Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Gambato, Francesco (2015) Utilizzo di tecnologie avanzate per applicazioni di "high speed cooking". [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 31 Dicembre 2017 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

24Mb

Abstract (inglese)

The microwave (MW) technology has become crucial in "high speed cooking" equipment.
This new generation of cooker is still being refined and still finding its place in today's kitchens, but it is clear that these new high speed ovens can cook a wide variety of products and cook them faster than anything previously on the market. In ordinary cooking, heat is applied to the outside of food and it gradually penetrates to the inside. In MW cooking, the heat is generated within the food. Thus, a shorter heating time and a higher efficiency are some of the benefits of this technology. MW cooking is rapid, but non-uniform. MW heating is non-uniform mainly because of the inherently uneven distribution of the electromagnetic (EM) field inside the oven cavity. As the energy penetrates a lossy material, it is absorbed and less of it remains to penetrate further. Thus, energy absorption is non-uniform. Moreover, the energy absorption process is strongly affected by shape, size, dielectric properties of materials, position of the workload, as well as by the cavity geometry and dimensions. MW heating systems must provide uniform heating to obtain high quality products and avoid the so-called hot spots and cold spots. Traditionally, the temperature uniformity is accomplished by moving parts within the applicator, using mode stirrers, employing turntable or a combination of these techniques. Unfortunately, these techniques are not applicable within all type of resonant cavities. Other techniques which do not involve moving parts are: the pulsing MW energy or the phase shifting for different sources of MW energy. The phase shift technique and its effects on the EM field distribution and heating of a workload is discussed in the Thesis. The study of MW power sources has increased popularity among researchers in the field of cooking systems. In the last few years the innovative high frequency power solid state devices has gained much attention in place of magnetron due to their higher performances. In particular, a more careful control of the cooking process, which guarantees a more uniform heating of the foodstuff, can be achieved by using the solid state devices. This result can be reached, for instance, by using a properly phase shift for different sources of MW energy and it is discussed in the Thesis. Another solution, that is examined, involves the use of slots in the waveguide wall, which radiate EM energy from the waveguide. Since a multi slotted waveguide can be considered as an antenna array, a proper design of the slotted waveguide antennas, which feed the launch box and the MW applicator, is proposed in order to attain a more uniform temperature distribution without the need
of moving parts. The effectiveness of the aforementioned technical solutions has been verified by means of numerical simulations on a test case model of practical interest, named "panini grill". The use of MW technology ensures a sandwich is heated through without a cold centre while reducing cooking time significantly. In the 3D numerical model two physical phenomena, i.e. EM wave propagation and heat transport, are coupled together by the thermal effects of MW energy deposition and the temperature-dependent material parameters. The coupled problem is solved by means of a FEA commercial software (COMSOL). In order to achieve the design parameters for the slotted waveguide feeding system and the phase shifting, which guarantee the more uniform hating, an optimization problem has been solved. More specifically, a metamodels-based optimization method has been set up. The metamodels can significantly reduce the problem complexity and simulation time. The optimization procedure has been characterized by pre-processing, programming, and post-processing coupling COMSOL Multiphysics and Matlab software.

Abstract (italiano)

