SLA sia una patologia multisistemica con un coinvolgimento delle funzioni cognitive. Inoltre, questi dati confermano l'utilità e l’efficacia dell’approccio elettrofisiologico nella diagnosi precoce e nel monitoraggio delle funzioni cognitive dei pazienti con SLA.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Battistin, Leontino
Ph.D. course:Ciclo 26 > Scuole 26 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:28 January 2015
Anno di Pubblicazione:February 2015
Key Words:amyotrophic lateral sclerosis, event-related potentials, cognitive impairments
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:7633
Depositato il:10 Nov 2015 12:30
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abe K, Fujimura H, Toyooka K, Sakoda S, Yorifuji S, Yanagihara T. Cognitive function in amyotrophic lateral sclerosis. Journal of the neurological sciences 1997; 1458: 95-100. Cerca con Google

2. Abrahams S, Goldstein LH, Kew JJM, Brooks DJ, Lloyd CM, Frith CD, Leigh PN. Frontal lobe dysfunction in amyotrophic lateral sclerosis A PET study. Brain1996; 119: 2105-2120. Cerca con Google

3. Abrahams S, Goldstein LH, Lloyd CM, Brooks DJ, Leigh PN. Cognitive deficits in non-demented amyotrophic lateral sclerosis patients: a neuropsychological investigation. Journal of the neurological sciences 1995; 129: 545-55. Cerca con Google

4. Abrahams S, Goldstein LH, Simmons A, Brammer M, Williams SCR, Giampietro V, Leigh PN. Word retrieval in amyotrophic lateral sclerosis: a functional magnetic resonance imaging study. Brain 2005; 127:1507-1517. Cerca con Google

5. Abrahams S, Goldstein LH, Suckling J, Ng V, Simmons A, Chitnis X et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. Journal of neurology 2005; 252:321-331. Cerca con Google

6. Abrahams S, Leigh PN, Harvey A, Vythelingum GN, Grise D, Goldstein LH. Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia 2000; 38: 7345-7457. Cerca con Google

7. Abrahams S. Goldstein LH. Al-Chalabi A. Pickering A. Morris RG. Passingham RE et al. Relation between cognitive dysfunction and pseudobulbar palsy in amyotrophic lateral sclerosis. Journal of Neurology. Neurosurgery and Psychiatry 1997; 62: 45645-4572. Cerca con Google

8. Agosta F, Pagani E, Petrolini M, Caputo D, Perini M, Prelle A et al. Assessment of white matter tract damage in patients with amyotrophic lateral sclerosis: a diffusion tensor MR imaging tractography study. American Journal of Neuroradiology 2010; 31: 14557-14561. Cerca con Google

9. Agosta F. Canu E. Valsasina P. Riva N. Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiol. Aging. 2013. Cerca con Google

10. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 2000. Cerca con Google

11. American Psychiatric Association. Ed. it. Massimo Biondi (a cura di). DSM-5. Manuale diagnostico e statistico dei disturbi mentali. Milano. Raffaello Cortina Editore. 2014. Cerca con Google

12. Andrews J. Amyotrophic lateral sclerosis: clinical management and research update. Current neurology and neuroscience reports 2009;9:59-68. Cerca con Google

13. Azizian A, Freitas AL, Watson TD, Squires NK. Electrophysiological correlates of categorization: P300 amplitude as index of target similarity. Biol Psychol. 2006;71:278–88. Cerca con Google

14. Bak TH. Hodges JR. Motor Neurone disease. dementia and aphasia: coincidence. co-occurrence or continuum. J. Neurol. 2001; 248: 260-270. Cerca con Google

15. Bak TH, Hodges JR. The effects of motor neurone disease on language: further evidence. Brain and language 2005; 89:3545-361. Cerca con Google

16. Baudena P, Halgren E, Heit G, Clarke JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol. 1995;94:251-64. Cerca con Google

17. Brazier MA. The electrical activity of the nervous system. Science, 1964; 11;146:1423-8. Cerca con Google

18. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh JK. An inventory for measuring depression. Archives of general psychiatry 1961; 45: 561-571. Cerca con Google

19. Bensch M. Martens S. Halder S. Hill J. Nijboer F. Ramos A. Birbaumer N. Bogdan M. Kotchoubey B. Rosenstiel W. Schölkopf B. Gharabaghi A. Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography. J Neural Eng. 2014;11:026006. Cerca con Google

20. Berti S, Schröger E. A comparison of auditory and visual distraction effects: behavioral and event-related indices. Cognitive brain research 2001; 10:265-273. Cerca con Google

21. Berti S, Schröger E. Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. European Journal of Neuroscience 2003; 17:1119-1122. Cerca con Google

22. Berti S, Roeber U, Schröger E. Bottom-up influences on working memory: behavioral and electrophysiological distraction varies with distractor strength. Experimental psychology 2004; 51: 249-57. Cerca con Google

23. Berti S. Cognitive control after distraction: Event‐related brain potentials (ERPs) dissociate between different processes of attentional allocation. Psychophysiology 2008; 455:608-620. Cerca con Google

24. Böcker KB, van Avermaete J, van den Berg-Lenssen MM. The international 10-20 system revisited: cartesian and spherical co-ordinates. Brain Topogr. 1994;6:231–5. Cerca con Google

25. Broadbent, D. E. (1958). Perception and communication. New York, NY: Pergamon Press. doi:10.1037/10037-000 Cerca con Google

26. Brooks BR. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Sci. 1994; 1245: 96-107. Cerca con Google

27. Brooks BR. Miller RG. Swash M. Munsat TL. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2000;1:293-299. Cerca con Google

28. Cedarbaum JM. Stambler N. Fuller C. Hilt D. Thurmond B. Nakanishi A. The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999;169:13–21. Cerca con Google

29. Chang JL, Lomen-Hoerth C, Murphy J, Henry RG, Kramer JH, Miller BL, Gorno-Tempini ML. A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology 2005; 65: 75-80. Cerca con Google

30. Charcot JM, Joffroy A. Deux cas d'atrophie musculaire progressive. Arch Physiol 1869; 2: 3545-367. Cerca con Google

31. Charcot JM. Sclerose des cordons lateraux de la moelle epiniere chez une femme hysterique atteinte de contracture permanente des quatres members. L'Union Med 1865; 25: 4551-4561. Cerca con Google

32. Chiò A. Logroscino G. Hardiman O. Swingler R. Mitchell D. Beghi E et al. Prognostic factors in ALS: a critical review. Amyotrophic Lateral Sclerosis 2009; 10: 310-323. Cerca con Google

33. Chiò A. Logroscino G. Traynor BJ. Collins J. Simeone JC. GoldsteinLA. White LA. Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 2013; 451: 118-130. Cerca con Google

34. Cohen J, Polich J. On the number of trials needed for P300. Int. J. Psychophysiol. 1997;25:249–55. Cerca con Google

35. Courchesne E, Hillyard SA, Galambos R. Stimulus novelty, task relevance and the visual evoked potential in man. Electroencephalography and Clinical Neurophysiology 1975; 39:131-143 Cerca con Google

36. D’Avanzo C. Schiff S. Amodio P. Sparacino G. A Bayesian method to estimate single-trial event-related potentials with application to the study of the P300 variability. J Neurosci Methods 2011;198:114–24. Cerca con Google

37. Daffner KR, Mesulam MM, Scinto LF, et al. The central role of the prefrontal cortex in directing attention to novel events. Brain 2000; 123(Pt5):927-939. Cerca con Google

38. David AS Gillham RA. Neuropsychological study of motor neuron disease. Psychosomatics 1986; 27:45451-45455. Cerca con Google

39. Davies RR, Halliday GM, Xuereb JH, Kril JJ, Hodges JR. The neural basis of semantic memory: Evidence from semantic dementia. Neurobiology of aging 2009; 30: 20453-2052. Cerca con Google

40. Dawson G. A summation technique for the detection of small evoked potentials. Electroencephalogr. Clin. Neurophysiol. 1954 ;6:65-84 Cerca con Google

41. Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences 1988; 11:357- 374. Cerca con Google

42. Donchin E. Ritter W. McCallum CW. Cognitive Psychophysiology: The Endogenous Components of the ERP. 1978. p. 349–411. Cerca con Google

43. Duchek JM, Balota DA, Tse CS, Holtzman DM, Fagan AM, Goate AM. The utility of intraindividual variability in selective attention tasks as an early marker for Alzheimer's disease Neuropsychology. 2009;23:746-58. Cerca con Google

44. Duncan CC, Barry RJ, Connolly JF, Fischer C, Michie PT, Näätänen R, Polich J, Reinvang I, Van Petten C. Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology 2009; 120:1883–1908. Cerca con Google

45. Eimer M. ERP modulations indicate the selective processing of visual stimuli as a result of transient and sustained spatial attention. Psychophysiology. 1996;33:13-21. Cerca con Google

46. Elamin M. Bede P. Byrne S. Jordan N. Gallagher L. Wynne B. O'Brien C. Phukan J. Lynch C. Pender N. Hardiman O. Cognitive changes predict functional decline in ALS: a population-based longitudinal study. Neurology 2013;80:1590-7. Cerca con Google

47. Escera C, Alho K, Winkler I, Naatanen R. Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci. 1998;10:590-604 Cerca con Google

48. Fabiani M. Gratton G. Coles MGH. Event-Related Brain Potentials: Methods, Theory and Applications. Handbook of psychophysiology, pp. 53–84, 2000. Cerca con Google