Nella progettazione di sistemi di cottura "high speed cooking" l"utilizzo della tecnologia a microonde si rivela essenziale. A differenza dei metodi tradizionali di riscaldamento in cui il calore fluisce dall"ambiente esterno verso l'interno, nel riscaldamento a microonde il campo elettromagnetico (EM) permette la generazione del calore all"interno del cibo stesso. Alcuni vantaggi di questo metodo sono i tempi di riscaldamento molto brevi e il rendimento elevato. Per contro, il riscaldamento a microonde è intrinsecamente non uniforme: la distribuzione del campo EM all'interno di una camera di cottura è disomogenea, altresì, l'onda EM che attraversa un workload cede energia e via via si attenua, determinando un assorbimento di energia non uniforme da parte del carico. Lo scenario si complica ulteriormente in relazione a geometria e dimensioni della cavità nonchè alla geometria, dimensioni, posizione e proprietà dielettriche del carico di cottura. Per migliorare l'uniformità del riscaldamento vengono adottate tecniche che favoriscono il rimescolamento del campo EM durante il processo, come ad esempio il piatto rotante e gli agitatori di campo (stirrers). Non sempre la tipologia del sistema di cottura permette l'utilizzo di parti meccaniche in movimento per l'agitazione del campo e quindi la mitigazione di hot spot e cold spot. In alcuni casi vengono utilizzate tecniche senza parti mobili quali: l'accensione intermittente di sorgenti a microonde di potenza o lo sfasamento tra le sorgenti. Quest'ultima tecnica, ed in particolare i suoi effetti sulla distribuzione del campo EM e sul riscaldamento del carico di cottura sono stati affrontati in questa tesi di dottorato. Lo studio delle sorgenti a microonde di potenza è diventato sempre più importante tra i ricercatori che si occupano di sistemi di cottura. Negli anni recenti, i dispositivi a stato solido, caratterizzati da prestazioni sempre più elevate, hanno trovato impiego in molte aree di applicazioni prima riservate ai magnetron. In particolare, l'utilizzo di generatori a stato solido consente un controllo della cottura più accurato garantendo un riscaldamento uniforme del cibo, per esempio agendo sullo sfasamento tra le diverse sorgenti a microonde. Una ulteriore tecnica, oggetto di indagine in questa tesi, per migliorare le prestazioni di cottura del cibo si giova dell'utilizzo di opportune aperture di accoppiamento tra le guide d'onda e la camera di lancio, ovvero antenne a fessura utilizzate per realizzare una schiera di antenne in una guida d'onda. L'efficacia delle tecniche proposte per migliorare l'obiettivo del riscaldamento uniforme è stata verificata tramite simulazione numerica di un prototipo d'interesse pratico: un sistema di cottura detto "panini grill" che grazie all'utilizzo della tecnologia a microonde permette di riscaldare un sandwich anche all'interno e ridurre significativamente i tempi di cottura. Il corrispondente modello multifisico 3D è stato realizzato mediante il software commerciale COMSOL Multiphysics che sfrutta il metodo degli elementi finiti per le simulazioni. In relazione agli accorgimenti impiegati, il problema di determinare quali siano i valori delle loro grandezze peculiari (e.g. sfasamento tra le sorgenti a microonde, layout schiera di antenne) che assicurano una cottura uniforme, è stato affrontato come un problema di ottimizzazione. In particolare, il metodo di ottimizzazione utilizzato si basa sulla costruzione di metamodelli al fine di ridurre la complessità ed il tempo complessivo di simulazione del modello numerico multifisico. Il processo di ottimizzazione ha coinvolto fasi di pre-elaborazione, programmazione e postelaborazione attraverso l'accoppiamento tra COMSOL e il software di calcolo scientifico Matlab

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Guarnieri, Massimo
Dottorato (corsi e scuole):Ciclo 27 > scuole 27 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:28 Gennaio 2015
Anno di Pubblicazione:28 Gennaio 2015
Parole chiave (italiano / inglese):optimization, ottimizzazione, particle swarm optimization, PSO, ottimizzazione con sciami di particelle, response surface, superfici di risposta, uniform heating, riscaldamento uniforme, food safety, food, cibo, cottura, sicurezza alimentare, microwave oven, forni a microonde, COMSOL, metamodel, metamodellazione, microwave heating, microwave, riscaldamento a microonde, microonde, microwave, solid-state devices, dispositivi a microonde a stato solido, HEMT, GaN, LDMOS
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/31 Elettrotecnica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:7665
Depositato il:12 Nov 2015 10:25
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Stephen F. Adam. Microwave theory and applications. Prentice-Hall, 1969. Cerca con Google

[2] Constantine A. Balanis. Antenna theory: analysis and design, 3rd edition. John Wiley & Sons, 2012. Cerca con Google

[3] M. Bellesini. Caratterizzazione mediante misure dinamiche e di elettroluminescenzandi dispositivi algan/gan hemt con elettrodo di gate trasparente, 2010. Cerca con Google

[4] Dan Bendall. High speed cooking equipment. Food Management, 2008. URL http://goo.gl/FmMj7d. Vai! Cerca con Google

[5] Dan Bendall. Well equipped: High speed cooking. Food Management, 2010. URL http://goo.gl/ksHFMy. Vai! Cerca con Google

[6] B. Bisceglia and N. Diaferia. Le microonde nel settore agroalimentare rassegna di alcune applicazioni. In XVI Riunione Nazionale di Elettromagnetismo, pages Cerca con Google

314–317, settembre 2006. Cerca con Google

[7] A. Bossavit. Solving maxwell equations in a closed cavity, and the question of spurious modes. Magnetics, IEEE Transactions on, 26(2):702–705, 1990. Cerca con Google

[8] M.M. Brady. Single slotted-waveguide linear arrays. Advances in microwaves., 7: 131–173, 1971. Cerca con Google

[9] Yu V. Bykov, K.I. Rybakov, and V.E. Semenov. High-temperature microwave processing of materials. Journal of Physics D: Applied Physics, 34(13):R55–R75, 2001. Cerca con Google

[10] Tse V. Chow Ting Chan and Howard C. Reader. Understanding microwave heating cavities. Artech House Publishers, 2000. Cerca con Google

[11] M.P. Chaparro, Y. Diaz, and M.J. Paredes. Evaluation of microwave technology in blanching of broccoli (brassica oleracea l. var botrytis) as a substitute for conventional blanching. Food Science, 1:426–432, 2011. Cerca con Google

[12] R.S. Chavan and S.R. Chavan. Microwave baking in food industry: a review. International Journal of Dairy Science, 5(3):113–127, 2010. Cerca con Google

[13] Kenneth S. Cole and Robert H. Cole. Dispersion and absorption in dielectrics i.alternating current characteristics. The Journal of Chemical Physics, 9(4):341–351, 1941. Cerca con Google

[14] Robert E. Collin and Francis J. Zucker. Antenna theory. McGraw-Hill, 1969. Cerca con Google

[15] COMSOL, 2014. URL http://www.comsol.it/. Vai! Cerca con Google

[16] B.G. Cordes, E. Eves, and V. Yakovlev. Modeling-based minimization of time-touniformity in microwave heating systems. In 11th AMPERE Conf. on Microwave and High Frequency Heating, pages 305–308, 2007. Cerca con Google

[17] S. Corraini. Studio dei fenomeni di degradazione di dispositivi hemt su gan sottoposti a stress in corrente, 2010. Cerca con Google

[18] G. Cosi. Algoritmi evolutivi per la gestione ottimale di impianti hvac, 2010. Cerca con Google

[19] Joseph W. Cresko and V.V. Yakovlev. A slotted waveguide applicator design for heating fluids. In Proc. 9th Conference on Microwave and High Frequency Heating, Loughborough, UK, pages 317–320, 2003. Cerca con Google

[20] A. Crivellaro. Ricostruzione adattativa di dati sparsi mediante funzioni a simmetria radiale, 2011. Cerca con Google

[21] S. Dar, Z. Ahmed, and M. Bin Ihsan. Design of a low side lobe slotted waveguide planar array. In Applied Sciences Technology, 2007. IBCAST 2007. International Cerca con Google

Bhurban Conference on, pages 31–34, Jan 2007. Cerca con Google

[22] Ashim K. Datta. Handbook of microwave technology for food application. CRC Press, 2001. Cerca con Google

[23] D.W. Davidson and R.H. Cole. Dielectric relaxation in glycerol, propylene glycol, and n-propanol. The Journal of Chemical Physics, 19(12):1484–1490, 1951. Cerca con Google

[24] D. Dibben. Numerical and experimental modelling of microwave applicators. PhD thesis, University of Cambridge, 1995. Cerca con Google

[25] Giuseppe Dilda. Microonde: circuiti risonanti speciali linee, guide d’onda, cavità, tubi per onde ultracorte, clistron, magnetron. Levrotto & Bella, 1956. Cerca con Google

[26] D.D. Dinčov, Kevin A. Parrott, and K.A. Pericleous. Heat and mass transfer in two-phase porous materials under intensive microwave heating. Journal of Food Engineering, 65(3):403–412, 2004. Cerca con Google