49. Ferguson TA . Elman LB. Clinical presentation and diagnosis of amyotrophic lateral sclerosis. NeuroRehabilitation 2007;22: 4509-4516. Cerca con Google

50. Fjell M, Rosquist H, Walhovd KB. Instability in the latency of P3a/P3b brain potentials and cognitive function in aging. Neurobiology of aging 2009; 30: 2065–2079. Cerca con Google

51. Flaherty-Craig C, Eslinger P, Stephens B, Simmons Z. A rapid screening battery to identify frontal dysfunction in patients with ALS. Neurology 2006; 67:2070-2072. Cerca con Google

52. Folstein JR, Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 2008 ;45:152-70. Cerca con Google

53. Ford J. White P. Lim K. Pfefferbaum A. Schizophrenics have fewer and smaller P300s: a single-trial analysis. Biol. Psychiatry. 1994;35:96-103. Cerca con Google

54. Frank B, Haas J. Heinze HJ, Stark E, Münte TF. Relation of neuropsychological and magnetic resonance findings in amyotrophic lateral sclerosis: evidence for subgroups. Clinical neurology and neurosurgery 1997; 99:79-86. Cerca con Google

55. Friedman D, Cycowicz YM, Gaeta H. The novelty P3: an event-related brain potential (ERP) sign of the brain's evaluation of novelty. Neurosci Biobehav Rev. 2001;25:355-73 Cerca con Google

56. Furdea A, Halder S, Krusienski DJ, Bross D, Nijboer F, Birbaumer N et al. An auditory oddball (P300) spelling system for brain-computer interfaces. Psychol. Sci. 2009.46:617–25. Cerca con Google

57. Ganzini L, Johnston WS, McFarland-BH, et al. Attitudes of patients with amyotrophic lateral sclerosis and their care givers toward assisted suicide. N Engl J Med 1998; 339: 967-73 Cerca con Google

58. Gibbons ZC, Snowden JS, Thompson JC, Happe F, Richardson A, Neary D. Inferring thought and action in motor neurone disease. Neuropsychologia 2007; 455:1196-1207. Cerca con Google

59. Gil R, Neau JP, Dary-Auriol M, Agbo C, Tantot AM. Ingrand P. Event-related auditory evoked potentials and amyotrophic lateral sclerosis. Arch Neurol. 1995;52:890-6. Cerca con Google

60. Goldstein LH. Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. Lancet Neurol. 2013;12:368-80. Cerca con Google

61. Grace GM. Orange JB. Rowe A. Findlater K. Freedman M. Strong MJ. Neuropsychological functioning in PLS: a comparison with ALS. The Canadian Journal of Neurological Sciences 2011; 38: 88-97. Cerca con Google

62. Grossman AB, Woolley-Levine S, Bradley WG, Miller RG. Detecting neurobehavioral changes in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2007;8:56-61. Cerca con Google

63. Grossman M, Anderson C, Khan A, Avants B, Elman L, McCluskey L. Impaired action knowledge in amyotrophic lateral sclerosis. Neurology 2008. 71: 1396-14501. Cerca con Google

64. Hammer A, Vielhaber S, Rodriguez-Fornells A, Mohammadi B, Münte TF. A neurophysiological analysis of working memory in amyotrophic lateral sclerosis. Brain Res. 2013;1421:90-9 Cerca con Google

65. Hanagasi HA, Gurvit IH, Ermutlu N, Kaptanoglu G, Karamursel S, Idrisoglu HA et al. Cognitive impairment in amyotrophic lateral sclerosis: evidence from neuropsychological investigation and event-related potentials. Brain Res Cogn Brain Res. 2002;14:234-44. Cerca con Google

66. Hansen JC, Hillyard SA, Endogenous Brain Potentials Associated With Selective Auditory Attention. Electroencephalogr Clin Neurophysiol. 1980;49:277–90. Cerca con Google

67. Hillyard SA, Picton TW. Event-related brain potentials and selective information processing in man. In J. Desmedt (ed.). Cognitive Components in Cerebral Event-Related Potentiab and Selective Attention. Basel: Karger, 1978. Hodges JR, Miller B. The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: Part I. Neurocase 2001; 7: 31-35. Cerca con Google

68. Horváth J, Czigler I, Birkás E, Winkler I, Gervai J. Age-related differences in distraction and reorientation in an auditory task. Neurobiology of aging 2009; 30: 1157-1172. Cerca con Google

69. Horváth J, Winkler I, Bendixen A. Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction? Biol Psychol. 2008;79:139-47. Cerca con Google

70. Hu MTM. Ellis CM. Al-Chalabi A. Leigh PN. Shaw CE. Flail arm syndrome: a distinctive variant of amyotrophic lateral sclerosis. Journal of Neurology. Neurosurgery and Psychiatry 1998; 65: 950-951. Cerca con Google