[27] Elsa Dominguez-Tortajada, Pedro Plaza-Gonzalez, A Diaz-Morcillo, and JV Balbastre. Optimisation of electric field uniformity in microwave heating systems by means of multi-feeding and genetic algorithms. International Journal of Materials and Product Technology, 29(1):149–162, 2007. Cerca con Google

[28] G. Duccini. Strumenti e metodi di progetto innovativi per strutture aeronautiche in materiale composito, 2007. Cerca con Google

[29] J.A. Duro and J.V. de Oliveira. Particle swarm optimization applied to the chess game. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Cerca con Google

Computational Intelligence). IEEE Congress on, pages 3702–3709. IEEE, 2008. Cerca con Google

[30] S. Ebbesen, P. Kiwitz, and L. Guzzella. A generic particle swarm optimization matlab function. In American Control Conference (ACC), 2012, pages 1519–1524. Cerca con Google

IEEE, 2012. Cerca con Google

[31] W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, and C. Prigent. New permittivity measurements of seawater. Radio science, 33(3): 639–648, 1998. Cerca con Google

[32] P. Faria, Z.A. Vale, J. Soares, and J. Ferreira. Particle swarm optimization applied to integrated demand response resources scheduling. In Computational Intelligence Cerca con Google

Applications In Smart Grid (CIASG), 2011 IEEE Symposium on, pages 1–8. IEEE, 2011. Cerca con Google

[33] G.F. Fasshauer. Meshfree approximation methods with MATLAB. World Scientific Publishing Co., Inc., 2007. Cerca con Google

[34] F. Gambato and A. Morassut. Two magnetrons-microwave ovens 3d modelling and simulations. In International Conference on Heating by Electromagnetic Sources (HES-13), pages 219–225, May 2013. Cerca con Google

[35] R. Gargana. Rilassamento dielettrico e attività enzimatica di una proteina globulare, 2003. Cerca con Google

[36] S.S.R. Geedipalli, V. Rakesh, and A.K. Datta. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering, 82(3):359–368, 2007. Cerca con Google

[37] F. Gibilras. Sistema di cottura con tecnologia a radiofrequenze. Macchine Alimentari, pages 44–47, 2011. URL http://www.forfoodservizi.com/wp-content/uploads/ Vai! Cerca con Google

2011/12/MAL_2011_007_INT@044-047.pdf. Cerca con Google

[38] B. Grassi. Caratterizzazione dc e dinamica di dispositivi di potenza su gan, 2013. Cerca con Google

[39] Midea Group, 2014. URL http://www.midea.com/global/. Vai! Cerca con Google

[40] S. Gunasekaran and Huai-Wen Yang. Optimization of pulsed microwave heating. Journal of food engineering, 78(4):1457–1462, 2007. Cerca con Google

[41] Erik Gustafsson and Niclas Strömberg. Shape optimization of castings by using successive response surface methodology. Structural and Multidisciplinary Optimization, Cerca con Google

35(1):11–28, 2008. Cerca con Google

[42] A.K. Haghi and N. Amanifard. Analysis of heat and mass transfer during microwave drying of food products. Brazilian Journal of Chemical Engineering, 25(3):491–501, 2008. Cerca con Google

[43] A.K. Haghi and N. Amanifard. Analysis of heat and mass transfer during microwave drying of food products. Brazilian Journal of Chemical Engineering, 25(3):491–501, 2008. Cerca con Google

[44] S. Havriliak Jr and S.J. Havriliak. Comparison of the havriliak-negami and stretched exponential functions. Polymer, 37(18):4107–4110, 1996. Cerca con Google

[45] J. Hysenbelli. Circuiti integrati a microonde basati su gaas e gan, 2010. Cerca con Google

[46] J.Y. Jeong, E.S. Lee, J.H. Choi, J.Y. Lee, J.M. Kim, S.G. Min, Y.C. Chae, and C.J. Kim. Variability in temperature distribution and cooking properties of ground pork Cerca con Google

patties containing different fat level and with/without salt cooked by microwave energy. Meat science, 75(3):415–422, 2007. Cerca con Google