71. Hudson AJ. Amyotrophic lateral sclerosis and its association with dementia. parkinsonism and other neurological disorders: a review. Brain 1981; 104: 217-247. Cerca con Google

72. James, W. (1890). Principles of psychology. New York, NY: Holt. doi:10.1037/11059-000 Cerca con Google

73. Jankowiak S, Berti S. Behavioral and event‐related potential distraction effects with regularly occurring auditory deviants. Psychophysiology 2007, 4545: 79-85. Cerca con Google

74. Jaskowski P, Verleger R. Amplitudes and Latencies of Single-Trial ERP’s Estimated by a Maximum-Likelihood Method. IEEE Trans. Biomed. Eng. 1999;46:987–93. Cerca con Google

75. Jaskowski P. Verleger R. An evaluation of methods for single-trial estimation of P3 latency. Psychophysiology. 2000;37:153-62153–62. Cerca con Google

76. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Analysis and visualization of single-trial event-related potentials. Hum. Brain Mapp. 2001;14:166–85. Cerca con Google

77. Kahkonen S. Ahveninen J. Combination of magneto- and electroencephalography in studies of monoamine modulation on attention. Methods Find Exp Clin Pharmacol. 2002; 24:27–34. Cerca con Google

78. Kahneman, D. (1984). Changing views of attention and automaticity. In R. Parasuraman & D. R. Davies (Eds.), Varieties of attention (pp. 29–61). London, UK: Academic Press. Cerca con Google

79. Karjalainen PA, Kaipio JP, Koistinen AS, Vauhkonen M. Subspace regularization method for the single-trial estimation of evoked potentials. IEEE Trans Biomed Eng. 1999;46:849–60. Cerca con Google

80. Kassubek J, Unrath A, Huppertz HJ, Lulé D, Ethofer T, Sperfeld AD, Ludolph AC. Global brain atrophy and corticospinal tract alterations in ALS. as investigated by voxel-based morphometry of 3-D MRI. Amyotrophic Lateral Sclerosis 2005; 6:213-220. Cerca con Google

81. Kew JM, Goldstein LH, Leigh PN, Abrahams S, Cosgrave N, Passingham RE et al. The relationship between abnormalities of cognitive function and cerebral activation in amyotrophic lateral sclerosis A neuropsychological and positron emission tomography study. Brain 1993; 116:1399-14523. Cerca con Google

82. Knight RT. Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalography Clinical Neurophysiology 1984; 59:9–20. Cerca con Google

83. Kotchoubey B, Dubischar A, Mack H, Kaiser J, Birbaumer N. Electrocortical and behavioural effects of chronic immobility on word processing. Cogn Brain Res. 2003;17:188-99. Cerca con Google

84. Kotchoubey B, Lang S, Winter S, Birbaumer N. Cognitive processing in completely paralysed patients with amyotrophic lateral sclerosis. Eur J Neurol. 2003;10:551-8. Cerca con Google

85. Kushnerenko E, Ceponiene R, Balan P, Fellman V, Näätänen R. Maturation of the auditory change detection response in infants: a longitudinal ERP study. Neuroreport 2002;13:1843-8. Cerca con Google

86. Kutas M, McCarthy G, Donchin E. Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time. Science 1977; 197:792-5. Cerca con Google

87. Kutas M, Hillyard SA. Reading senseless sentences: Brain potentials reflect semantic incongruity. Science 1980; 207:203–205. Cerca con Google

88. Li R, Keil A, Principe JC. Single-trial P300 estimation with a spatiotemporal filtering method. J Neurosci Methods. 2009;177:488–96. Cerca con Google

89. Lomen-Hoerth C, Murphy J, Langmore S, Kramer JH, Olney RK Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology 2003; 60: 10945-1097. Cerca con Google

90. Luck SJ, Kappenman ES (2013). The Oxford Handbook of Event-Related Potential Components (2 éd.). New York: Oxford University Press. Cerca con Google

91. Ludolph AC, Langen KJ, Regard M, Herzog H, Kemper B, Kuwert T et al. Frontal lobe function in amyotrophic lateral sclerosis: a neuropsychologic and positron emission tomography study. Acta Neurologica Scandinavica 1992; 85: 81-89. Cerca con Google

92. Luzzatti C, Willmes K, De Bleser R. (1996). Aachener aphasie test: versione italiana. Firenze: OS Organizzazioni Speciali. Cerca con Google

93. Magni E, Binetti G, Padovani A, Cappa SF, Bianchetti A, Trabucchi M. The Mini-Mental State Examination in Alzheimer's disease and multi-infarct dementia. Int Psychogeriatr. 1996;8:127-34. Cerca con Google