[47] Richard C. Johnson. Antenna engineering handbook, 3rd edition. McGraw-Hill, 1993. Cerca con Google

[48] Donald R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal of global optimization, 21(4):345–383, 2001. Cerca con Google

[49] Lars G. Josefsson. Analysis of longitudinal slots in rectangular waveguides. Antennas and Propagation, IEEE Transactions on, 35(12):1351–1357, 1987. Cerca con Google

[50] Lars G. Josefsson. A waveguide transverse slot for array applications. Antennas and Propagation, IEEE Transactions on, 41(7):845–850, 1993. Cerca con Google

[51] Udo Kaatze. Complex permittivity of water as a function of frequency and temperature. Journal of Chemical and Engineering Data, 34(4):371–374, 1989. Cerca con Google

[52] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–1948, 1995. Cerca con Google

[53] E. Kim, B. Kim, and S. Nam. Analysis of electromagnetic wave transmission through a choke using fe-bim with arbitrary incident angle/polarization. Electromagnetic Cerca con Google

Compatibility, IEEE Transactions on, 39(1):11–16, 1997. Cerca con Google

[54] Jack P.C. Kleijnen and Robert G. Sargent. A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120(1):14–29, 2000. Cerca con Google

[55] L.A. Klein and C.T. Swift. An improved model for the dielectric constant of sea water at microwave frequencies. Antennas and Propagation, IEEE Transactions on, 25(1):104–111, 1977. Cerca con Google

[56] P. Kopyt and M. Celuch-Marcysiak. Fdtd modeling and experimental verification of electromagnetic power dissipated in domestic microwave ovens. Journal of Telecommunications and Information Technology, pages 59–65, 2003. Cerca con Google

[57] T. Krishnamurthy. Comparison of response surface construction methods for derivative estimation using moving least squares, kriging and radial basis functions. In Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, AIAA-2005-1821, pages 18–21, 2005. Cerca con Google

[58] G. Lambert-Torres, H.G. Martins, M.P. Coutinho, C.P. Salomon, and F.C. Vieira. Particle swarm optimization applied to system restoration. In PowerTech, 2009 IEEE Bucharest, pages 1–6. IEEE, 2009. Cerca con Google

[59] M. Lanza, J.R. Pérez, and J. Basterrechea. Particle swarm optimization applied to planar arrays synthesis using subarrays. In Antennas and Propagation (EuCAP), Cerca con Google

2010 Proceedings of the Fourth European Conference on, pages 1–5. IEEE, 2010. Cerca con Google

[60] W.L. Lee, A. Datta, and R. Cardell-Oliver. Microwave vacuum drying for advanced process technology. Technical report, Püschner Mikrowellen EnergietechniK, 2002. Cerca con Google

URL http://www.pueschner.com/. Vai! Cerca con Google

[61] A. Malandrin. Caratterizzazione ed affidabilità di transistor ad alta mobilità realizzati su gan (ga-polar e n-polar), 2011. Cerca con Google

[62] N. Marcuvitz. Waveguide handbook. McGraw-Hill Book Company, 1st edition, 1951. Cerca con Google

[63] MathWorks, 2014. URL http://it.mathworks.com/. 173 Vai! Cerca con Google

[64] K. Matsumoto and O. Hashimoto. Shield design about circumference of choke structure used for microwave oven by parallel fdtd. In Wireless Communications and Applied Computational Electromagnetics, 2005. IEEE/ACES International Conference on, pages 1065–1068. IEEE, 2005. Cerca con Google

[65] K. Matsumoto, O. Hashimoto, and K. Wada. An efficient analysis on door structure of a microwave oven using combined waves of higher order modes. In Microwave Cerca con Google

Conference, 2003. 33rd European, volume 3, pages 1171–1174. IEEE, Oct 2003. Cerca con Google

[66] V.A. Mechenova and V.V. Yakovlev. Efficient optimization of s-parameters of systems and components in microwave heating. In Proc. 3rd World Congress on Microwave & RF Applications, Sydney, Australia, 22-26 September, page Cerca con Google

M4A.24–M4A.25, 2002. Cerca con Google

[67] Roger J. Meredith. Engineers’ handbook of industrial microwave heating. Number 25 in IEE power engineering series. IET, 2007. Cerca con Google