94. Mannarelli D, Pauletti C, Locuratolo N, Vanacore N, Frasca V, Trebbastoni A, Inghilleri M, Fattapposta F. Attentional processing in bulbar- and spinal-onset amyotrophic lateral sclerosis: insights from event-related potentials. Amyotroph Lateral Scler Frontotemporal Degener. 2014;15:30-8. Cerca con Google

95. Mantovan MC, Baggio L, Barba GD, Smith P, Pegoraro E, Soraru G et al. Memory deficits and retrieval processes in ALS1. European Journal of Neurology 2003; 10: 221-227. Cerca con Google

96. Massman PJ, Sims J, Cooke N, Haverkamp LJ, Appel V, Appel SH. Prevalence and correlates of neuropsychological deficits in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry 1996; 61:4550-4555. Cerca con Google

97. Mouraux A, Iannetti G. Across-trial averaging of event-related EEG responses and beyond. Magnetic resonance imaging. 2008; 26:1041–1054. Cerca con Google

98. Muller-Gass A, Macdonald M, Schröger E, Sculthorpe L, Campbell K. Evidence for the auditory P3a reflecting an automatic process: elicitation during highly-focused continuous visual attention. Brain Res. 2007;1170:71-8. Cerca con Google

99. Munte TF, Troger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Recognition memory deficits in amyotrophic lateral sclerosis assessed with event-related brain potentials. Acta Neurol Scand. 1998;98:110-5. Cerca con Google

100. Munte TF, Troger M, Nusser I, Wieringa BM, Matzke M, Johannes S, Dengler R. Abnormalities of visual search behaviour in ALS patients detected with event-related potentials. Amyotroph Lateral Scler Other Motor Neuron Disord. 1999;1:21-7. Cerca con Google

101. Murphy JM. Henry RG. Langmore S. Kramer JH. Miller BL. Lomen-Hoerth C. Continuum of frontal lobe impairment in amyotrophic lateral sclerosis. Arch Neurol. 2007; 64:530-4. Cerca con Google

102. Näätänen R, Gaillard AW, Mäntysalo S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst). 1978;42:313-29. Cerca con Google

103. Näätänen R, Simpson M, Loveless NE. Stimulus deviance and evoked potentials. Biol Psychol. 1982;14:53-98. Cerca con Google

104. Nakano I. Frontotemporal dementia with motor neuron disease (amyotrophic lateral sclerosis with dementia). Neuropathology. 2000;20:68-75. Cerca con Google

105. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I et al. The Montreal Cognitive Assessment. MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society 2005;53:695-699. Cerca con Google

106. Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black SA et al. Frontotemporal lobar degeneration A consensus on clinical diagnostic criteria. Neurology 1998; 51: 15456-15545. Cerca con Google

107. Neary D, Snowden JS, Mann DM, Northen B, Goulding PJ, Macdermott N. Frontal lobe dementia and motor neuron disease. Journal of Neurology. Neurosurgery & Psychiatry 1990; 53:23-32. Cerca con Google

108. Neary D, Snowden JS, Mann DMA. Cognitive change in motor neurone disease/amyotrophic lateral sclerosis (MND/ALS). Journal of the neurological sciences 2000; 180: 15-20. Cerca con Google

109. Nelson HE. A modified card sorting test sensitive to frontal lobe defects. Cortex 1976; 12:313-3245. Cerca con Google

110. Nestor PJ, Graham NL, Fryer TD, Williams GB, Patterson K, Hodges JR. Progressive non‐fluent aphasia is associated with hypometabolism centred on the left anterior insula. Brain 2003; 126:24506-24518. Cerca con Google

111. Niedermeyer E, Da Silva FL. Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, 2005. Cerca con Google

112. Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A. et al. A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin. Neurophysiol. 2008;119:1909–16. Cerca con Google

113. Norris F. Shepherd R. Denys E. Mukai E. Elias L. Holden D. Norris H. Onset. natural history and outcome in idiopathic adult motor neuron disease. Journal of the Neurological Sciences 1993; 118: 458-55. Cerca con Google

114. Ogawa T Tanaka H Hirata K. Cognitive deficits in amyotrophic lateral sclerosis evaluated by event-related potentials. Clin Neurophysiol. 2009;120:659–64. Cerca con Google

115. Ozanne AG. Strang S. Persson LI. Quality of life. anxiety and depression in ALS patients and their next of kin. Journal of Clinical Nursing 2010; 20:283-291 Cerca con Google

116. Palmieri A, Naccarato M, Abrahams S, Bonato M, D’Ascenzo C, Balestreri S et al. Right hemisphere dysfunction and emotional processing in ALS: an fMRI study. Journal of neurology 2010; 257: 1970-1978. Cerca con Google

117. Palmieri A. Abrahams S. Sorarù G. Mattiuzzi L. D'Ascenzo C. Pegoraro E. Angelini C. Emotional Lability in MND: Relationship to cognition and psychopathology and impact on caregivers in J Neurol Sci. 2009; 278:16–20. Cerca con Google