[68] A.C. Metaxas, , and R.J. Meredith. Industrial microwave heating. Number 4 in IEE power engineering series. IET, 1988. Cerca con Google

[69] Umesh K. Mishra, Likun Shen, Thomas E. Kazior, and Yi-Feng Wu. Gan-based rf power devices and amplifiers. Proceedings of the IEEE, 96(2):287–305, 2008. Cerca con Google

[70] Shoji MIYAKE and Yukio MAKINO. Application of millimeter-wave heating to materials processing. IEICE transactions on electronics, 86(12):2365–2370, 2003. Cerca con Google

[71] Ned Mohan and Tore M. Undeland. Power electronics: converters, applications, and design. John Wiley & Sons, 1995. Cerca con Google

[72] B. Monemar. Iii-v nitrides—important future electronic materials. Journal of Materials Science: Materials in Electronics, 10(4):227–254, 1999. Cerca con Google

[73] D.C. Montgomery, A. Lombardo, G. Vicario, and R. Levi. Progettazione e analisi degli esperimenti. McGraw-Hill, 2005. Cerca con Google

[74] Hadis Morkoç. Handbook of nitride semiconductors and devices Vol. 3 GaN-based optical and electronic devices. Wiley-vch, 2009. Cerca con Google

[75] NXP Semiconductors Netherlands N.V., 2014. URL http://www.nxp.com/. Vai! Cerca con Google

[76] NXP Semiconductors Netherlands N.V., 2014. URL http://www.nxp.com/ Vai! Cerca con Google

documents/data_sheet/BLF2425M7L250P_2425M7LS250P.pdf. Cerca con Google

[77] M. O’Donnell, E.T. Jaynes, and J.G. Miller. Kramers-kronig relationship between ultrasonic attenuation and phase velocity. The Journal of the Acoustical Society of America, 69(3):696–701, 1981. Cerca con Google

[78] Grace P. Okiror and Carol L. Jones. Effect of temperature on the dielectric properties of low acyl gellan gel. Journal of Food Engineering, 113(1):151–155, 2012. Cerca con Google

[79] Arthur A. Oliner. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide. Antennas and Propagation, IRE Transactions on, 5 (1):4–20, 1957. Cerca con Google

[80] M.E.C. Oliveira and A.S. Franca. Microwave heating of foodstuffs. Journal of Food Engineering, 53(4):347–359, 2002. Cerca con Google

[81] I. Oumarou, D. Jiang, and C. Yijia. Particle swarm optimization applied to optimal power flow solution. In Natural Computation, 2009. ICNC’09. Fifth International Cerca con Google

Conference on, volume 3, pages 284–288. IEEE, 2009. Cerca con Google

[82] D.Z. Ovadia and C.E. Walker. Microwave baking of bread. Journal of microwave power and electromagnetic energy, 30(2):81–89, 1995. Cerca con Google

[83] C.J. Overbeck, R.R. Palmer, Stephenson R.J., and Marsh W. White. Interference of microwave. Technical report, Central Scientific Company, Chicago, 1962. Cerca con Google

[84] S. Ozge Keskin, G. Sumnu, and S. Sahin. Bread baking in halogen lamp–microwave combination oven. Food Research International, 37(5):489–495, 2004. Cerca con Google

[85] O. Ozmutlu, G. Sumnu, and S. Sahin. Assessment of proofing of bread dough in the microwave oven. European Food Research and Technology, 212(4):487–490, 2001. Cerca con Google

[86] D. Pavlidis. Hbt vs. phemt vs. mesfet: What’s best and why. In International Conference on Compound Semiconductor Manufacturing Technology, 1999. Cerca con Google

[87] P. Plaza-González, J. Monzó-Cabrera, J.M. Catalá-Civera, and D. Sánchez-Hernández. New approach for the prediction of the electric field distribution in multimode microwave-heating applicators with mode stirrers. Magnetics, IEEE Cerca con Google

Transactions on, 40(3):1672–1678, 2004. Cerca con Google

[88] P. Plaza-González, J. Monzó-Cabrera, J.M. Catalá-Civera, and D. Sánchez-Hernández. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators. Microwave Theory and Techniques, IEEE Transactions on, 53(5):1699–1706, 2005. Cerca con Google

[89] David M. Pozar. Microwave engineering. John Wiley & Sons, 3rd edition, 2005. Cerca con Google

[90] Rüdiger Quay. Gallium nitride electronics, volume 96. Springer, 2008. Cerca con Google

[91] Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, and P. Kevin Tucker. Surrogate-based analysis and optimization. Progress Cerca con Google

in aerospace sciences, 41(1):1–28, 2005. Cerca con Google

[92] Wu Ren, Ben-Qing Gao, Zheng-Hui Xue, Wei-Ming Li, and Bo Liu. Full-wave analysis of broad wall slot’s characteristics in rectangular waveguides. Antennas and Cerca con Google

Propagation, IEEE Transactions on, 52(9):2436–2444, 2004. Cerca con Google

[93] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4):25–34, 1987. Cerca con Google

[94] A.M. Rocha, M. Facão, J.P. Sousa, and A. Viegas. Simulation of electromagnetic leakage from a microwave oven. In Proceedings of EHE’06 International Conference Cerca con Google

on Electromagnetic Fields, Health and Environment, pages 1–29, 2006. Cerca con Google

[95] V.G. Ryckaert, J.E. Claes, and J.F. Van Impe. Model-based temperature control in ovens. Journal of food engineering, 39(1):47–58, 1999. Cerca con Google

[96] M.A. Saber. 3-d heat and mass transfer modeling and manipulation using microwaves. In Electromagnetic Compatibility, 2003. EMC’03. 2003 IEEE International Cerca con Google

Symposium on, volume 2, pages 817–819. IEEE, 2003. Cerca con Google

[97] I. Sanchez, J.R. Banga, and A.A. Alonso. Temperature control in microwave combination ovens. Journal of Food Engineering, 46(1):21–29, 2000. Cerca con Google

[98] A.J. Sangster and A.H.I. McCormick. Theoretical design/synthesis of slotted waveguide arrays. In IEE Proceedings H (Microwaves, Antennas and Propagation), pages 39–46. IET, 1989. Cerca con Google

[99] T.J. Santner, B.J. Williams, and W. Notz. The design and analysis of computer experiments. Springer, 2003. Cerca con Google

[100] N. Seyhun, H. Ramaswamy, G. Sumnu, S. Sahin, and J. Ahmed. Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. Journal of food engineering, 92(3):339–344, 2009. Cerca con Google

[101] Samuel Silver. Microwave antenna theory and design. McGraw-Hill, 1949. Cerca con Google

[102] P.P. Silvester and R.L. Ferrari. Finite elements for electrical engineers. Cambridge university press, 1996. Cerca con Google

[103] András Sóbester, Stephen J. Leary, and Andy J. Keane. On the design of optimization strategies based on global response surface approximation models. Journal of Cerca con Google

Global Optimization, 33(1):31–59, 2005. Cerca con Google

[104] R. Somaraju and J. Trumpf. Frequency, temperature and salinity variation of the permittivity of seawater. Antennas and Propagation, IEEE Transactions on, 54(11): 3441–3448, 2006. Cerca con Google

[105] Carlo G. Someda. Electromagnetic Waves. CRC Press, 1998. Cerca con Google

[106] Bi.Elle s.r.l. Modena (MO) italy, 2014. URL http://www.microwaves.it/. Vai! Cerca con Google

[107] EMitech s.r.l. Molfetta (BA) italy, 2014. URL http://www.emitech.it/. Vai! Cerca con Google

[108] S. Stanculovic. Theoretical synthesis and experimental measurements of slotted waveguide feeding systems for 2.45 ghz industrial microwave heating installations. Wissenschaftliche Berichte FZKA, 7263, 2006. Cerca con Google

[109] Robert J. Stegen. Longitudinal shunt slot characteristics. Technical report, DTIC Document, 1951. Cerca con Google

[110] Washington State University Biological Systems Engineering Microwave Sterilization, 2014. URL http://www.microwaveheating.wsu.edu/. Vai! Cerca con Google