118. Patel SH, Azzam PN. Characterization of N200 and P300: selected studies of the Event-Related Potential. Int J Med Sci. 2005;2:147-54. Cerca con Google

119. Paulus KS, Magnano I, Piras MR, Solinas MA, Solinas GF, Sau GF, Aiello I. Visual and auditory event-related potentials in sporadic amyotrophic lateral sclerosis. Clin Neurophysiol. 2002;113:853-61. Cerca con Google

120. Perry RJ, Graham A, Williams G, Rosen H, Erzinçlioglu S, Weiner M et al. Patterns of frontal lobe atrophy in frontotemporal dementia: a volumetric MRI study. Dementia and geriatric cognitive disorders 2006, 22:278-287. Cerca con Google

121. Phukan J. Elamin M. Bede P. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. J. Neurol. 2012;83:102-108. Cerca con Google

122. Phukan J. Pender NP. Hardiman O. Cognitive impairment in Amyotrophic Lateral Sclerosis. Lancet Neurol. 2007; 6: 995-1003. Cerca con Google

123. Picton TW, Bentin S, Berg P, Donchin E, Hillyard SA, Johnson R, Taylor MJ et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 2000;37: 127-152. Cerca con Google

124. Pinkhardt EH, Jurgens R, Becker W, Molle M, Born J, Ludolph AC, Schreiber H. Signs of impaired selective attention in patients with amyotrophic lateral sclerosis. J Neurol. 2008;255:532-8 Cerca con Google

125. Polich J, Alexander JE, Bauer LO, Kuperman S, Morzorati S, O’Connor SJ et al. P300 topography of amplitude/latency correlations. Brain Topogr. 1997;9:275–82. Cerca con Google

126. Polich L. On the relationship between EEG and p300: individual differences, aging, and ultradian rhythms,Int J psychophysiol. 1997; 26: 299-317. Cerca con Google

127. Polich J. Updating P300: An Integrative Theory of P3a and P3b. Clin. Neurophysiol. 2007;118:2128–48. Cerca con Google

128. Portet F. Cadilhac C, Touchon J, Camu W. Cognitive impairment in motor neuron disease with bulbar onset. Amyotrophic Lateral Sclerosis 2001; 2: 23-29. Cerca con Google

129. Posner MI, Petersen SE. The attention system of the human brain. Ann Rev Neurosci. 1990;13:2542. Cerca con Google

130. Pringle CE. Hudson AJ. Munoz DG. Kiernan JA. Brown WF. Ebers GC. Primary lateral sclerosis: clinical features. neuropathology and diagnostic criteria. Brain 1992; 115: 4595-520. Cerca con Google

131. Pritchard W. Psychophysiology of P300. Psychol. Bull. 1981. Cerca con Google

132. Rabkin JG. Wagner GJ. Del Bene M. Resilience and distress among amyotrophic lateral sclerosis patients and caregivers. Psychosom Med 2000; 62: 271-9. Cerca con Google

133. Rabkin. J. G.. Albert. S. M.. Del Bene. M. L.. O'Sullivan. I.. Tider. T.. Rowland. L. P.. & Mitsumoto. H. (2005). Prevalence of depressive disorders and change over time in late-stage ALS. Neurology. 65(1). 62-67. Cerca con Google

134. Raggi A, Consonni M, Iannaccone S, Perani D, Zamboni M, Sferrazza B, Cappa SF. Auditory event-related potentials in non-demented patients with sporadic amyotrophic lateral sclerosis. Clin Neurophysiol. 2008;119:342-50. Cerca con Google

135. Raggi A, Iannaccone S, Cappa SF. Event-related brain potentials in amyotrophic lateral sclerosis: A review of the international literature. Amyotrophic Lateral Sclerosis 2010; 11: 16-26. Cerca con Google

136. Rakowicz WP, Hodges JR. Dementia and aphasia in motor neuron disease: an underrecognised association? Journal of Neurology. Neurosurgery & Psychiatry 1998; 65:881-889. Cerca con Google

137. Raven JC. (1965). Guide to using the coloured progressive matrice: Sets A. Ab. B. London: H. K. Lewis. Cerca con Google

138. Ravits JM. La Spada AR. ALS motor phenotype heterogeneity, focality and spread Deconstructing motor neuron degeneration. Neurology 2009; 73: 805-811. Cerca con Google

139. Real RG. Herbert C. Kotchoubey B. Wessig C. Volkmann J. Kübler A. Psychophysiological correlates of coping and quality of life in patients with ALS. Clin Neurophysiol. 2014;125:955-61 Cerca con Google

140. Ringholz GM. Appel SH. Bradshaw M. Cooke NA. Mosnik DM. Schulz PE. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005; 65: 586-590 Cerca con Google