[111] George J. Stern and Robert S. Elliott. Resonant length of longitudinal slots and validity of circuit representation: Theory and experiment. Antennas and Propagation, Cerca con Google

IEEE Transactions on, 33(11):1264–1271, 1985. Cerca con Google

[112] A.F. Stevenson. Theory of slots in rectangular wave-guides. Journal of Applied Physics, 19(1):24–38, 1948. Cerca con Google

[113] A. Stogryn. Equations for calculating the dielectric constant of saline water. Microwave Theory and Techniques, IEEE Transactions on, 19(8):733–736, 1971. Cerca con Google

[114] Wayne R. Tinga and Ken Eke. Combination microwave ovens: an innovative design strategy. The Journal of microwave power and electromagnetic energy: a publication Cerca con Google

of the International Microwave Power Institute, 46(4):192–205, 2012. Cerca con Google

[115] M. Tondi. Food design, anche il cibo è progetto. ARCHITETTARE 08 GUSTARE, 2010. Cerca con Google

[116] Paul F. Turner. Invasive microwave array with destructive and coherent phase, August 29 1989. URL http://www.google.com/patents/US4860752. US Patent 4,860,752. Vai! Cerca con Google

[117] J. Varith, C. Noochuay, P. Netsawang, B. Hirunstitporn, S. Janin, and M. Krairiksh. Design of multimode-circular microwave cavity for agri-food processing. In Microwave Conference, 2007. APMC 2007. Asia-Pacific, pages 1–4. IEEE, 2007. Cerca con Google

[118] J. Varith, W. Sirikajornjaru, and T. Kiatsiriroat. Microwave-vapor heat disinfestation on oriental fruit fly eggs in mangoes. Journal of food processing and preservation, Cerca con Google

31(3):253–269, 2007. Cerca con Google

[119] L. Vestling. Design and modeling of high-frequency ldmos transistors. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology Cerca con Google

681, pages 1–50, 2002. Cerca con Google

[120] Wiesbeck Werner. Antennen und antennensysteme (lecture notes), 2005. Cerca con Google

[121] Whirlpool, 2014. URL http://www.whirlpool.com/. Vai! Cerca con Google

[122] Jerry Whitaker. Power Vacuum Tubes Handbook. CRC Press, 2nd edition, 1999. Cerca con Google

[123] WITOL, 2014. URL http://www.witol.com.cn/. Vai! Cerca con Google

[124] Edward A. Wolff. Antenna analysis. Artech house, 1988. Cerca con Google

[125] Xin-She Yang. Nature-inspired metaheuristic algorithms. Luniver press, 2010. Cerca con Google

[126] K.S. Yee et al. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag, 14(3):302–307, 1966. Cerca con Google

[127] M. Zagoraiou. Esperimenti per modelli parzialmente lineari con applicazione ai computer experiments, 2008. Cerca con Google

[128] N. Zanetti. Valutazione sensoriale di filetti di branzino preparati con diversi materiali di cottura. Master’s thesis, Università degli Studi di Padova - Facoltà di Agraria, 2010-2011. Cerca con Google

[129] Qiong Zhang, Tom H. Jackson, and Aydin Ungan. Numerical modeling of microwave induced natural convection. International Journal of Heat and Mass Transfer, 43 Cerca con Google

(12):2141–2154, 2000. Cerca con Google

[130] H. Zheng and H. Lu. Effect of microwave pretreatment on the kinetics of ascorbic acid degradation and peroxidase inactivation in different parts of green asparagus Cerca con Google

(Asparagus officinalis L.) during water blanching. Food chemistry, 128(4):1087–1093, 2011. Cerca con Google

[131] L. Zhou, V.M. Puri, R.C. Anantheswaran, and G. Yeh. Finite element modeling of heat and mass transfer in food materials during microwave heating—model development and validation. Journal of food engineering, 25(4):509–529, 1995. Cerca con Google

[132] G. Zilli, L. Bergamaschi, and M. Venturin. Metodi di ottimizzazione, Dipartimento di Metodi e Modelli Matematici Università di Padova 2008. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record