141. Ritter W, Ruchkin DS. A review of event-related potential components discovered in the context of studying P3. Ann N Y Acad Sci. 1992;658:1-32. Cerca con Google

142. Robinson KM, Lacey SC, Grugan P, Glosser G, Grossman M, McCluskey LF. Cognitive functioning in sporadic amyotrophic lateral sclerosis: a six month longitudinal study. Journal of Neurology. Neurosurgery & Psychiatry, 2006; 77: 668-670. Cerca con Google

143. Rocha JA Reis C. Simỡes F. Fonseca J. Ribeiro JM. Diagnostic investigation and multidisciplinary management in motor neuron disease. Journal of Neurology 2005; 252:14535-145457. Cerca con Google

144. Roeber U, Berti S, Schröger E. Auditory distraction with different presentation rates: an event-related potential and behavioral study. Clinical Neurophysiology 2003; 1145:3451-3459. Cerca con Google

145. Ross MA, Miller RG, Berchert L, Parry G, Barohn RJ, Armon C, Bryan WW, Petajan J, Stromatt S, Goodpasture J, McGuire D. Toward earlier diagnosis of amyotrophic lateral sclerosis: revised criteria. rhCNTF ALS Study Group. Neurology 1998;50:768-72 Cerca con Google

146. Rowland LP. Shneider NA. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2001.344:1688–700. Cerca con Google

147. Sage CA, Peeters RR, Görner A, Robberecht W, Sunaert S. Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis. Neuroimage 2007; 345: 4586-4599. Cerca con Google

148. Sarro L, Agosta F, Canu E, Riva N, Prelle A, Copetti M et al. Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. American Journal of Neuroradiology 2011; 32:1866-1872. Cerca con Google

149. Schiff S, D'Avanzo C, Cona G, Goljahani A, Montagnese S, Volpato C, Gatta A, Sparacino G, Amodio P, Bisiacchi P. Insight into the relationship between brain/behavioral speed and variability in patients with minimal hepatic encephalopathy. Clin Neurophysiol. 2014;125:287-97 Cerca con Google

150. Schroger E, Wolff C. Behavioral and electrophysiological effects of task-irrelevant sound change: A new distraction paradigm. Cognitive Brain Research 1998; 7: 71-87. Cerca con Google

151. Schröger E, Giard MH, Wolff C. Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol. 2000;111:1450-60. Cerca con Google

152. Schröger E, Bendixen A, Denham, SL, Mill RW, Bohm TM, Winkler I. Predictive regularity representations in violation detection and auditory stream segregation: From conceptual to computational models. Brain Topography 2013. Advance online publication. doi:10.1007/s10548-013-0334-6 Cerca con Google

153. Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration 1995;4:20916 Cerca con Google

154. Silvoni S, Volpato C, Cavinato M, Marchetti M, Priftis K, Merico A, Tonin P, Koutsikos K, Beverina F, Piccione F. P300-Based Brain-Computer Interface Communication: Evaluation and Follow-up in Amyotrophic Lateral Sclerosis. Front Neurosci. 2009 19;3:60. Cerca con Google

155. Smulders FTY, Kenemans JL, Kok A. A comparison of different methods for estimating single-trial P300 latencies. Electroencephalogr. Clin. Neurophysiol. Potentials Sect. 1994;92:107–14. Cerca con Google

156. Sparacino G, Milani S, Arslan E, Cobelli C. A Bayesian approach to estimate evoked potentials. Comput Methods Programs Biomed. 2002;68:233–48. Cerca con Google

157. Sparacino G, Milani S, Magnavita V, Arslan E. Electrocochleography potentials evoked by condensation and rarefaction clicks independently derived by a new numerical filtering approach. Audiol Neurootol. 2000;5:276–91. Cerca con Google

158. Strong MJ, Grace GM, Orange JB, Leeper HA, Menon RS, Aere C. A prospective study of cognitive impairment in ALS. Neurology 1999; 53: 1665-1665. Cerca con Google

159. Strong MJ. Lomen-Hoerth C. Caselli RJ. Bigio EH. Yang W. Cognitive impairment. frontotemporal dementia. and the motor neuron diseases. Ann Neurol. 2003;54:20-3. Cerca con Google

160. Strong MJ, Grace GM, Freedman M, Lomen-Hoerth C, Woolley S, Goldstein LH et al. Consensus criteria for the diagnosis of frontotemporal cognitive and behavioural syndromes in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 2009, 10: 131-1456. Cerca con Google

161. Su Z. Zhang Y. Gendron TF. Bauer PO. Chew J. Yang WY et al. Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron. 2014;83:1043-50. Cerca con Google

162. Sutton S, Braren M, Zubin J, John ER. Evoked-Potential Correlates of Stimulus Uncertainty. Science 1965;150:1187–8. Cerca con Google

163. Talbot PR. Goulding PJ. Lloyd JJ. Snowden JS. Neary D. Testa HJ. Inter-relation between “classic” motor neuron disease and frontotemporal dementia: neuropsychological and single photon emission computed tomography study. J Neurol Neurosurg Psychiatry. 1995;58:541-7. Cerca con Google

164. Talman P. Forbes A. Mathers S Clinical phenotypes and natural rogression for motor neuron disease: analysis from an Australian database. Amyotrophic lateral sclerosis 2009;10: 79-845. Cerca con Google

165. Taylor LJ, Brown RG, Tsermentseli S, Al-Chalabi A, Shaw CE, Ellis CM et al. Is language impairment more common than executive dysfunction in amyotrophic lateral sclerosis? Journal of Neurology. Neurosurgery & Psychiatry 2013; 845:4594-4598. Cerca con Google

166. Testa D. Lovati R. Ferrarini. M.. Salmoiraghi F. Filippini G. Survival of 793 patients with amyotrophic lateral sclerosis diagnosed over a 28-year period. Amyotrophic Lateral Sclerosis 2005; 5: 208-212. Cerca con Google

167. Thivard L, Pradat PF, Lehéricy S, Lacomblez L, Dormont D, Chiras J, Meininger V. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. Journal of Neurology, Neurosurgery & Psychiatry 2007;78:889-892. Cerca con Google

168. Tulving E. Introduction to memory. In: Gazzaniga MS. ed. The new cognitive neurosciences. 2nd edn. Cambridge MIT Press. 2000: 727-732 . Cerca con Google

169. Turner MR. Scaber J. Goodfellow JA. Lord ME. Marsden R. Talbot K. The diagnostic pathway and prognosis in bulbar-onset amyotrophic lateral sclerosis. Journal of the Neurological Sciences 2010; 2945: 81-85. Cerca con Google

170. van der Graaff MM. de Jong JM. Baas F. de Visser M. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord. 2009;19:53-8. Cerca con Google

171. Vieregge P, Wauschkuhn B, Heberlein R, Hagenah R, Verleger R, Selective attention is impaired in amyotrophic lateral sclerosis: a study of event-related EEG potentials. Brain Res Cogn Brain Res. 1999;8:27-35. Cerca con Google

172. Volpato C. Piccione F. Silvoni S. Cavinato M. Palmieri A. Meneghello F. Birbaumer N. Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. J Clin Neurophysiol. 2010; 27:198-206. Cerca con Google

173. Wagner P, Röschke J, Fell J, Frank C. Differential pathophysiological mechanisms of reduced P300 amplitude in schizophrenia and depression: a single trial analysis. Schizophr Res. 1997;25:221-9. Cerca con Google

174. Walter WG, Cooper R, Aldridge VG, McCallum WC, Winter AL. The contingent negative variation: an electrical sign of sensory motor association and expectancy in the human brain. Nature 1964;230:380 Cerca con Google

175. Walter WG. Cooper R. Aldridge VG. McCallum WC. Winter AL. The contingent negative variation: an electrical sign of sensory motor association and expectancy in the human brain. Nature. 1964;230:3804 Cerca con Google

176. Westphal KP, Heinemann HA, Grözinger B, Kotchoubey BJ, Diekmann V, Becker W, Kornhuber HH. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity). Acta Neurol Scand. 1998;98:15-21. Cerca con Google

177. Westphal KP. Heinemann HA. Grozinger B. Kotchoubey BJ. Diekmann V. Becker W. Kornhuber HH. Bereitschaftspotential in amyotrophic lateral sclerosis (ALS): lower amplitudes in patients with hyperreflexia (spasticity). Acta Neurol Scand. 1998;98:15-21. Cerca con Google

178. Wetzel N and Schröger E. On the development of auditory distraction: A review. PsyCh Journal. 2014; 3:372–91 Cerca con Google

179. Wetzel N, Schröger E, Widmann A. The dissociation between the P3a event-related potential and behavioral distraction. Psychophysiology 2013;50:920-30. Cerca con Google

180. Wilson BA, Cockburn J, Baddeley AD (1991). The Rivermead behavioural memory test. Thames Valley Test Company. Cerca con Google

181. Woolley SC, Katz JS. Cognitive and behavioral impairment in amyotrophic lateral sclerosis. Physical medicine and rehabilitation clinics of North America 2008; 19: 607-617. Cerca con Google

182. Zago S. Corbo M. Poletti B. Adobbati L. Silani V. Aspetti cognitivi dei pazienti con malattie del motoneurone. Neurol Sci 2005; 25: 69-72. Cerca con Google

183. Zimmerman EK, Zachary Simmons MD, Barrett AM. Emotional perception deficits in amyotrophic lateral sclerosis. Cogn Behav Neurol. 2007;20:79-82. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record